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The Collins fragmentation function describes a left/right asymmetry in the fragmentation of a trans-
versely polarized quark into a hadron in a jet. Four different model calculations of the Collins function
have been presented in the literature. While based on the same concepts, they lead to different results and,
in particular, to different signs for the Collins function. The purpose of the present work is to review the
features of these models and correct some errors made in previous calculations. A full study of the
parameter dependence and the possible modifications to these models is beyond the scope of the paper.
However, some general conclusions are drawn.
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I. INTRODUCTION

The Collins fragmentation function [1] contributes to
several single-spin asymmetries in hard scattering reac-
tions, e.g. semi-inclusive deep inelastic scattering (DIS)
[2,3], proton-proton collisions [4], and electron-positron
annihilation into hadrons [5]. Several phenomenological
works on the Collins function have been published in the
past years (see, e.g., Refs. [6–10]), based on experimental
data coming from the above-mentioned processes [11–15].
In particular, the HERMES collaboration has recently
extracted a component of the transverse spin asymmetry
in semi-inclusive DIS [16], providing up to now the clean-
est evidence of the existence of a nonzero Collins function.
Although the interpretation of the data is still under de-
bate—because of the unexpected relative behavior of ��,
�0, and �� asymmetries—the favored Collins function
for pions seems to be positive and small [17]. The
COMPASS collaboration performed the same kind of mea-
surement using a deuteron target, obtaining asymmetries
consistent with zero [18]. This could be due simply to the
difference between the targets.

Four model calculations of the Collins function for the
fragmentation of a quark into a pion have been presented so
far in the literature [19–22] and used to make predictions
and/or compare to available data [21,23–25]. All of them
produce the necessary imaginary parts by adopting a sim-
ple model for the fragmentation process at tree level and
inserting one-loop corrections. Two possibilities have been
investigated for the tree-level amplitudes and two possible
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kinds of one-loop corrections, for a total of four different
models: pseudoscalar pion-quark coupling with pion loops
[19] and with gluon loops [21]; pseudovector pion-quark
coupling with pion loops [20] and with gluon loops [22].
We discovered an overall sign error in the Collins function
calculated in Refs. [19,20,22], and a more fundamental
error in Ref. [21], as we are going to discuss in the paper.

The calculation in Ref. [21] makes also use of Gaussian
form factors at the pion-quark vertex. In the present analy-
sis, we refrain ourselves from taking into account different
types of form factors and we limit ourselves to showing the
features of the models when using pointlike vertices. It
would be interesting to study how our results change upon
the introduction of form factors of different types, which is
however beyond the scope of the present article. Moreover,
such models are purely phenomenological and cannot be
derived from a Lagrangian of a microscopic model.

The paper is organized as follows: in Sec. II we use a
pseudoscalar pion-quark coupling to calculate the unpolar-
ized fragmentation function D1, as well as the Collins
fragmentation function generated by pion and gluon loops.
We also outline the general ideas underlying the applica-
tion of the various models to the calculation of fragmenta-
tion functions. In Sec. III we repeat the same calculations
using a pseudovector pion-quark coupling. In Sec. IV we
discuss numerical results obtained with both versions of
the pion-quark coupling and, in particular, we give some
estimates of the Collins single transverse spin asymmetry
in semi-inclusive DIS.
II. PSEUDOSCALAR PION-QUARK COUPLING

Fragmentation functions can be calculated from the
correlation function ��z; ~kT� [26],
-1  2005 The American Physical Society



AMRATH, BACCHETTA, AND METZ PHYSICAL REVIEW D 71, 114018 (2005)
��z; ~kT� �
1

4z

Z
dk���k; p�

���������k��p�=z

�
X
X

Z d��d2 ~�T
4z�2��3

e�ik��h0jUT	1T; ~�T ;�1��U�	�1�; ��; ~�T� ���j�;Xi


 h�;Xj � �0�U�	0�;�1�; 0T�U
T	0T;1T ;�1��j0i

������������0

: (1)
Since the two quark fields  �0� and  ��� transform differ-
ently under color gauge transformations a gauge link is
included in order to ensure color gauge invariance of the
correlator. The notation U�	a�; b�; cT� indicates a gauge
link running along the plus direction from (0�, a�, cT) to
(0�, b�, cT), while UT	aT; bT ; c

�� indicates a gauge link
running along the transverse direction from (0�, c�, aT) to
(0�, c�, bT). The specific path of the link connecting the
quark fields follows from the derivation of QCD factoriza-
tion. The definition written above applies to the correlation
function appearing in semi-inclusive DIS, while in e�e�

annihilation all occurrences of �1� in the gauge links
should be replaced by 1�. However, in Ref. [27] it was
shown that by means of a certain contour deformation one
can derive factorization in such a way that both the frag-
mentation functions in semi-inclusive DIS and in e�e�

annihilation have future-pointing gauge links. This univer-
sality of fragmentation functions was also observed earlier
in the context of a specific model calculation [28].

