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Astrophysical implications of gapless color-flavor locked quark matter:
A hot water bottle for aging neutron stars
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The gapless color-flavor locked (gCFL) phase is a candidate for the second-densest phase of matter in
the QCD phase diagram, making it a plausible constituent of the core of neutron stars. We show that even a
relatively small region of gCFL matter in a star will dominate both the heat capacity CV and the heat loss
by neutrino emission L�. The gCFL phase is characterized by an unusual quasiparticle dispersion relation
that makes both its specific heat cV and its neutrino emissivity "� parametrically larger than in any other
phase of nuclear or quark matter. During the epoch in which the cooling of the star is dominated by direct
Urca neutrino emission, the presence of a gCFL region does not strongly alter the cooling history because
the enhancements of CV and L� cancel against each other. At late times, however, the cooling is
dominated by photon emission from the surface, so L� is irrelevant, and the anomalously large heat
capacity of the gCFL region keeps the star warm. The temperature drops with time as T � t�1:4 rather than
the canonical T � t�5. This provides a unique and potentially observable signature of gCFL quark matter.
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I. INTRODUCTION

It has often been suggested that the core of a neutron star
may contain quark matter in one of the color-
superconducting phases [1]. The densest predicted phase
on the QCD phase diagram is the color-flavor locked (CFL)
phase, which is a color superconductor but an electromag-
netic insulator [1,2]. A recently suggested candidate for the
second-densest phase is the gapless CFL (gCFL) phase,
which is a conductor with a nonzero density of electrons
[3–6]. It also has gapless quark quasiparticles, one of
which has an almost-quadratic dispersion relation, arising
without fine-tuning because it is enforced by the require-
ment that the matter be electrically neutral [3,4]. We show
in this paper that this characteristic feature of the gCFL
phase means that if quark matter in this phase is present in
a neutron star, it dominates the heat capacity and neutrino
luminosity, and therefore controls the cooling of the star.
At late times this produces a unique signature, as the large
heat capacity keeps the star anomalously warm. A neutron
star that is tens of millions of years old will be an order of
magnitude or more warmer if it contains a region of gCFL
quark matter than if it does not.

In any speculation about the phases of matter that occur
inside a neutron star, the main challenge is to provide
observable signatures of the presence of these phases.
Since we are proposing such a signature, albeit one that
presents significant observational challenges, we first set
the stage with a quick survey of previous proposals.
(i) M
ass-radius relation.—If we could measure the
mass and radius of several neutron stars to a
reasonable accuracy, mapping out the mass-radius
relationship, we would have a strong constraint on
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the equation of state of dense matter. However,
although such measurements would dramatically
reduce the current uncertainties in our knowledge
of the equation of state of the nuclear matter
‘‘mantle’’ of neutron stars, and could yield evi-
dence of some sort of exotic phase in the core,
they would not provide specific evidence of the
presence of quark matter [7,8].
(ii) D
ouble pulsar timing.—There is a good prospect
that the long term analysis of the recently discov-
ered binary double pulsar [9] may yield a mea-
surement of the moment of inertia of a neutron
star [10]. This would provide information about
the density profile that is complementary to that
obtained from a mass-radius relation, as it would
constrain the ‘‘compactness’’ of a star.
(iii) G
ravitational waves from collisions.—If we
could detect gravity waves from neutron stars
spiraling into black holes in binary systems, we
could perhaps analyze them for information about
the density profile of the neutron star, in particu-
lar, the presence of an interface separating a
denser quark core from a less-dense nuclear man-
tle [11].
(iv) S
pinning out a quark matter core.—If conditions
are ‘‘just so,’’ rapidly spinning oblate neutron stars
may not have quark matter in their cores even
though more slowly rotating spherical neutron
stars do. This could be detected either by anoma-
lies in braking indices of stars that are ‘‘spinning
down’’ [12] or by anomalous population statistics
of stars that are being ‘‘spun up’’ by accretion
[13]. Recent observations show no sign of such
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an effect in the histogram of spin frequencies of
stars in the act of being spun up [14], indicating
that if quark matter is present, spinning the star
and making it oblate does not get rid of it. If there
is a quark matter core, it must therefore occupy a
reasonable fraction of the star.
(v) r
 modes.—A rapidly spinning neutron star will
quickly slow down if it is unstable with respect to
bulk flows known as r modes, which transfer the
star’s angular momentum into gravitational radia-
tion. This phenomenon will only occur if damping
is sufficiently small, so it provides a probe of the
viscosity of the interior of the star. Such argu-
ments have been used to rule out the possibility
that pulsars are made entirely of CFL quark matter
[15], in which viscous damping is negligible
[15,16], but their implications for the possibility
of CFL quark matter localized within the core of a
neutron star have not yet been analyzed. Since
gCFL quark matter is expected to have a large
viscosity, its presence is unlikely to be constrained
by r-mode arguments.
(vi) C
ore glitches.—If the third-densest phase on the
QCD phase diagram is not nuclear matter, it must
be a form of quark matter with less pairing than in
the gCFL phase. A leading candidate is the crys-
talline color-superconducting phase [17]. If this
form of quark matter occurs within the core of a
neutron star, because it is both superfluid and
crystalline it may be a locus for pulsar glitches.
This proposal has not yet been worked out suffi-
ciently quantitatively to determine whether such
core glitches are observable and if so whether they
are consistent with (some) observed glitches.
(vii) D
irect neutrino detection.—Neutrinos have a long
mean free path even in nuclear matter, so they can
potentially carry information about the core di-
rectly to the outside world. Not coincidentally,
neutrinos are very hard to detect, and the only
time when a neutron star emits enough neutrinos
to be detectable on earth is during the first few
seconds after the supernova explosion. The time-
of-arrival distribution of supernova neutrinos
could teach us about possible phase transitions
to and in quark matter [18,19], but analysis of
this proposal requires a better understanding of
both the supernova itself and of the properties of
quark matter at MeV temperatures, where the
phase diagram of QCD is more baroque than at
zero temperature [5,6].
(viii) C
ooling.—A much better prospect is the indirect
detection of neutrino emission, which is the domi-
nant heat loss mechanism for the first million
years or so, and can therefore be inferred from
measurements of neutron star temperature as a
function of age. Moreover, because both neutrino
114011-2
emission rates and heat capacity generally rise
with density, neutron star cooling is likely to be
preferentially sensitive to the properties of matter
in the core of a neutron star.
The qualitative distinction among cooling behaviors that
may be discerned from the measurement of temperatures
of stars that are 103–6 yr old is between stars in which
direct Urca processes are allowed (which yields a neutrino
emissivity "� � T6), leading to rapid cooling, and stars in
which direct Urca processes are forbidden [7,20–24].
Ordinary nuclear matter is unusual in that its direct Urca
processes n ! p� e� 	� and p� e ! n� � are kine-
matically forbidden, meaning that neutrino emission relies
upon slower reactions ("� � T8). Direct Urca processes are
allowed in sufficiently dense nuclear matter, nuclear matter
with nonzero hyperon density [25], pion condensation [26]
or kaon condensation [27], and in all proposed phases of
quark matter except CFL [28]. In the CFL phase, there are
no direct Urca processes because thermally excited quark
quasiparticles are exponentially rare. There are neutrino
emission processes involving collective excitations that
lead to "� � T15 [19], but in reality any CFL quark matter
within a star will cool by conduction, not by neutrino
emission [29]. Indeed, because all forms of dense matter
are good heat conductors the cooling of a star tends to be
dominated by whichever phase has the highest neutrino
emissivity. Hence, the discovery of fast cooling would only
tell us that some part of the star consists of one of the many
phases that allow direct Urca. Discovery of stars that cool
slowly would be an indication that they contain only
medium-density nuclear matter and perhaps CFL quark
matter.

