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Are there diquarks in the nucleon?
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This work is devoted to the study of diquark correlations inside the nucleon. We analyze some matrix
elements which encode information about the nonperturbative forces, in different color antitriplet diquark
channels. We suggest a lattice calculation to check the quark-diquark picture and clarify the role of
instanton-mediated interactions. We study in detail the physical properties of the 0� diquark, using the
random instanton liquid model. We find that instanton forces are sufficiently strong to form a diquark
bound state, with a mass of �500 MeV, which is compatible with earlier estimates. We also compute its
electromagnetic form factor and find that the diquark is a broad object, with a size comparable with that of
the proton.
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I. INTRODUCTION

A complete description of the strong interaction between
quarks is available only at asymptotically short distances,
where the QCD becomes weakly coupled. At the perturba-
tive level, it is well known that two quarks strongly attract
each other if they are in a JP � 0� and color antitriplet
state [1,2]. The question whether a particularly strong
attraction in this channel is present also at intermediate
and large distances—where the theory is strongly
coupled—has long been debated. From a phenomenologi-
cal point of view, the notion of strongly correlated, quasi-
bound diquarks has been widely used to describe low-q2

processes in hadrons (for early studies see [3], for a review
see [4], for further references see also [5]). For example, it
has been observed that the antitriplet scalar diquarks play
an important role in nonleptonic weak decays of both
hyperons and kaons [6–8].

The problem of understanding the role of diquark corre-
lations in QCD has recently become particularly important,
after several experimental groups have reported evidence
for the first truly exotic state, the �� pentaquark [9]. The
existence of such a state was originally predicted by
Diakonov, Petrov and Polyakov using a soliton model
[10] and several experiments are being performed to con-
firm this important discovery. There are also ongoing
theoretical investigations based on lattice QCD simulations
(see for example [11] and references therein).

The claims of the observation of the pentaquark have
triggered a huge theoretical activity, aiming to identify
possible dynamical mechanisms which could explain the
existence and the extremely narrow width of this reso-
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nance. Jaffe and Wilczek [12] have suggested that several
important properties of the hadronic spectrum, including
the existence of a pentaquark antidecuplet, could be ex-
plained by assuming that the nonperturbative quark-quark
interaction is particularly attractive in the antitriplet 0�

channel, leading to strongly correlated scalar u-d diquarks,
inside hadrons.

The implications of the diquark hypothesis on the struc-
ture and the decay of the pentaquark has been analyzed in a
number of recent works (for an incomplete list see [13]). At
the same time, the Jaffe-Wilczek analysis has opened a
related discussion concerning the possible nonperturbative
mechanisms in QCD, which can lead to a strong attraction
in the scalar antitriplet channel. Shuryak and Zahed have
performed an analysis of the hadronic spectrum assuming
that diquark correlations are induced by instantons [14]. In
addition to diquarks, Kochelev, Lee and Vento have also
suggested the existence of instanton-induced triquarks
[15]. It should be mentioned all models in which the quarks
in the pentaquark are strongly correlated in contrast with
the original mean-field picture proposed by Diakonov,
Petrov and Polyakov, in which two-body correlations are
neglected [10].

Even though the experimental evidence for the ��

pentaquark is still a matter of debate, understanding if
strong correlations in the 0� antitriplet diquark channel
are present in the vacuum and in hadrons is an important
open problem in QCD. At present, lattice gauge theory
represents the only available framework to perform ab
initio nonperturbative calculations in QCD. It is therefore
natural to attempt to use it to address this fundamental
question. In this paper, we take a first step in this direction.
We identify and study a set of lattice-calculable matrix
elements, which are very sensitive to the quark-quark
interaction in different diquark channels. In order to
show that these matrix elements can be used to gain insight
on diquark correlations inside hadrons, we compute them
-1  2005 The American Physical Society



TABLE I. Symmetry properties of the operators Fa	�x�, under
exchange of space, color, flavor and Dirac indices.

	 Space Dirac Flavor Color Total

1 S A A �T � 0� A A
�5 S A A �T � 0� A A
�4 S S S �T � 1;MT � 0� A A
3
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using three different phenomenological models: a naive
SU�6� nonrelativistic quark model, in which dynamical
diquark correlations are absent, the random instanton liq-
uid model, where scalar diquarks are strongly favored by
the ’t Hooft interaction, and a chiral soliton model, where
the ’t Hooft interaction is treated at the mean-field level.
We show that these models lead to very different predic-
tions. We also identify a lattice calculation which can
check if the strong attraction in the scalar antitriplet di-
quark channel can be mediated by instantons, as in the
model of Shuryak and Zahed.