It is convenient to evaluate the correlator in Eq. (1) in
Feynman gauge, which we shall utilize in the rest of the
article. In Feynman gauge one has only to consider those
pieces of the link that run along the light-cone while the
transverse gauge links UT give no contribution and can be
neglected [29,30].

The tree-level diagram describing the fragmentation of a
virtual (timelike) quark into a pion is depicted in Fig. 1. In
the models used here the final state j�Xi is described by
the detected pion and a (unobserved) quark. Once higher
order corrections are included the quark together with
additional pions and/or quark-antiquark pairs form the
unobserved state. In the first part of this work, the pion-
quark vertex is taken to be g�5�i, where �i are the gen-
erators of the SU(2) flavor group.1 We assume the coupling
k

p

FIG. 1 (color online). Tree-level cut diagram describing the
fragmentation of a quark into a pion. This diagram is common to
all models, but the specific form of the pion-quark vertex can
change.
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to be pointlike. This assumption is of course not appropri-
ate at large transverse momenta of the pion. In fact, when
integrating the fragmentation functions over kT divergen-
ces occur. Therefore, we impose a cutoff on the virtuality
of the incoming quark, and study the dependence on the
cutoff in some detail. A different approach would be to
insert form factors. This could sensibly change the behav-
ior of the fragmentation functions compared to our results.

Before entering the details of the calculation it is worth-
while to add some comments on the general philosophy
underlying the model calculations. As a matter of princi-
ple, fragmentation functions cannot be computed by means
of perturbative QCD. They either have to be fitted to data
or computed in some effective approach to nonperturbative
QCD. It is well known that in the low energy domain of
QCD the Goldstone bosons, most notably the pions, play a
crucial role. Therefore, in the model calculation of frag-
mentation functions they are considered as (effective) de-
grees of freedom, which at low scales appear in addition to
the partonic degrees of freedom of QCD. This is, e.g., also
the underlying picture of the chiral quark model of
Manohar and Georgi [31] which we are going to use in
the next section. In such an approach there is of course
always a danger of double counting (for details on this
issue we refer here also to Ref. [31]). On the other hand,
one has to keep in mind that the gauge-link contribution to
the fragmentation functions cannot directly be modeled by
pion exchange, but rather the exchange of a spin-1 particle
is required. Moreover, as we discuss in more detail below,
pionic and gluonic contributions to the Collins function
tend to have opposite signs. Therefore, in the case of our
particular calculation of the Collins function we see no
direct indication of double counting.

A. Unpolarized fragmentation function

We briefly reproduce the results already obtained in
Ref. [19], but we present also a discussion of the parameter
dependence of our results. Here and in the next sections, all
results are for, e.g., the transition u! �0. An additional
isospin factor of 2 has to be included for, e.g., the transition
u! ��. The definition of the unpolarized fragmentation
1Note that in Ref. [19] the isospin structure was neglected,
since it was not relevant to the purpose of that paper. This leads
to different overall numerical factors in some of the final results.
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function is

D1�z; z
2 ~k2T� � Tr	��z; ~kT��

��: (2)

We compute the unpolarized fragmentation functions at
tree level only, i.e. only using the diagram of Fig. 1. This is
not entirely consistent with the fact that one-loop correc-
tions need to be introduced in order to calculate the Collins
function. We believe that the corrections to our final results
will be small, though it would be appropriate to check in
which kinematical region this statement holds. The result
obtained from the calculation of the tree-level diagram is

D1�z; z2 ~k
2
T� �

1

z
g2

16�3

~k2T �m2

� ~k2T �m2 � 1�z
z2 m

2
��

2
: (3)

The integrated unpolarized fragmentation function
D1�z� is defined as

D1�z� � �
Z ~K2

Tmax

0
d ~K2

TD1�z; ~K
2
T�; (4)

where ~KT � �z ~kT denotes the transverse momentum of
the outgoing hadron with respect to the quark direction.
The upper limit on the ~K2

T integration is set by the cutoff on
the fragmenting quark virtuality, �2, and corresponds to

~K 2
Tmax � z�1� z��2 � zm2 � �1� z�m2

�: (5)