To date, none of the schemes listed above has provided
an unambiguous signature of the presence of quark matter,
although all are the subject of ongoing observational effort,
which in turn drives improvements on the theoretical side.
In this paper, we argue that recent theoretical advances in
our understanding of the properties of quark matter offer
the prospect of an unambiguous detection, if it is possible
to measure the temperatures of neutron stars that are old
enough that their cooling is no longer dominated by neu-
trino emission. Admittedly, this presents an observational
challenge. However, it is a challenge that has not been
closely studied prior to our work, since all forms of dense
matter except gCFL quark matter result in neutron stars
that cool comparably (and very) rapidly in their old age.
We show that quark matter in the gCFL phase keeps aged
neutron stars (those significantly older than a million years)
much warmer than is predicted by any other assumed dense
matter physics.

Younger neutron stars containing gCFL quark matter
have a faster-than-standard direct Urca neutrino emissivity
"� � T5:5, but this does not lead to faster-than-standard-
direct-Urca cooling because of the correspondingly en-
hanced gCFL specific heat.
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In Sec. II, we introduce the relevant properties of the
gapless CFL phase of quark matter, and in Secs. III and IV
we present the calculations of its specific heat cV and
neutrino emissivity "�, respectively. These are our central
calculational results. We do not provide a state-of-the-art
calculation of the cooling of a neutron star containing
gCFL quark matter. Instead, in Sec. V, we provide an
introduction to the physics of neutron star cooling that
suffices to illustrate the qualitative consequences of the
quantitative results for the gCFL cV and "�. The astro-
physically inclined reader interested in our results and their
implications but not in their derivation can find cV in
Eq. (8) and "� in (31) and, more conveniently, Fig. 2 and
should read the text around these results and then turn to
Sec. V.

II. INTRODUCTION TO THE GAPLESS CFL
PHASE OF QUARK MATTER

At any densities that are high enough that nucleons are
crushed into quark matter, the quark matter that results at
sufficiently low temperatures is expected to be in one of a
family of color-superconducting phases, with Cooper pair-
ing of quarks near their Fermi surfaces [1]. The QCD
quark-quark interaction is strong and is attractive between
quarks that are antisymmetric in color. If there is quark
matter in the cores of neutron stars, we therefore expect it
to be color superconducting. The phenomenon persists to
asymptotically high densities, where the interaction be-
comes weak and ab initio calculations of properties of
color-superconducting matter become rigorous [1]. The
QCD phase diagram exhibits a rich structure of color-
superconducting phases as a function of temperature and
density [1,5,6], but in this paper we can simplify it by
working at zero temperature. This is reasonable because
we will be discussing neutron stars with temperatures in
the keV range, which is orders of magnitude colder than
the various critical temperatures at which phase transitions
between different quark matter phases occur.

A. The CFL phase under stress

At asymptotically high densities, where the up, down
and strange quarks can be treated on an equal footing and
the disruptive effects of the strange quark mass can be
neglected, quark matter is in the CFL phase, in which
quarks of all three colors and all three flavors form
Cooper pairs [2]. The CFL phase is a color superconductor
but is an electromagnetic insulator, with zero electron
density. In real-world quark matter, as may exist in the
cores of compact stars, the density is not asymptotically
high. The quark chemical potential � is of order 500 MeV
at most, making it important to include the effects of the
strange quark mass Ms, which is expected to be density
dependent, lying somewhere between the current mass
�100 MeV and the vacuum constituent quark mass
�500 MeV. To describe macroscopic regions of quark
114011
matter, we must also impose electromagnetic and color
neutrality [30–32] and allow for equilibration under the
weak interactions. The CFL pairing pattern is antisymmet-
ric in flavor, color, and spin, so it involves pairing between
different flavors. For this reason, the effect of a relatively
large Ms, combined with weak equilibration and the neu-
trality constraints, is to put a stress on the CFL pairing
pattern: these effects would all act to pull apart the Fermi
momenta of the different flavors by an amount of order
M2

s=� in the absence of CFL pairing. (This can be seen by
an analysis of neutral unpaired quark matter in which the
Fermi momenta of the d, u and s quarks are split by ’
M2

s=4�.) In the CFL phase, Fermi momenta do not sepa-
rate [33] but the consequence of the stress is that the
excitation energies of those fermionic quasiparticles whose
excitation would serve to ease the stress by breaking pairs
and separating Fermi surfaces is reduced, again by order of
M2

s=� [3]. When the density becomes low enough, some of
the quasiparticles become gapless, the CFL pairing pattern
is disrupted, and we enter the gCFL phase [3,4]. Since the
strength of the CFL pairing is measured by the gap pa-
rameter �CFL, and the stress on it is of order M2

s=�, the
CFL pattern ‘‘breaks’’ and the CFL ! gCFL transition
occurs when the density is low enough that M2

s=��
�CFL. Making this argument quantitative results in the
prediction of a T � 0 second-order insulator-metal transi-
tion separating the CFL and gCFL phases at M2

s=� ’
2�CFL [3,4]. An analogous zero temperature metal insula-
tor transition has been analyzed in Ref. [34]. (If the CFL
phase is augmented by a K0 condensate [35,36], the
CFL ! gCFL transition is delayed to a value of M2

s=�
that is higher by a factor of 4=3 [37] or less [36].)

B. The nature of gCFL pairing

In the gCFL phase the pairing is still antisymmetric in
flavor as well as color and spin, so as in CFL there are
diquark condensates (gap parameters) �1 � hdsi, �2 �
husi, �3 � hudi. But unlike the CFL phase, where the
gap parameters are very similar, �1 � �2 ’ �3, in gCFL
the pairing involving strange quarks is suppressed: very
strongly for hdsi, and quite strongly for husi, so that �1 <
�2 < �3, as shown in the figures in Refs. [3,4,6]. The
result is that while quarks of all three colors and all three
flavors still form Cooper pairs, there are regions of mo-
mentum space in which there is no hdsi pairing, and other
(very narrow) regions in which there is no husi pairing, and
these regions are bounded by momenta at which the rele-
vant fermionic quasiparticles are gapless.

The gCFL phase is an electromagnetic conductor: unlike
the CFL phase, it contains electrons [3,4]. The electron
chemical potential �e increases as M2

s=� is increased,
rising from zero at the CFL ! gCFL transition to values
which are comparable to or even larger than its typical
values in unpaired quark matter, which has �e ’ M2

s=4�.
-3
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FIG. 1 (color online). Dispersion relations for quasiquarks
with gs-bd pairing (�1 � 3:6 MeV) and bu-rs pairing (�2 �
18:5 MeV), in the model calculation of Refs. [3,4,6] done at
� � 500 MeV, M2

s=� � 100 MeV, with �0 � 25 MeV. We
find gapless gs-bd modes at pbd

1 � 461 MeV and pbd
2 �

512 MeV. One bu-rs mode is gapless with an almost exactly
quadratic dispersion relation. Actually it is gapless at two
momenta pbu

1 and pbu
2 , but these are too close together to be

resolved until the temperature drops below the eV scale, mean-
ing we can treat them as a single zero at pbu

1;2 � 469 MeV. The
five quark quasiparticles not plotted are all fully gapped in the
CFL and gCFL phases.
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C. The gCFL domain

To discuss the range of densities over which gCFL is
expected to occur, we shall parametrize the strength of the
attractive interaction between quarks by �0, which we
define as the value of the CFL gap parameter at Ms � 0
in quark matter with � � 500 MeV. (We shall quote all
numerical results at � � 500 MeV, corresponding to
baryon densities between 8:8n0 and 9:1n0 depending on
the value of �0 that we choose, where n0 � 0:17 fm�3 is
the baryon density in nuclear matter.) Because asymptotic-
density calculations are not quantitatively valid at this �,
�0 is not known precisely, with estimates ranging from 10
to 100 MeV [1].