In the second part of this work, we study the physical
properties of the diquarks induced by instanton-mediated
forces. We provide unambiguous evidence that the ’t Hooft
interaction leads to a 0� bound state of about 500 MeV.
This result agrees with the early estimate by Shuryak and
collaborators [16]. We also compute the electromagnetic
form factor of such a bound state, finding that its size is
comparable with that of the proton. This result suggests
that diquarks cannot at all be modeled as pointlike objects.

The paper is organized as follows. In Sec. II, we define
the relevant matrix elements and explain why these quan-
tities can be used to study diquark correlations, in different
diquark channels. The matrix elements are computed in
different models in Sec. III and the results are analyzed in
Sec. IV. The diquark mass and size are computed in the
random instanton liquid model, in Sec. V. All the results
and the conclusions of this work are summarized in
Sec. VI.

II. DIQUARK DENSITIES IN THE PROTON

Much of the theoretical studies of the internal structure
of hadrons focus on observables related to one-body local
operators. These matrix elements allow one to access
information on the hadron internal wave function, but are
only indirectly sensitive to the Dirac and flavor structure of
the nonperturbative quark-quark interaction. For example,
models of the proton with drastically different diquark
content typically give comparable charge radii.

Much more direct insight on quark-quark correlations
inside hadrons can be learned by focusing on two-body
local density operators, which simultaneously probe the
position and the discrete quantum numbers of two quarks.
In this view, we consider a set of four-field operators
(which we shall refer to as diquark densities), in which
two quarks with quantum numbers of a scalar, vector,
axial-vector and pseudoscalar color antitriplet diquark are
destroyed and reemitted, in the same point.

We work with Euclidean space-time,1 and we define

D	�r� � Fay	 �r; 0�F
a
	�r; 0�; (1)

Fa	�x� � �abcub�x�C	dc�x�; (2)
1In our notation x � �r; x4�.
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where C � i�2�4 is the charge-conjugation operator, 	 2
f1; �5; ��; ���5; ��;�g and a; b; c are color indices. The
operator Fa	�x� absorbs two quarks in a point with quantum
numbers of a color antitriplet diquark. For example, Fa�3�x�
annihilates an axial-vector diquark, while Fa�5�x� absorbs
scalar diquarks. Hence, the matrix element

�	�r� � hPjD	�r�jPi (3)

measures the probability amplitude to find at time t � 0
two quarks at the point r in the proton, in a antitriplet color
state and with quantum numbers specified by 	.

The choice of 	 in (2) determines the transformation
property of the Fa	�x� operator under exchanges of the
flavor indices. Acting on the vacuum, the operator
Fay	 �r; 0� creates at time t � 0 the diquark state:

Fay	 �r; 0�j0i � "abc�	yC�stjrsdb; rtuci; (4)

where s, t are spinor indices, a, b, c are color indices, u, d
are quark flavors. This state is symmetric under the ex-
change of the coordinates r and antisymmetric under the
exchange of color. Under the exchange of the Dirac in-
dices, the state is either symmetric or antisymmetric, de-
pending on 	, as shown in Table I: for 	 � �5, the matrix
	yC is antisymmetric and the diquark state is thus anti-
symmetric under the exchange of Dirac indices. The state
is symmetric under the exchange of space indices and
antisymmetric under the exchange of color indices. It is
by construction antisymmetric with respect to the ex-
change of all indices (space, Dirac, flavor and color) so
that it is necessarily antisymmetric with respect to flavor
indices, meaning that it is a flavor T � 0 state. However,
when 	 � �4 (a symmetric matrix) the diquark state is
symmetric under the exchange of Dirac indices. The state
is thus necessarily symmetric with respect to flavor indices,
meaning that it is a flavor T � 1 MT � 0 state.