The analytic result for the integrated fragmentation func-
tion is

D1�z� �
g2

16�2

�
z ln

�
�1� z���2 �m2�

z�m2 �m2
�

1�z
z2 �

�

� �z�1� z��2 � zm2 � �1� z�m2
��



m2
�

z2��2 �m2��m2 �m2
�

1�z
z2
�

�
: (6)

In Fig. 2 we show the result of the model calculation of
the function Du!��

1 for a choice of the coupling constant
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FIG. 2. Unpolarized fragmentation function Du!��

1 in a fragment
dependence on the parameter � (for m � 0:3 GeV). Right panel: d
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g � 3 and for different values of the parameters � and m.
Our value for g is about 1=3 of the pseudoscalar pion-
nucleon coupling, which can be considered as a reasonable
choice. Of course this value is not extremely well deter-
mined. Nevertheless, most of the pertinent results like the
z-shape of fragmentation functions, and the relative mag-
nitude of various contributions to the Collins function are
not very sensitive to the precise value of g. Keeping in
mind this large value of g it is quite possible that higher
order corrections to the calculation of D1 can be signifi-
cant. However, without performing an explicit calculation
of such corrections one cannot make a definite statement
about their numerical importance.

From Fig. 2 we deduce that, apart from the trivial
dependence on the coupling strength, an increase of the
cutoff or a decrease of the quark mass makes the fragmen-
tation function bigger, without sensibly changing the z
dependence. The shape of the unpolarized fragmentation
function is very far from standard parametrizations ex-
tracted from phenomenology (see, e.g. Ref. [32]), even
from a qualitative point of view. As mentioned before,
different behaviors can be obtained by modifying the
model through the insertion of form factors, as can be
seen comparing our results with those of Ref. [21].

B. Collins function from pion loops

We use the following definition of the Collins function
[2], in agreement with the ‘‘Trento conventions’’ [33],

�ijT kTj
m�

H?
1 �z; z

2 ~k2T� � Tr	��z; ~kT�i�
i��5�: (7)

The Collins function receives contributions only from
the interference between two amplitudes with different
imaginary parts. In our case, the tree-level amplitude is
real and the necessary imaginary parts are generated by the
inclusion of one-loop corrections. Such corrections contain
imaginary parts if and only if it is kinematically possible
that the particles in the loop go on shell. In this section, we
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ation model with pseudoscalar pion-quark coupling. Left panel:
ependence on the parameter m (for � � 1 GeV).
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FIG. 4. Contributions to H?�1=2�
1 =D1 from the diagrams of

Fig. 3 and their sum.
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will make use of pion loops. Keeping in mind that the
initial quark is virtual and timelike, the only two diagrams
contributing to the Collins function at one loop are the ones
shown in Fig. 3, plus their Hermitian conjugates. We refer
to these two diagrams as self-energy (a) and vertex (b)
corrections.

The explicit calculation of the one-loop diagrams leads
to the following result for the Collins function:

H?
1 �z; z

2 ~k2T� � �
g2

8�3

m�

1� z
m

k2 �m2


 �Im��PS � Im��1;PS�
��������k2� ~k2T

z
1�z�

m2
1�z�

m2�
z

; (8)

where we distinguished the contributions from diagram (a)
and (b), being respectively

Im��PS �
3g2

16�2

1

k2 �m2

�
1�

m2 �m2
�

k2

�
I1;�; (9)

Im��1;PS �
g2

8�2

k2 �m2 �m2
�

"�

 �I1;� � �k2 �m2 � 2m2

��I2;��: (10)

In the above formulae we have used the integrals

I1;� �
Z
d4l$�l2 �m2

��$��k� l�2 �m2�

�
�

2k2
������
"�

p
%�k2 � �m�m��

2�; (11)

I2;� �
Z
d4l

$�l2 �m2
��$��k� l�2 �m2�

�k� p� l�2 �m2

� �
�

2
������
"�

p ln
�
1�

"�
k2m2 � �m2 �m2

��
2

�


 %�k2 � �m�m��
2�; (12)

and the definition "� � "�k2; m2; m2
�� � 	k2 � �m�

m��
2�	k2 � �m�m��

2�.
Comparing these results with the original publication

[19], we notice that there is an overall sign error in the final
result for the Collins function. Furthermore, due to the
introduction of the isospin structure, which was neglected
in the original work, the contribution of the self-energy
correction, Eq. (9), has an extra factor 3, while the con-
l

p

k

p

k
l

+ H. c.+

(a) (b)

FIG. 3 (color online). Single pion-loop corrections to the frag-
mentation of a quark into a pion.
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tribution of the vertex correction, Eq. (10), has a different
sign.