The gCFL phase extends over a range of M2
s=� from the

continuous CFL ! gCFL transition at M2
s=� � 2�1 ’

2�0 up to a first order phase transition where gCFL gives
way to some phase with even less pairing. In model
calculations, this transition occurs at M2

s=� ’ 5�0,
although this is only quantitatively determined within par-
ticular models [3–6]. To give a sense of the scales in-
volved, for �0 � 25 MeV and Ms � 250 MeV, the
gCFL window 2�0 & M2

s=� & 5�0 corresponds to 320 &

� & 800 MeV. At the lower end of this range in � (upper
end in M2

s=�) hadronic matter would be more favorable
than any form of quark matter. And, the upper end of this
range in � (lower end in M2

s=�) corresponds to densities
much higher than those achievable in neutron stars. Hence,
with these choices of parameters all the quark matter
within neutron stars would be in the gCFL phase. For larger
�0 or smaller Ms, the gCFL window shifts to lower �, and
neutron stars with a CFL core surrounded by a gCFL layer
become possible. In reality, both �0 and Ms are
� dependent, making these estimates illustrative only.

D. Gapless quasiparticles in the gCFL phase

In the CFL phase, all nine fermionic quasiparticles are
gapped. In the gCFL phase, two dispersion relations are
gapless, as shown in Fig. 1. We label the three quark colors
as r, g, b, and make the by now conventional choice for
which colors pair with which flavors in the CFL phase. In
this notation one of the gapless branches describes quasi-
particle excitations that are superpositions of bd particles
and gs holes. These excitations are gapless at two momenta
pbd
1 and pbd

2 shown in Fig. 1 and given by [4]

1

2
	�gs ��bd
 �

��������������������������������������������������
1

2
	�gs ��bd


�
2
� �2

1

s
; (1)

where �gs and �bd are determined by the (nontrivial)
requirements of color and electric neutrality. They are
defined in Ref. [4], and their values as a function of
M2

s=� at various �0 can be determined from plots in
Refs. [4,6]. The gapless excitations at pbd

1 are predomi-
nantly gs, with bd contributing only a small component in
the superposition. Those at pbd

2 are predominantly bd. In
114011
Sec. IV we shall focus on this dispersion relation in the
vicinity of pbd

1 , where it takes the form

�bd	p
 � vbdjp� pbd
1 j; (2)

where

vbd �

�������������������������������������������
1�

�2
1

12 	�gs ��bd
�
2

vuut (3)

is the Fermi velocity of the gapless quasiparticles. The bd
states with momenta between pbd

1 and pbd
2 are filled,

whereas the gs states in this momentum range are empty.
This means that there is no gs-bd pairing in the ground
state wave function in this region of momentum space,
although (as the dispersion relations show) there is still
pairing among the excitations. The width pbd

2 � pbd
1 of this

‘‘blocking region’’ wherein pairing is ‘‘breached’’ is zero
at the CFL ! gCFL phase transition, and grows steadily
with increasing M2

s=� throughout the gCFL phase. These
dispersion relations behave similarly to those describing
the gapless modes in the two-flavor gapless 2SC phase
[38], and in a metastable three-flavor phase discovered in
an early analysis in which the constraints imposed by
neutrality were not considered [39].

The physics of the gapless bu-rs dispersion relation is
interestingly different. As above these excitations are gap-
less at two momenta pbu

1 and pbu
2 given by
-4



ASTROPHYSICAL IMPLICATIONS OF GAPLESS . . . PHYSICAL REVIEW D 71, 114011 (2005)
1

2
	�bu ��rs
 �

��������������������������������������������������
1

2
	�bu ��rs


�
2
��2

2

s
; (4)

but in this instance 12 	�bu ��rs
�
2 � �2

2 is very small,
making the dispersion relation in Fig. 1 look quadratic with
a single zero at pbu

1;2 �
1
2 	�bu ��rs
. For the parameters of

Fig. 1, pbu
2 � pbu

1 � 0:026 MeV and the height of the
dispersion relation halfway between these very nearby
gapless points is only about 5 eV. Since this is much
smaller than the temperatures that will be of interest to
us, we can safely treat the dispersion relation as quadratic,
with a dispersion relation in the vicinity of its gapless point
given approximately by

�bu	p
 �
	p� pbu

1;2

2

2�2
; (5)

with the velocity vbu, defined analogously to vbd of (3),
vanishing at the gapless point. The gap parameter �2 and
the chemical potentials that determine pbu

1;2 are plotted as
functions of M2

s=� at several values of �0 in Refs. [4,6].
This near-quadratic dispersion relation is not a result of

fine-tuning. It occurs at all � in the gCFL phase, and arises
from the fact that bulk matter must be electrically and color
neutral [3,4]. In both the CFL and gCFL phases, there is an
unbroken gauge symmetry, denoted U	1
 ~Q, generated by a
linear combination of the generators of electromagnetic
and color symmetry [2]. Among the neutrality constraints,
it is the imposition of ~Q neutrality that has the implication
of interest. The quarks in the gCFL phase are almost
~Q neutral by themselves, but not quite: their small excess
positive ~Q charge is canceled by a small admixture of
electrons, which have ~Q � �1. The excess of unpaired
bd quarks, occurring in a broad band of momenta pbd

1 <
p< pbd

2 , does not contribute to the ~Q imbalance because
these quarks have ~Q � 0. It is the unpaired bu quarks with
pbu
1 <p< pbu

2 that matter, because they have ~Q � �1.
They contribute a positive ~Q-charge density of order
�2	pbu

2 � pbu
1 
, balanced by the electron number density,

of order �3
e. Since �e � � throughout the gCFL phase,

pbu
2 � pbu

1 is forced (by the dynamics of the gauge fields
that maintain neutrality) to remain extremely small, para-
metrically of order �3

e=�
2, throughout the gCFL phase.

As described above, the dispersion relations for the
gs-bd quasiparticles are linear about their gapless mo-
menta pbd

1 and pbd
2 , as in Eq. (2), at generic values of

M2
s=� in the gCFL phase. However, this dispersion rela-

tion is fine-tuned to be quadratic precisely at the CFL !
gCFL transition, where pbd

1 � pbd
2 and the Fermi velocity

vbd � 0. For values of M2
s=� that are in the gCFL regime

but are close to the CFL ! gCFL transition, therefore, the
simplified linear expression in Eq. (2) cannot be used.
Indeed, if we are interested in those excitations with en-
ergies of order T or less, the linear expression in Eq. (2) is a
good approximation as long as vbd *

���������������
2T=�1

p
. And, close
114011
enough to the transition that vbd �
���������������
2T=�1

p
the gs-bd

dispersion relation can be approximated as quadratic, as is
appropriate for the bu-rs dispersion relation throughout
the gCFL phase.