In Fig. 4 we present numerical estimates of the following
quantity

H?�1=2�
1 �z�
D1�z�

�
�

D1�z�

Z
d ~K2

T
j ~KT j

2zm�
H?

1 �z; ~K
2
T�; (13)

separately for each diagram in Fig. 3. The most prominent
feature to be noticed is that the contributions of diagrams
(a) and (b) have similar size but opposite signs, causing a
strong cancellation and giving rise to a very small Collins
function. We checked that this behavior is persistent even
when changing the parameters m and �.

C. Collins function from gluon loops

Instead of using pion rescattering as a source of imagi-
nary parts, it is possible to consider gluon single-loop
corrections. In fact, gluon exchange is essential to ensure
color gauge invariance of the fragmentation functions. The
diagrams involved in the calculation of the Collins function
at the one-loop level are drawn in Fig. 5. The self-energy
(a) and vertex (b) corrections are analogous to the previous
case. The last two diagrams represent the interaction with
the quark before being struck by the photon in semi-
inclusive DIS (SIDIS), or with the outgoing antiquark in
the case of e�e� annihilation. We can call them the
photon-vertex (c) and box diagram (d) corrections. At
leading order in 1=Q, Q being the virtuality of the photon,
the eikonal approximation can be applied, the quark (anti-
quark) can be replaced by an eikonal line and the gluon
interaction can be factorized and included in the definition
of the correlation function, giving rise precisely to the
gauge links appearing in Eq. (1). When performing QCD
factorization for a diagram representing the full semi-
inclusive DIS or e�e� annihilation process, the hard
photon-quark vertex is separated from the soft physics
encoded in the fragmentation correlator shown in Fig. 5.
-4
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FIG. 5 (color online). Single gluon-loop corrections to the
fragmentation of a quark into a pion. The double line in (c)
and (d) represents the eikonalized quark propagator.
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The eikonal approximation means that one keeps the lead-
ing term, in an expansion in powers of 1=Q, of the quark
(antiquark) propagator in the case where the gluon is col-
linear to the pion (or remnants) in the final state. If the
gluon has a different momentum configuration one gets, at
least for the box diagram, a power suppressed contribution.
The eikonalized propagators give rise to the factors
1=��l� � i"� in Eqs. (22) and (23). The sign of the i"
term depends on whether we deal with SIDIS or e�e�

annihilation, respectively, but it does not influence the
result for the Collins function. The procedure of the eiko-
nal approximation and factorization has been discussed in
detail for distribution functions [26,29,30,34], and for
fragmentation functions [27].

As an illustration of the use of the eikonal approxima-
tion, we give the explicit formula for the contribution of
diagram (d) of Fig. 5 to the correlation function
��d��k; p� �
1

�2��4
i�6k�m�

k2 �m2 g�5�6k� 6p�m�2�$��k� p�2 �m2�



Z d4l

�2��4
igS��tai�6k� 6p�6 l�m�g�5i�6k�6 l�m�i��ig����igSta�

��k� p� l�2 �m2 � i"���k� l�2 �m2 � i"���l� � i"��l2 �m2
g � i"�

; (14)
where ta are the generators of the SU(3) color group.
The Collins function obtained by the calculations of the

diagrams in Fig. 5 can be written as

H?
1 �z; z

2 ~k2T� � �
g2

8�3

m�

1� z
m

k2 �m2 �Im�
g
PS � Im�g1;PS

� Im)PS � Im�PS�
��������k2� ~k2T

z
1�z�

m2
1�z�

m2�
z

;

(15)

where we distinguished the contributions from diagram (a),
(b), (c), and (d), being respectively

Im�gPS �
*s
2�

CF
1

k2 �m2

�
3�

m2

k2

�
I1;g; (16)

Im�g1;PS �
*s
2�

2CFI2;g; (17)

Im)PS � 0; (18)

Im�PS � �
*s
2�

CF
1

z ~k2T
�zk��~I3;g � �1� z��k2 �m2�~I4;g�

� �z�k2 �m2 �m2
�� � 2m2

��I2;g�: (19)

These results are valid only for the case mg � 0.
Equation (18) shows that no contribution to the Collins

function arises from the photon-vertex correction of dia-
gram (c). Even if it is kinematically possible to have an
imaginary part in this diagram, it cannot contribute to the
nontrivial Dirac structure connected to the Collins
function.

In the above formulae we have used the integrals

I1;g �
Z
d4l$�l2�$��k� l�2 �m2�

�
�

2k2
�k2 �m2�%�k2 �m2�; (20)

I2;g �
Z
d4l

$�l2�$��k� l�2 �m2�

�k� p� l�2 �m2

� �
�

2
������
"�

p ln
�
1�

2
������
"�

p

k2 �m2 �m2
� �

������
"�

p

�


 %�k2 �m2�; (21)

~I 3;g �
Z
d4l

$�l2�$��k� l�2 �m2�

�n � l� i"
; (22)

~I 4;g �
Z
d4l

$�l2�$��k� l�2 �m2�

	�k� p� l�2 �m2���n � l� i"�
: (23)

The lightlike vector n in the integrals ~I3;g and ~I4;g is defined
via n � a � a� for an arbitrary 4-vector a�. For our pur-
pose, we need only the following linear combination of the
last two integrals

~I 3;g � �1� z��k2 �m2�~I4;g �
�
k�

ln

�����
k2

p
�1� z�
m

: (24)
-5



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
− 0.4

− 0.2

0

0.2

0.4

0.6

a

b

d

sum

(1
/2

)
⊥

FIG. 6. Contributions to H?�1=2�
1 =D1 from the diagrams of

Fig. 5 and their sum.

AMRATH, BACCHETTA, AND METZ PHYSICAL REVIEW D 71, 114018 (2005)
From Eqs. (22) and (23) it is evident that the contribu-
tion to the Collins function coming from diagram (d) in
Fig. 5 does not come from the pole of the eikonal propa-
gator, but rather from the cut crossing the gluon and the
incoming quark. In fact, a contribution from the eikonal
propagator would imply a violation of universality of the
fragmentation functions [28]. This is in our opinion a
model-independent statement, merely due to kinematical
conditions, in agreement with the general statements of
Ref. [27].

At this point, we would like to comment on the model
calculation presented in Ref. [21]. The results about dia-
gram (d) obtained by the authors in that paper are in
disagreement with ours, even when taking the pointlike
limit of the Gaussian form factor. We believe that this is
due to a mistake in that paper. The Collins function ob-
tained there, Eq. (11), is erroneously coming from the
imaginary part of the eikonal propagator. This is evident
also by comparison with the results obtained for the dis-
tribution function h?1 in Ref. [35], Eq. (16). Taking the
pointlike form-factor limit of the Collins function of
Ref. [21], it turns out to be related in a simple way to the
distribution function h?1 in Ref. [35]. Such a relation
should not hold, even if only diagram (d) is taken into
account, since, as already mentioned before, the two func-
tions receive contributions from different cuts: the cut
crossing the eikonal line and the outgoing antiquark in
the distribution function, and the cut crossing the gluon
and incoming quark in the fragmentation function.

In Fig. 6, we present numerical estimates for the quantity
H?�1=2�

1 =D1, separately for each of the diagrams of Fig. 5. It
is interesting to note that also in this case there is a strong
cancellation between the contribution of diagrams (a) and
(b), to a large extent independent of the parameter choice.
At large values of z, the dominant part comes therefore
from diagram (d), the gauge-link box diagram. This ob-
servation may give support to the idea of calculating the
Collins function taking into account only this diagram, as
done in Ref. [21].

III. PSEUDOVECTOR PION-QUARK COUPLING

The tree-level diagram to be used for the calculation of
the unpolarized fragmentation function is the same as
before (Fig. 1). However, now the pion-quark vertex is
taken to be gA=�2F���5 6p, where p is the momentum of
the outgoing pion, as drawn in the picture. When working
with on-shell particles, the pseudoscalar and pseudovector
couplings are known to be equivalent. Here, however, we
are dealing with an off-shell fragmenting quark and the two
versions of the coupling lead to completely different re-
sults. Chiral invariance of the model is obtained by includ-
ing also a ��qq contact interaction [20,31]. As we discuss
below the contact term dominates the numerics of the
Collins function to a large extent. As before, we use a
pointlike pion-quark coupling, without form factors, but
114018
we impose a cutoff in the virtuality of the incoming quark
to avoid divergences. So far, no inclusion of form factors
was ever attempted on this type of model.