The gapless excitations of the gCFL phase whose dis-
persion relations we have described determine the specific
heat and neutrino emissivity of this phase of matter. In the
next two sections, we calculate these quantities in turn.
III. SPECIFIC HEAT OF GAPLESS CFL QUARK
MATTER

The specific heat of any phase of matter is essentially a
count of the number of possible excitations with excitation
energies of order T or smaller. Precisely, the contribution
of quasiparticle excitations with dispersion relation �	p
 to
the specific heat (heat capacity per unit volume) at tem-
perature T is given by

cV � 2
Z d3p

	2�
3
�	p


d
dT



1

e�	p
=T � 1

�

�
2

T2

Z d3p

	2�
3
�	p
2

	e�	p
=T � 1
	e��	p
=T � 1

(6)

where the prefactor 2 assumes that the quasiparticle is
doubly degenerate by virtue of its spin. Clearly, only those
excitations with � & T are important. For the gapless
quasiparticle with quadratic dispersion relation, � is near
zero for p near pbu

1;2 and in this regime the dispersion
relation can be approximated as in (5). Approximating
the dispersion relation in this way will give us the specific
heat in the small T limit, and so although it is straightfor-
ward to obtain an ‘‘exact’’ result upon assuming (5), we
simply quote the leading result in the small T limit:

cV �
3	

���
2

p
� 1
�	32


4�3=2
	pbu

1;2

2�1=2

2 T1=2

’ 0:146	pbu
1;2


2�1=2
2 T1=2: (7)

As expected, this is proportional to the number of excita-
tions with energy less than T, given a quadratic dispersion
relation (5). For quasiparticles with conventional linear
dispersion relations, namely �	p
 � vjp� pFj for some
pF and v, the expression (6) yields the familiar cV �
1
3p

2
FT=v. Hence, the specific heat of the gCFL phase is

given by

cV �
kB

	 	hc
3

�
0:146	pbu

1;2c

2�1=2

2 	kBT
1=2 �
c

3vbd

�	pbd
1 c
2kBT �

c
3vbd

	pbd
2 c
2kBT �

1

3
�2

ekBT
�
;

(8)

where we have restored factors of 	h, c and Boltzmann’s
constant kB and where the last term comes from the elec-
trons and is negligible because all the quark Fermi mo-
-5
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menta are of order �, and �e � �. As long as T � �2,
the contribution from the quasiparticle with quadratic dis-
persion relation dominates. We shall describe reasonable
values of �2 and T in subsequent sections; it suffices here
to say that �2=T is of order hundreds or thousands.

Note that close enough to the CFL ! gCFL transition
that vbd &

���������������
2T=�1

p
, the gs-bd dispersion relation cannot

be treated as linear, and the expression (8) is modified.
Indeed, if vbd �

���������������
2T=�1

p
the gs-bd dispersion relation

can be treated as quadratic, making their contribution to the
specific heat comparable to that of the bu-rs quasiparticles.

The gCFL phase also has light bosonic excitations, for
example, that associated with superfluidity, but their con-
tribution to the specific heat is of order T3 and so can be
neglected. The specific heat may be enhanced by logarith-
mic corrections analogous to those in unpaired quark mat-
ter [40], but we leave their analysis to future work.
IV. NEUTRINO EMISSIVITY OF GAPLESS CFL
QUARK MATTER

The presence of gapless quark quasiparticles in the
gCFL phase raises the possibility of neutrino emission by
direct Urca processes. Because the gapless modes are
superpositions of gs and bd quarks, and bu and rs quarks,
and because weak interactions cannot change the color of a
quark, the direct Urca processes that we must consider are

bd ! bu� e� � 	� (9)

and

bu� e� ! bd� �: (10)

Momentum conservation in these reactions requires that
the momenta of the two quarks and the electron form a
triangle [28]. (The argument is that these three fermions
must all have energies of order T and hence must all be
close to the momenta at which their dispersion relations are
gapless. The neutrinos escape from the star, and hence have
zero Fermi momentum. By energy conservation, the escap-
ing neutrino therefore has energy, and hence momentum,
of order T. This is negligible compared with the momenta
of the other fermions.) Momenta of the two quarks and the
electron satisfying the triangle constraint can only be found
if jpbu � pbdj � �e, where pbu and pbd are the magni-
tudes of the momenta at which the bu and bd quarks are
gapless. The only momentum at which gapless quasipar-
ticles with a bu component are found is pbu

1;2. Gapless bd
quarks occur at two momenta. For the parameters in Fig. 1,
the electron Fermi momentum is �e � 25:9 MeV, mean-
ing that the triangle constraint can be satisfied if we choose
bd quarks with momenta near pbd

1 , but cannot be satisfied
for those near pbd

2 . Indeed, we find that direct Urca pro-
cesses involving the quasiparticles at pbd

2 are forbidden
throughout the gCFL regime of M2

s=�, whereas those
involving quasiparticles at pbd

1 are allowed throughout all
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of the gCFL regime, with the available phase space vanish-
ing at the CFL ! gCFL transition and opening up with
increasing M2

s=�.
The calculation of the neutrino emissivity due to direct

Urca processes in unpaired quark matter was first done by
Iwamoto in Ref. [28], and we shall follow his analysis,
leaving the calculation of any logarithmic enhancement
analogous to that in unpaired quark matter [41] to future
work. There are two essential differences between
Iwamoto’s calculation for unpaired quark matter and ours
for the gCFL phase. First, although the quasiparticles near
pbd
1 have a conventional linear dispersion relation �bd	p


given in (2), as in unpaired quark matter, the quasiparticles
near pbu

1;2 have a quadratic dispersion relation �bu	p
 given
in (5). Analogous to its effect on the specific heat, this
unusual dispersion relation increases the available phase
space for the direct Urca reactions by a factor of order������������
�2=T

p
relative to that in the standard calculation, resulting

in a neutrino emissivity "� � T5:5 rather than �T6.
Second, the quasiparticles near pbd

1 and pbu
1;2 with disper-

sion relations �bd and �bu are not purely bd and bu quarks.
They are superpositions of bd and gs quarks, and bu and rs
quarks, respectively. Only the bd and bu components of
the quasiparticles participate, meaning that the neutrino
emissivity is proportional to the probabilities that each
quasiparticle is blue. These probabilities are the squares
of the Bogoliubov coefficients Bbu and Bbd, specified as
follows [2]. Bbu is given by

Bbu	p
2 �
1

2



1�

p� pbu
1;2������������������������������������

	p� pbu
1;2


2 � �2
2

q �
(11)

where pbu
1;2 �

1
2 	�bu ��rs
 and where �2 is the gap pa-

rameter for the pairing between bu and rs quarks. To
simplify the calculation we Taylor expand the coefficient
around pbu

1;2 and get

Bbu	p

2 �

1

2



1�

p� pbu
1;2

�2

�
: (12)

The bd Bogoliubov coefficient is given by

Bbd	p

2 �

1

2



1�

p� 	���������������������������������
	p� 	�
2 ��2

1

q �
(13)

where 	� � 1
2 	�bd ��gs
 and where �1 is the gap parame-

ter for the pairing between bd and gs quarks. Because the
dispersion relation is linear, the quarks that contribute to
the emissivity lie in a band about pbd

1 whose width is only
of order T, and we shall replace Bbd	p
 by Bbd	p

bd
1 
. This

coefficient can be quite small. For example, with parame-
ters as in Fig. 1, meaning in particular M2

s=� � 100 MeV,
the probability that the gapless quasiparticles at pbd

1 are in
fact bd is only Bbd	p

bd
1 
2 � 0:004 79.