A. Unpolarized fragmentation function

In this section, we compute the unpolarized fragmenta-
tion functionD1 at tree level, as done in Ref. [20], adding a
few comments on the parameter dependence of the out-
come. Again, all results are for, e.g., the transition u! �0

and an additional isospin factor of 2 has to be included for,
e.g., the transition u! ��. The calculation of the tree-
level cut diagram of Fig. 1 yields the result

D1�z; z2 ~k
2
T� �

1

z
g2A
4F2

�

1

16�3

�
1� 4

1� z

z2



m2m2

�

	 ~k2T �m2 � 1�z
z2
m2
��

2

�
: (25)

We integrate over z ~kT in the same manner as done in
Sec. II A, and obtain the integrated fragmentation function
D1�z�

D1�z� �
g2A

64F2
��

2 �z�1� z��2 � zm2 � �1� z�m2
��




�
1

z
�

4m2m2
�

z2��2 �m2��m2 �m2
�

1�z
z2
�

�
: (26)

In Fig. 7 we show the result of the model calculation of the
function Du!��

1 for gA � 1 and F� � 93 MeV. We note
that an increase of the value of the cutoff parameter �
makes the function bigger, without sensibly changing the z
dependence. The dependence on the constituent quark
mass m is weak. These features were already commented
on in Ref. [20], where the values of � � 1 GeV and m �
0:3 GeV were selected as best choices. This decision was
justified by comparison with a standard parametrization of
the function Du!��

1 �D �u!��

1 and the experimental data
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on the average transverse momentum of hadrons in frag-
mentation processes.

B. Collins function from pion loops

After the introduction of single pion-loop corrections,
all the diagrams contributing to the Collins function are
depicted in Fig. 8. As mentioned before, apart from the
self-energy and vertex corrections, chiral invariance re-
quires the contact-interaction term, diagram (c), which
turns out to be dominant on the others.

The resulting Collins function can be written in a com-
pact form as

H?
1 �z; z

2 ~k2T� �
g2A

32�3F2
�

m�

1� z
m

k2 �m2 �Im�
�
PV

� Im��1;PV � Im��2;PV�
��������k2� ~k2T

z
1�z�

m2
1�z�

m2�
z

:

(27)

The three terms correspond, respectively, to the contribu-
tions of diagrams (a), (b), (c) in Fig. 8, and read

Im��PV �
3g2A

32�2F2
�

�
2m2

� �
1

2
�k2 �m2�


 �1�
m2 �m2

�

k2
�

�
I1;�; (28)
l

p

k

p

k
l

l+ +

p

k

+ H. c.

(a) (b) (c)

FIG. 8 (color online). Single pion-loop corrections to the frag-
mentation of a quark into a pion.
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Im��1;PV �
g2A

32�2F2
�
�k2 �m2�

�
1

2k2
�3k2 �m2 �m2

��I1;�

� 4m2 k
2 �m2 �m2

�

"�
�I1;� � �k2 �m2

� 2m2
��I2;��

�
; (29)

Im��2;PV � �
2

32�2F2
�
�k2 �m2�

�
1�

m2 �m2
�

k2

�
I1;�:

(30)

We point out that in the original publication [20] a sign
error was made. The sign of all results for the Collins
function should be reversed.

In Fig. 9 we present numerical estimates of the ratio
H?�1=2�

1 =D1, separately for each diagram in Fig. 8. As in the
previous cases, also in the present one the contribution
from diagrams (a) and (b) (i.e. self-energy and vertex
corrections) roughly cancel each other. The dominant con-
tribution to the Collins function comes therefore from
diagram (c), i.e. the contact-interaction diagram. As al-
ready mentioned before, the result of the sum of diagrams
correspond to that obtained in Ref. [20] (Fig. 8) except for
the overall sign.

C. Collins function from gluon loops

As discussed in Sec. II C, we can use gluon-loop cor-
rections to generate imaginary parts in the diagrams. The
Collins function becomes

H?
1 �z; z

2 ~k2T� �
g2A

32�3F2
�

m�

1� z
m

k2 �m2


 �Im�gPV � Im�g1;PV

� Im)PV � Im�PV�
��������k2� ~k2T

z
1�z�

m2
1�z�

m2�
z

; (31)
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where each term represents the contribution of one of the
diagrams in Fig. 5, and reads

Im�gPV �
*s
2�

CF

�
3�

m2

k2

�
I1;g; (32)

Im�g1;PV � �
*s
2�

CF

��
1�

m2

k2

�
I1;g � 4m2

�I2;g

�
; (33)

Im)PV � 0; (34)

Im�PV �
*s
�
CF�2I1;g � 2k��~I3;g � �1� z��k2 �m2�~I4;g�

�
2zm2 � �1� z��k2 �m2�

z2 ~k2T
�zk��~I3;g � �1� z�


 �k2 �m2�~I4;g� � �z�k2 �m2 �m2
��

� 2m2
��I2;g��: (39)
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FIG. 11. Estimate of H?�1=2�
1 =D1 in a model with pseudoscalar

corrections. Left panel: dependence on the parameter � (for m � 0
1 GeV).
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The above results are valid only for the case mg � 0. Note
the presence of the same linear combination of ~I3;g and ~I4;g
defined in Eq. (24). There is again no contribution from the
photon-vertex correction of diagram (c). Finally, there is no
contribution to the Collins function arising from the pole in
the eikonal propagator. We point out that in the original
publication [22] a sign error was made and the sign of the
results for the Collins function should be reversed.