We now present the calculation of "�, following
Ref. [28]. The transition rate for the process (9) is
-6
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W �
V	2�
4$	4
	pbd � p� � pbu � pe
Q4

i�1 2EiV
jMj2 (14)

where the index i runs over the four species that participate
in the interaction. V is the normalization volume, which
will drop out by the end of the calculation, and the squared
amplitude jMj2 is given by

jMj2 � 64G2
F cos

2(c	pbd � p�
	pbu � pe
; (15)

where we have averaged over the spin of the initial down
quark and summed over the spin of the final up quark.
Here, GF is the Fermi constant and (c is the Cabibbo angle.

The neutrino emissivity is the rate of energy loss per unit
volume due to neutrino emission. It is obtained by multi-
plying the transition rate by the neutrino energy and inte-
grating over the available phase space, weighted by the
Bogoliubov coefficients. The expression can be written as

"� �
2

V

�Y4
i�1

V
Z d3pi

	2�
3

�
E�Wn	pbd
	1� n	pbu



� 	1� n	pe

Bbu	pbu

2Bbd	p

bd
1 
2: (16)

Here, the Fermi distribution functions n	pbd
�
	1� n	pbu

	1� n	pe

 state that in order for the process
to occur we have to have an occupied down state and
unoccupied up and electron states. In thermal equilibrium
(which is maintained by strong and electromagnetic pro-
cesses occurring on time scales much faster than neutrino
emission via weak interactions) the distribution functions
are given by

n	pi
 �
1

1� expxi
(17)

where

xe �
pe ��e

T
; (18)

where

xbd � �
�bd	pbd


T
; (19)

with the � serving in effect to undo the absolute value in
(2), and where

xbu � �
�bu	pbu


T
(20)

with the � chosen positive for pbu > pbu
1;2 and negative for

pbu < pbu
1;2. In defining xbd we have used (2), meaning that

this derivation is valid at generic values of M2
s=� in the

gCFL regime where vbd *
���������������
2T=�1

p
, but not close to the

CFL ! gCFL transition, where both the bd and bu
branches should be treated as quadratic. We shall discuss
this further below. For later use, we also define

x� �
p�

T
: (21)
114011
It is possible to set the calculation up directly in terms of
the positive quasiparticle excitation energies, but introduc-
ing the � as we have done allows us to follow Iwamoto’s
calculation more closely.

We combine Eqs. (14)–(17) and multiply by a factor of 2
in order to include the emissivity due to the second process
(10), whose contribution proves to be the same as that
above. We write the integration element d3pi �
p2
i dpid�i, where d�i is the infinitesimal solid angle.

The complete expression for the emissivity then takes the
form [28]

"� �
G2

F

16�8 cos2(c	1� cos(ue
AB: (22)

Here, A is an angular integral defined as

A �


Y4
i�1

Z
d�i

�
$	pbd � pbu � pe
; (23)

where we have eliminated certain terms that vanish iden-
tically upon angular integration. A is identical to that in
Ref. [28] and upon evaluation yields

A �
32�3

pbd
1 pbu

1;2�e
; (24)

where we have taken jpbdj � pbd
1 , jpbuj � pbu

1;2, jpej � �e,
knowing that these are the values at which the B integral is
dominated. The integral B is defined as

B�
Z 1

0
p2
bddpbd

Z 1

0
p2
budpbu

Z 1

0
p2
edpe

�
Z 1

0
p3
�dp�n	pbd
	1�n	pbu

	1�n	pe



�
1

T
$	xbd�x��xbu�xe
Bbu	pbu


2Bbd	p
bd
1 
2: (25)

Finally, the angle (ue in (22) is the angle between the
momentum of the bu quark and that of the electron,
when the two quark momenta and the electron momentum
are arranged in a momentum conserving triangle. A little
trigonometry shows that (ue � (de � (du where

cos(de �
	pbd

1 
2 ��2
e � 	pbu

1;2

2

2pbd
1 �e

(26)

and

cos(du �
	pbd

1 
2 ��2
e � 	pbu

1;2

2

2pbd
1 pbu

1;2

: (27)

Now, all that remains is the evaluation of B.
The integral B is dominated by pbd near pbd

1 , by pbu

near pbu
1;2, and by pe near �e so we can pull the factor

p2
bdp

2
bup

2
e out of the integrand and replace it by 	pbd

1 
2 �

	pbu
1;2


2�2
e. Next, we change variables of integration from

the p’s to the x’s and obtain
-7
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B � 	pbd
1 
2	pbu

1;2

2�2

eT6 Bbd	p
bd
1 
2

2

Z 1

�1

dxbd
vbd

�
Z 1

�1
dxe

Z 1

0
dx�x

3
�

Z 1

�1
dxbu

������
�2

p
����������������
2Tjxbuj

p 1

exbd � 1

�
1

exbu � 1

1

exe � 1
$	xbd � xbu � xe � x�


(28)

where, as in the calculation of the specific heat, the en-
hanced density of states dpbu=dxbu � 	�2T=2jxbuj


1=2 for
the quasiparticle with the quadratic dispersion relation is
crucial. In (28) we have made the approximation
Bbu	pbu

1;2

2 ’ 1

2 , since the other term in (12) leads to a
contribution proportional to T6 and we are keeping only
the leading contribution, proportional to T5:5. We now
rewrite (28) as

B �
1

2
���
2

p 	pbd
1 
2	pbu

1;2

2�2

e
T5:5

������
�2

p
Bbd	p

bd
1 
2

vbd

�
Z 1

�1
dxbd

Z 1

�1
dxe

Z 1

0
dx�x

3
�

Z 1

�1
dxbu

1�������������
j xbu j

p
�

1

exbd � 1

1

exbu � 1

1

exe � 1
$	xbd � xbu � xe � x�
;

(29)

use the delta function to perform one of the integrations,
and then perform the remaining dimensionless triple inte-
gral numerically. The result is

B � 31:18	pbd
1 
2	pbu

1;2

2�2

e
T5:5

������
�2

p
Bbd	p

bd
1 
2

vbd
: (30)

Combining this with the result (24) for A and substituting
into (22) we obtain the final result for the neutrino emis-
sivity of the gCFL phase

"� �
62:36

�5

G2
F cos

2(c
	h10c7

	1� cos(ue
pbd
1 pbu

1;2�e

�
	kBT


5:5
������
�2

p
Bbd	p

bd
1 
2

vbd
; (31)

where we have restored the factors of 	h, c and kB. This
result is valid as long as vbd *

���������������
2T=�1

p
, meaning that the

gs-bd dispersion relation can be treated as linear with
slope vbd. At any nonzero temperature, there is a region
just on the gCFL side of the CFL ! gCFL transition where
this approximation breaks down. Indeed, in the region so
close to the transition that vbd �

���������������
2T=�1

p
, the gs-bd and

bu-rs dispersion relations can both be treated as quadratic,
and an analysis similar to that we have presented above
yields
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"� �
42:70

�5

G2
F cos

2(c
	h10c7

	1� cos(ue
p
bd
1 pbu

1;2�e	kBT

5

�
������������
�2�1

p
Bbd	p

bd
1 
2: (32)

We shall see below that for temperatures of interest in
neutron star physics, this expression is valid only in a
very narrow window of parameter space. It is (31) that is
relevant to neutron star phenomenology.

The gCFL emissivity (31) can be compared to the neu-
trino emissivity of noninteracting quark matter [28]

"unpaired� �
457�
1680

G2
F cos

2(c
	h10c4

M2
spF	kBT


6

� 	3:6� 1014 erg cm�3 s�1




	M2

s=�


100 MeV

�

�



�

500 MeV

�
2



T

107 K

�
6

(33)

where pF ’ � is the up quark Fermi momentum and where
�e has been replaced by M2

s=4�, appropriate for neutral
unpaired quark matter. The gCFL emissivity (31) is en-
hanced by a factor of

������������
�2=T

p
relative to that of noninter-

acting quark matter, but the full comparison between the
two rates is more involved.