Figure 10 shows the numerical estimates for the quantity
H?�1=2�

1 =D1, separately for each of the diagrams of Fig. 5.
This case is different from the previous ones, as no strong
cancellation between the different diagrams takes place.
The contribution from the vertex correction is opposite but
much smaller than that from the self-energy correction, a
feature persisting also for different values of the parame-
ters. Hence, all contributions turn out to be important. The
result of the sum of diagrams correspond to that obtained in
Ref. [22] (Fig. 4) except for the overall sign. This com-
pletes our review of the different models to calculate the
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.22 GeV

0.3 GeV

0.38 GeV

(1
/2

)
⊥

pion-quark interaction, including pion and gluon single-loop
:3 GeV). Right panel: dependence on the parameter m (for � �

-8



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
− 0.6

− 0.5

− 0.4

− 0.3

− 0.2

− 0.1

0

0.1

0.7 GeV

1 GeV

1.4 GeV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
− 0.6

− 0.5

− 0.4

− 0.3

− 0.2

− 0.1

0

0.1

0.22 GeV

0.3 GeV

0.38 GeV

(1
/2

)
⊥

(1
/2

)
⊥

FIG. 12. Estimate of H?�1=2�
1 =D1 in a model with pseudovector pion-quark interaction, including pion and gluon single-loop

corrections. Left panel: dependence on the parameter � (for m � 0:3 GeV). Right panel: dependence on the parameter m (for � �
1 GeV).

2For a discussion on how results are modified by introducing
some initial transverse momentum see Ref. [23].
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Collins function and the analysis of the contributions from
each separate diagram. We turn now to some numerical
results.

IV. NUMERICAL RESULTS AND ASYMMETRIES

In this section, we present numerical results for the
quantity H?�1=2�

1 =D1, for different values of the relevant
parameters m and �, separately for the pseudoscalar and
pseudovector pion-quark coupling. All possible contribu-
tions are summed, coming from pion loops as well as from
gluon loops.

Figure 11 shows the result for the pseudoscalar coupling
model of Sec. II. The left panel shows the dependence on
the cutoff parameter � and the right panel the dependence
on the constituent quark mass m. In this model the domi-
nant part of the Collins function arises from gluon inter-
actions, in particular, from the gauge-link box diagram, as
can be seen by comparing the solid lines in Fig. 11 with
that in Fig. 6. In general, this model gives rise to a ratio
H?�1=2�

1 =D1 of about 10%–20%, with a flat dependence on
the variable z in the range 0:2 � z � 0:8.

Figure 12 shows the result for the pseudovector coupling
model of Sec. III. As before, the dependence on the cutoff
parameter � and on the constituent quark massm is shown
in the left and right panel, respectively. In this case, for
higher values of the parameter � the contact-interaction
contribution, diagram (c) of Fig. 8, is the dominant one,
making the ratio H?�1=2�

1 =D1 negative and as big as 30%–
50%. However, as the value of � is reduced, the size of the
contact-interaction contribution decreases, while the size
of the contributions from the gluon loops increase. The
value of the ratio H?�1=2�

1 =D1 can in this case become
positive.

In order to allow a more direct comparison with experi-
mental results, we estimated the Collins transverse single-
spin asymmetry for �� production in semi-inclusive DIS.
114018
We use the definitions of the asymmetries and of the
azimuthal angles suggested in the ‘‘Trento conventions’’
[33]. To shorten the notation, we introduce the Collins
angle ) � )S �)h. We compute the quantities [2,20]

2

R dxdy
xy2

�1� y�
P
q
e2qh

q
1�x�H

?�1=2�q
1 �z�

R dxdy
xy2 �1� y� y2

2 �
P
q
e2qf

q
1 �x�D

q
1�z�

� 2hsin)iUT; (36)

2

R dxdy
xy2

�1� y�z
P
q
e2qh

q
1�x�H

?�1�q
1 �z�

R dxdy
xy2

�1� y� y2

2 �
P
q
e2qf

q
1 �x�D

q
1�z�

� 2
�
j ~Ph?j
m�

sin)


UT
;

(37)

where q denotes the quark flavor, fq1 is the standard un-
polarized parton distribution function (also denoted by q),
and hq1 is the transversity distribution function (also de-
noted by $q or �Tq). The equivalence between the ex-
pressions on the left-hand side and the experimental
asymmetries on the right-hand side (see Ref. [16]) is
approximate since power corrections and *S corrections
are not taken into account. Moreover, we assumed a full
integration over the outgoing hadron’s transverse momen-
tum and in Eq. (36) no intrinsic quark transverse momen-
tum in the target is present.2

For numerical calculations, we use the nonrelativistic
assumption h1 � g1 (where g1 is the helicity distribution
function, also denoted by �q) and the simple parametri-
zation of g1 and f1 suggested in [36]. In our model,
disfavored fragmentation functions vanish, while this is
not the case in experiments. Therefore, we focus only on
�� production, where the impact of this limitation of the
-9
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AMRATH, BACCHETTA, AND METZ PHYSICAL REVIEW D 71, 114018 (2005)
model should not be very relevant. We apply the kinemati-
cal cuts used in the HERMES experimental paper [16].

The results for the asymmetries are plotted in Fig. 13.
Published HERMES data [16] are also shown. We want to
stress once more some caveats to be taken into account
when interpreting these results: (1) the models could be
modified by the introduction of form factors, (2) no calcu-
lation of the real part of the loop corrections has been
made, and disfavored fragmentation functions vanish in
this approach, and (3) it is possible that the measured
asymmetry receives contributions not included in the stan-
dard leading-order approach. Given the size of the experi-
mental errors (only statistical errors are included), it is
difficult to discriminate between the models. Present data
exclude the pseudovector coupling with a high value of the
parameter �. In general we observe that, making a reason-
able choice of parameters, we are not able to describe the
data in the framework of the discussed models by using
pionic degrees of freedom only.

V. CONCLUSIONS

In this paper we reviewed four model calculations of the
Collins function for the fragmentation of a quark into a
pion, which differ in the type of pion-quark coupling and in
the type of one-loop corrections they consider: pseudosca-
lar pion-quark coupling with pion loops [19] and with
gluon loops [21]; pseudovector pion-quark coupling with
pion loops [20] and with gluon loops [22]. Even if these
models have been already discussed in the literature, we
felt the need of presenting revised calculations in order to
fix some errors and discuss some details that were not
explicitly addressed in the past publications.

For all models, we discussed the shape and parameter
dependence of the unpolarized fragmentation function D1.
The agreement with typical parametrizations of this func-
tion is not good for the pseudoscalar coupling. For the
pseudovector coupling, the comparison is more encourag-
114018
ing. The inclusion of form factors in the pion-quark cou-
pling can however change these results.

In all the above-mentioned approaches disfavored frag-
mentation functions vanish, while data suggest that the
disfavored Collins function could be as big as the favored
and have an opposite sign. In principle, disfavored frag-
mentation functions could be calculated in the framework
of the above-mentioned models by considering diagrams
with the emission of two pions, one of which goes
unobserved.

We computed the Collins function following the defini-
tion suggested in the ‘‘Trento conventions’’ [33]. We found
an overall sign error in the published calculations of the
Collins function in Refs. [19,20,22]. Moreover, we
checked that no contribution to the Collins function comes
from the pole in the eikonal propagator, in agreement with
the general analysis of Ref. [27]. As a consequence, we
pointed out that the calculation of the Collins function in
Ref. [21] is in our opinion wrong.

For one specific choice of the parameters of the models,
we analyzed separately the different diagrams giving rise
to a nonzero Collins function and we discussed the size of
their contribution to the final result. It turns out that in three
out of four cases the contributions of two diagrams roughly
cancel each other, so that the Collins function is driven
dominantly by one diagram only. This observation holds
for different choices of the parameters, too. However, in
the case of the pseudovector coupling with gluon loops no
dominant diagram can be identified.

The different signs obtained for the Collins function,
and, in particular, for the contributions of each diagram
separately, lead us to the conclusion that it is not possible to
foresee the sign of the Collins function a priori. The fact
that more than one diagram with a different structure
contributes to the Collins function makes it also difficult,
if not impossible, to interpret the resulting effect in terms
of simple attractive/repulsive interactions.
-10
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We studied the parameter dependence of the ratio
H?�1=2�

1 =D1 for the two different choices of the pion-quark
coupling, summing together pion and gluon loop correc-
tions. Finally, we estimated the single-spin asymmetry for
�� production in semi-inclusive DIS off transversely po-
larized protons and compared it with available experimen-
tal data [16]. The conclusions that can be drawn from the
numerical results are somewhat limited. It appears that data
cannot be described by using pionic degrees of freedom
114018
only. It seems also that data can exclude the pseudovector
model with a high value of the parameter �. All other
versions of the models are compatible with the data.
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