We have obtained our result (31) in a form which makes
the dependence of "� on T manifest, but which obscures
the dependence on Ms and � because �2, Bbd	p

bd
1 
, �e,

vbd, pbd
1 and pbu

1;2 all change with Ms and �. The most
important � dependence is straightforward: pbd

1 � pbu
1;2 �

� and hence "� ��2. The remaining dependence on Ms
and � is dominated by the dependence on M2

s=�, which is
nontrivial because �2, Bbd	p

bd
1 
, �e and vbd and pbd

2 �
pbd
1 all depend nontrivially on M2

s=�. The result also
depends on �0, through this same set of quantities. The
reader who wishes to obtain numerical values of "� would
need numerical values for the gap parameters and chemical
potentials in the gCFL phase given in plots in Refs. [4,6],
which are used in the specification of many of the quanti-
ties occurring in (31). Given all these implicit depen-
dences, we provide Fig. 2 for the convenience of the
reader who wishes to use our result (31) for the gCFL
neutrino emissivity, for example, in order to calculate its
effects on neutron star cooling.

The most important dependences of "� are straightfor-
ward: "� � T5:5 and "� ��2. All the remaining depen-
dences are best described as dependence on M2

s=� and �0,
and hence are described by Fig. 2 which shows "�=T5:5 as a
function of M2

s=� for two values of �0. For each �0, we
see nonzero neutrino emissivity in the corresponding gCFL
regime, with "� negligible at lower M2

s=� in the CFL
phase. We do not plot "� at values of M2

s=� that are larger
than the gCFL regime, because it is not known what phase
of quark matter would be favored there, with what
-8
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T dependence for its "�. (Crystalline color-
superconducting quark matter [17] is a leading candidate
for the third-densest phase on the QCD phase diagram, and
its neutrino emissivity has not been calculated.) Also, at
these low densities quark matter may well have already
been superseded by nuclear matter. Note that a reasonable
estimate of the range of M2

s=� of interest to describe
possible quark matter in neutron stars is 50<M2

s=� <
250 MeV, corresponding roughly to 350<�< 500 MeV
and 150<Ms < 300 MeV. If �0 is large, say �0 �
100 MeV, the curve on Fig. 2 shifts far to the right, and
any quark matter that occurs is likely CFL, with negligible
"�. We see from the figure that for �0 � 25 MeV, the
highest density quark matter that can be reached is likely
in the gCFL phase. For intermediate values of �0, it is
possible to obtain a CFL core surrounded by a gCFL layer.

The shape of the curves in Fig. 2 arises from the combi-
nation of many effects. As M2

s=� increases through the
gCFL regime, �e rises monotonically and 	1� cos(ue

initially rises rapidly as phase space for neutrino emission
opens up, and then varies little. These effects are over-
whelmed by the fact that as M2

s=� increases through the
gCFL regime, �2, 1=vbd, and the Bogoliubov coefficient
Bbd	p

bd
1 
 all decrease monotonically.
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FIG. 2. Neutrino emissivity "� of gCFL quark matter from
(31) divided by 	T=107 K
5:5, plotted versus M2

s=�. The two
curves are drawn for two different values of the strength of the
interaction between quarks, corresponding to CFL gap parame-
ters �0 � 25 (solid curve) and �0 � 40 MeV (dashed curve).
The location of the CFL ! gCFL transitions for �0 � 25 and
40 MeV are indicated by dots on the horizontal axis, at M2

s=� �
46:8 and 73.0 MeV, respectively. To the left of these dots, "� is
negligible in the CFL phase. As discussed in the text we begin
the curves a small interval to the right of the transition, at the
M2

s=� where vbd � 0:15. (The �0 � 25 MeV and �0 �
40 MeV curves begin 2.5 and 3.9 MeV to the right of their
respective transitions.) The baryon chemical potential is � �
500 MeV, corresponding to a density about 9 times that of
ordinary nuclear matter. The effect of changing � while keeping
M2

s=� and �0 fixed can be approximated by scaling "� with �2.
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Close to the CFL ! gCFL transition, the most impor-
tant contribution to the steep decrease of "� with increasing
M2

s=� seen in Fig. 2 is the factor 1=vbd occurring in (31),
since after all vbd � 0 at the transition. However, one must
recall that the expression (31) plotted in Fig. 2 is only valid
for vbd *

���������������
2T=�1

p
. Indeed, for any nonzero T there is a

region close to the transition where vbd �
���������������
2T=�1

p
and

the emissivity is given by (32) with "� � T5, not by (31)
with "� � T5:5 as plotted in Fig. 2. In Fig. 2, we have begun
the gCFL curves at the value of M2

s=� at which vbd �
0:15, meaning that the curves can be trusted as long as T &

�1=100 ’ �0=100. (Note that �1 ’ �0 near the CFL !
gCFL transition.) For typical neutron star temperatures of
order keV, "� � T5:5 as given by (31) (and the curves of
Fig. 2 are therefore valid) even closer to the transition than
where we stopped the curves in Fig. 2. The curves can
safely be used in neutron star cooling calculations, as we
shall do in Sec. V.

Further to the right in Fig. 2, well away from the
transition, vbd approaches 1 and the factor 1=vbd ceases
to control the shape of the curves. In this regime, the most
important contribution to the decline in "� is the rapidly
falling Bogoliubov coefficient: as M2

s=� increases pbd
1 and

pbd
2 in Fig. 1 separate and the bd component of the gapless

quasiparticle at pbd
1 , namely Bbd	p

bd
1 
, drops faster than �e

rises.
In Sec. V we shall sketch the implications of our results

for the specific heat and neutrino emissivity of gCFL quark
matter for neutron star cooling. The most important depen-
dence of "� in this context is its T dependence. In all plots
in Sec. V, we show two curves, both with M2

s=� �
100 MeV, one with �0 � 25 MeV and one with �0 �
40 MeV. We choose these values because we see from
Fig. 2 that they correspond to a small, but reasonable,
and a larger, but still reasonable, value of "�=T5:5. Were
we to choose values of parameters that happened to land
very close to the CFL ! gCFL transition, all the conclu-
sions that we draw in the next section would become
stronger.

V. IMPLICATIONS FOR THE COOLING OF
NEUTRON STARS

The central results of this paper are the specific heat and
neutrino emissivity, calculated in Secs. III and IV. We shall
not attempt a state-of-the-art neutron star cooling calcula-
tion here, preferring instead to provide a calculation that is
better thought of as illustrative, not quantitative. The effect
that we wish to highlight is both large and qualitative,
arising from the T dependence of cV and "�, and we expect
that even our crude treatment will persuade the reader of its
significance.

We analyze the cooling of a ‘‘toy star’’ consisting of a
volume of ‘‘nuclear matter’’ at a constant density 1:5n0 and
a volume of denser quark matter with a constant density
specified by � � 500 MeV. (Because our toy star consists
-9
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of two regions each of constant density, rather than having
a density profile that solves the Tolman-Oppenheimer-
Volkov equation, we shall not take general relativistic
effects in the metric into account in our specification of
masses and volumes below, as this would be misplaced
precision.) We model nuclear matter as an electrically
neutral gas of noninteracting neutrons, protons and elec-
trons in weak equilibrium. We investigate three different
possibilities for the quark matter, all electrically and color
neutral and in weak equilibrium, and all with � �
500 MeV and M2

s=� � 100 MeV. We consider two pos-
sibilities for quark matter in the gCFL phase, with �0 �
40 MeV and �0 � 25 MeV. And, we consider noninter-
acting quark matter. These three options have densities of
9.1, 8.9 and 8.8 times normal nuclear matter density n0,
respectively. By treating the quark matter core as having a
constant density, our calculation neglects the possibility of
a thin spherical gCFL-CFL interface region, in which there
would be an enhancement in both the specific heat (by a
factor of 2, see end of Sec. III) and the neutrino emissivity
[see Eq. (32)] relative to the gCFL expressions (8) and (31)
that we shall use. Such a shell would be very thin because
these enhancements occur only within a very narrow win-
dow in M2

s=�, but a quantitative investigation of how small
its effects are is not possible in our ‘‘toy star calculation.’’
We choose the quark matter and nuclear matter volumes
Vqm and Vnm such that the total mass of the star is 1.4 solar
masses. If we set the quark matter volume to zero, this
corresponds to choosing a nuclear matter ‘‘star’’ that is a
sphere with radius R � 12 km. If we include a dense quark
matter core with radius Rcore while keeping the total mass
fixed, the star shrinks as we increase Rcore. With Rcore �
5 km the stellar radius is R � 10 km. A gCFL core with
radius 5 km has the same volume as a gCFL layer extend-
ing from r � 4:5 km to r � 6 km. Since such a layer
would surround a CFL quark matter core, and since CFL
matter plays no role in neutron star cooling, the estimates
that we quote for Rcore � 5 km can equally well be taken
as a guide to this scenario. Our final toy-model assumption
is that our star is a black body. The work that needs to be
done to turn our illustrative toy star calculation into a
quantitative calculation of neutron star cooling includes
the investigation of realistic density profiles, realistic nu-
clear matter, and realistic atmospheres. We defer this, as
our calculation suffices to make our qualitative point.

Our star loses heat by neutrino emission from its entire
volume and by black body emission of photons from its
surface. The heat loss due to neutrino emission is

L� � Vnm"nm� � Vqm"
qm
� : (34)

The quark matter neutrino emissivity "qm� is given either by
(31) or (33), depending on whether we are considering a
gCFL core or an unpaired quark matter core. The nuclear
matter emits neutrinos via modified Urca processes like
n� X ! p� X� e� 	�, with X either a neutron or a
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proton that serves to carry away some recoil momentum,
in order that momentum and energy can both be conserved
in the process. The resulting emissivity is [21,26]

"nm� � 	1:2� 104 erg�3 cm s�1




n
n0

�
2=3



T

107 K

�
8
: (35)

In evaluating the nuclear matter and quark matter emissiv-
ities, we shall assume that the entire interior of the star is at
a common temperature T. Both nuclear matter and quark
matter are good conductors of heat, and neutron stars older
than a few years are well approximated as isothermal.

Because "� � T5:5 in the gCFL phase, L� will be domi-
nated by neutrino emission from the gCFL matter, unless
the gCFL volume is very small. We include cooling curves
for cores made of ‘‘unpaired quark matter’’ even though
this is not expected to be present on the phase diagram of
QCD at neutron star temperatures because it serves as a
representative example of the large class of phases of dense
matter in which "� � T6 and cV � T. This class includes
all quark and nuclear phases that cool by direct Urca
processes, except for gCFL.

The surface of real neutron stars is colder than their
interiors, with the temperature gradients occurring only
in the outer envelope of the star within order of 100 m of
the surface. The heat transport within this envelope has
been analyzed [42], and the result is well approximated by
a phenomenological relationship between the interior tem-
perature T and the surface temperature Tsurface given by
[23,42]

Tsurface � 	0:87� 106 K




gs
1014 cm=s2

�
1=4



T

108 K

�
0:55

;

(36)

where gs � GNM=R2 is the surface gravity. This means
that the rate of heat loss from the surface of the star, which
for a black body is

L0 � 4�R21T4
surface (37)

with 1 the Stefan-Boltzmann constant, is given by

L0 � 4�R21	0:87� 106 K
4



gs
1014 cm=s2

�

T

108 K

�
2:2
:

(38)

We shall use this expression for L0, even though we are not
treating other aspects of the problem realistically, because
the fact that L0 � T2:2 will play an important qualitative
role.

The cooling of our star is described by the differential
equation

dT
dt

� �
L� � L0

Vnmc
nm
V � Vqmc

qm
V

� �
Vnm"

nm
� � Vqm"

qm
� � L0

Vnmc
nm
V � Vqmc

qm
V

(39)
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FIG. 3. Solutions to the cooling Eq. (39) for 1.4 solar mass
‘‘toy stars’’ (described in the text) of four different compositions.
The curves show internal temperature as a function of time. The
dot-dashed curve is for a star with radius R � 12 km made
entirely of nuclear matter with a density 1:5n0, with no quark
matter core. The other three curves describe stars with radii R �
10 km that have quark matter cores with radii Rcore � 5 km. For
all three curves, the quark matter has � � 500 MeV and
M2

s=� � 100 MeV, with densities ’ 9n0. For the dotted curve,
the quark matter is noninteracting. For the solid (dashed) curve,
it is in the gCFL phase with �0 � 25 MeV (�0 � 40 MeV).
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which equates the heat lost ( � Ldt) to the change in the
heat energy of the star ( ��VcVdT). We have all the
ingredients needed to evaluate the right-hand side of this
equation in place, with the exception of the specific heat of
nuclear matter and of unpaired quark matter. For a gas of
several species of nointeracting fermions, the specific heat
is given by

cV �
k2BT

3 	h3c

X
i

pi
F

�����������������������������
m2

i c
2 � 	pi

F

2

q
; (40)

where the sum runs over all the species. In the case of
noninteracting nuclear matter, the sum runs over i �
n; p; e and the Fermi momenta for neutral matter in weak
equilibrium are given by [21]

pn
F � 	340 MeV




n
n0

�
1=3

;

pp
F � pe

F � 	60 MeV



n
n0

�
2=3

:

(41)

We are taking noninteracting nuclear matter with density
n � 1:5n0 for the mantle of our stars. In the case of neutral
unpaired quark matter in weak equilibrium, the sum on i
runs over the nine quarks and the Fermi momenta are
independent of color and are given by [30]

pd
F � ��

M2
s

12�
; pu

F � ��
M2

s

6�
;

ps
F � ��

5M2
s

12�
;

(42)

up to corrections of order M4
s=�3. We are using matter with

� � 500 MeV in the core of our stars.
Figure 3 shows the cooling curves obtained by solving

(39) for the four toy stars we have described, plotted on a
log-log plot. Each curve has an early time power law
during the period when cooling by neutrino emission
dominates, namely, the first 105 or so years. At early times,
L0 � L� because L0 � R2 whereas L� � R3. Because L�

drops much more rapidly than L0 as T decreases, at late
times L0 dominates and a new power law is seen.

It is easy to see why power-law solutions arise. In any
temperature regime in which the numerator and the de-
nominator of the right-hand side of (39) are each domi-
nated by one of their component terms, the cooling
equation takes the form

dT
dt

� �aTp (43)

for some p and a. For example, for a star that is made
entirely of nuclear matter, during the epoch when L� �

L0 we have p � 7, coming from L� � T8 and cnmV � T.
For p > 1, (43) has a power-law solution

T � a	p� 1
t��1=	p�1
: (44)
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There are no arbitrary constants in this solution. We initi-
alize the differential equation with some temperature T0 at
a time t0 � 1 yr, chosen because by that time the interior
star can reasonably be treated as isothermal. The initial
condition T0	t0
 does not appear in the power-law solution:
it only affects how the power-law solution is reached, if
T0	t0
 does not lie on it. Once the power-law solution is
reached, the form of the solution to the differential equa-
tion is independent of the initial condition. We begin all our
plots at t � 1000 yr, by which time the solution is on the
power law (44) for any reasonable choice of T0	t0
.

During the epoch when L� � L0, a star made entirely
of nuclear matter has p � 7 and T � t�1=6. For the stars
with unpaired quark matter, or gCFL quark matter, p � 5
and T � t�1=4 during this epoch. This explains how similar
the three quark matter core curves are during the first
105 yr, and why all three stars with quark matter cores
are colder than the nuclear matter star. Note that the gCFL
quark matter has L� � T5:5 and cV � T0:5, both enhanced
by 1=T0:5 relative to that of unpaired quark matter, and
indeed relative to any phase of nuclear or quark matter in
which direct Urca processes occur that has been considered
previously. But, the effect of these enhancements cancel in
the cooling curve during the epoch when L� � L0. There
are now a number of indications [43] that some neutron
stars with ages of order 103 to 105 yr (presumably the
heavier ones, although this is certainly not demonstrated)
are significantly colder than would be expected in the
-11
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FIG. 5. Cooling curves showing the surface temperature of
stars with gCFL cores with �0 � 25 MeV for Rcore � 5 km
(solid curve; same as solid curve in Fig. 4), Rcore � 3 km
(dashed curve), Rcore � 1 km (dotted curve), Rcore � 0 km
(dot-dashed curve; same as dot-dashed curve in Fig. 4).

ALFORD et al. PHYSICAL REVIEW D 71, 114011 (2005)
absence of direct Urca neutrino emission, whereas other
(presumably less massive) stars have temperatures consis-
tent with theoretical cooling curves calculated upon assum-
ing nuclear matter composition. Were this to be confirmed,
the discovery of direct Urca emission with T � t�1=4,
instead of the slower T � t�1=6, could indicate the presence
of any number of dense matter phases, including gCFL
quark matter but also including nuclear matter leavened
with either hyperons, kaons or pions.

At late times, when L0 � L� all stars except those
containing gCFL quark matter have p � 2:2� 1 � 1:2
because L0 � T2:2 and cV � T, and hence cool with T �

t�1=0:2 � t�5. This explains the rapidly dropping tempera-
tures at late times for the stars without gCFL quark matter
in Fig. 3. If the volume of gCFL matter is sufficient (more
on this below) it dominates the heat capacity of the star,
yielding p � 2:2� 0:5 � 1:7 because cV � T0:5, and
hence the star cools with T � t�1=0:7 � t�1:4 at late times.
The gCFL matter keeps the aging star warm by virtue of its
large heat capacity. Hence, the title of our paper.

We show the surface temperatures of our toy stars in
Fig. 4. It is tempting to put data obtained from the obser-
vation of real stars on this plot, but we resist the temptation
given that our stars are not realistic. The qualitative impact
of gCFL quark matter is, however, clear: stars which are
old enough that they cool by photon emission stay much
warmer if they contain a gCFL hot water bottle. In our
Fig. 4, which should be taken as illustrative and not yet as a
quantitative prediction, the effect is a full order of magni-
tude for 107-yr old stars, and gets much larger for older
stars, as the cooling curves of all stars except those con-
taining gCFL quark matter drop rapidly.

In Fig. 5, we investigate the dependence of the cooling
curves on the volume of gCFL quark matter present in the
core of the star. We see that the ‘‘hot water bottle effect’’ is
present for Rcore � 3 km, but reduced in magnitude. For
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FIG. 4. Same as Fig. 3, except that here we plot Tsurface, related
to the interior temperatures plotted in Fig. 3 by Eq. (36).
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Rcore � 1 km, no effect is visible: the effect does occur, but
only at even lower temperatures than we have plotted.
(Because its heat capacity is cV � T0:5, if any gCFL quark
matter is present it will eventually dominate the heat
capacity of the entire star, no matter how small its volume
fraction. For Rcore � 1 km, this occurs at temperatures
below those we have plotted.) Note that what we are
referring to as Rcore � 5 km could equally well describe
a star with a shell of gCFL quark matter extending between
radii of 4.5 and 6 km.
VI. OUTLOOK

We hope that our results challenge observers to constrain
the temperature of neutron stars that are 10� 106 yr old or
older. Prior to our work, all proposed cooling curves for
these old stars drop so fast into unobservability that there
has been little motivation to make the effort to obtain the
best constraints possible on their temperatures. Given that
we know of isolated neutron stars that are younger than a
million years old and closer than 200 pc, it is reasonable to
expect that there are 107-yr old isolated neutron stars closer
than 100 pc to earth. At first we were concerned that if such
old nearby stars had temperatures of order 105 K, as Fig. 4
suggests will be the case if they contain gCFL hot water
bottles, they should already have been detected. However,
initial estimates suggest that they will in fact be quite a
challenge to find, since the peak of a 105 K black body
spectrum lies in the far ultraviolet, where the interstellar
medium is opaque, and since they will be quite faint in the
accessible UV and visible wavelengths [44]. Another op-
tion, perhaps easier than finding these stars without know-
ing where to look, is to study nearby old pulsars, already
detected by their nonthermal emission, and to constrain
their thermal emission hence putting an upper bound on
-12
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their temperature. This has been done for PSR 0950+08,
whose spin-down age is 107:2 yr, yielding the bound T <
105:2 K [45]. This limit is quite promising, as it is close to
the curves in Fig. 4 describing the cooling of our toy star
with a gCFL core. And, we are confident that we have not
thought of the best way of looking for aging but still warm
neutron stars. We are therefore hopeful that the opportunity
to make an unambiguous discovery of the presence of
quark matter within neutron stars or to rule out the pres-
ence of gCFL quark matter in the entire region of the QCD
phase diagram sampled by neutron stars will stimulate
observers to rise to the challenge.

Much theoretical work remains to be done. Interesting
microphysical questions about the gCFL phase remain, and
have been enumerated in Refs. [4,6]. Phases with some
features in common with the gCFL phase can be unstable
with respect to inhomogeneous mixed phases [46], and
although the gCFL phase is stable with respect to all
straightforward mixed phase possibilities [4,47], an ex-
haustive investigation has not yet been performed.
Perhaps the most interesting open questions are the possi-
bilities of K0 condensation [36,37] or gluon condensation
[48] in the gCFL phase. Either could change our quantita-
tive results for its cV and "�, but neither is likely to change
their unusual T dependence: cV � T0:5 and "� � T5:5.
(Neither K0 mesons nor gluons [30,32] would affect the
114011
~Q-charge balance, which is responsible for the existence of
the gapless quasiparticle with a quadratic dispersion rela-
tion in Fig. 1, whose consequence in turn is the unusual
T dependence of the gCFL cV and "�.) As far as theoretical
astrophysical work, our results for cV and "� must be
incorporated into calculations of cooling curves for stars
with realistic atmospheres and density profiles before plots
like those in Figs. 4 and 5 can be compared quantitatively
to data. Nonetheless, our conclusion that gCFL quark
matter within a neutron star will keep the star warm in its
old age relies only on the unusual T dependence of the
gCFL specific heat, and is therefore expected to be robust.
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