The comparison of the different matrix elements (3) can
provide useful insight into the internal dynamics of the
hadron, in particular, about the strength and the spin and
flavor structure of the quark-quark interaction. In general,
we expect that the stronger are the two-body correlations
inside the hadron, the larger are the discrepancies between
a mean-field description and the exact calculation. More
specifically, if the quark-quark interaction is particularly
� S S S �T � 1;MT � 0� A A
�4�5 S A A �T � 0� A A
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attractive in the scalar antitriplet diquark channel—as it is
assumed in the Jaffe-Wilczek picture—then we expect that
the scalar diquark density ��5�r� should be enhanced with
respect to a model in which the interaction is not particu-
larly attractive, in this channel. In fact, the u and d quarks
would have a larger probability ‘‘to be found’’ in the same
point and be destroyed by the local operator Fa�5�x�.

The diquark densities can also be used to study relativ-
istic effects in the hadron. The Fa1 �x� and Fa�4�x� operators
mix upper and lower spinor components of the quark fields
and vanish in the nonrelativistic limit. Hence the densities
�1�r� and ��4�r� are sensitive only to the relativistic com-
ponents of the wave function. On the contrary the operators
Fa�3�x�, F

a
�5�4�x�, and Fa�5�x� remain finite in the nonrela-

tivistic limit.
2For example, the chiral soliton model may not be very
accurate in predicting the amplitudes for weak decays of had-
rons, which are driven by a four-field effective Hamiltonian.
III. DIQUARK DENSITIES IN DIFFERENT
MODELS

In this section, we compute the predictions for the
diquark densities defined in the previous section, using
the chiral soliton model, the SU�6� nonrelativistic quark
model, and the random instanton liquid model. The non-
relativistic quark model is used to mimic a scenario in
which the quarks are very weakly dynamically correlated
and do not form bound diquarks. In such a model, all spin-
flavor correlations are due to the SU�6� symmetry proper-
ties of the wave function only. The random instanton liquid
model calculation represents the opposite scenario, in
which the nonperturbative interaction is spin-flavor depen-
dent and is particularly attractive in the 0� antitriplet
diquark channel. The mean-field chiral soliton model can
be used to mimic a scenario in which the same interaction
binds the nucleon, but leads to negligible two-body
correlations.

The reader who is not interested in the technical details
of these calculations may skip the remaining part of this
section and consider directly the discussion of the results
presented in Sec. IV.

A. Chiral soliton model

The chiral soliton model (for a detailed discussion we
refer the reader to e.g. [17,18]) can be used to account for
the ’t Hooft interaction in the nucleon to all orders, keeping
only the leading terms in the 1=Nc expansion. Hence, in the
large Nc limit, the random instanton liquid model and
chiral soliton model should give similar results.

As all mean-field approaches, the chiral soliton model is
most efficient for calculations of matrix elements of one-
body operators. Indeed, the random instanton liquid model
and chiral soliton model give similar predictions for the
proton form factors [19,20]. On the other hand, if the
instanton-induced two-body correlations are strong for
Nc � 3, then we expect that the random instanton liquid
model and the chiral soliton model should give signifi-
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cantly different results for matrix elements of two-body
operators,2 such as the diquark densities (3).

For Nf � 2, the chiral soliton model is derived by
bosonization of the four-field ’t Hooft contact interaction,
introducing an auxiliary chiral field. The chirally invariant
Hamiltonian governing the dynamics of the quarks field  
and the chiral fields � and  a (a � 1; 2; 3) is

H �
Z
d3r y�! �p�g#��� i�5 � $�� 

�
Z
d3r

�
1

2
�r��2�

1

2
�r �2�%��2� 2��20�

2

�
;

(5)

where $a are isospin Pauli matrices, g and % are coupling
constants and �0 is the vacuum expectation value of the
scalar field �. In the large Nc limit, one can apply the zero-
loop approximation and treat the (�; ) fields as classical.

The Hamiltonian (5) is quadratic in the quark fields and
gives rise to the single-particle Dirac equation

��i! � r � #�&� i�5' � $��j%i � �%j%i; (6)

where, for convenience, we have introduced dimensionless
distances and fields defined as

x � g�0r; & �
�
�0
; 'a �

 a
�0
: (7)

The total energy, whenNc quarks are accommodated in the
J� I � 0 valence orbital of energy �%, is

E � Ncg�0�% �
�0
2g

Z
d3x

�
�r&�2 � �r'�2

�
%

g4
�&2 � '2 � 1�2

�
: (8)

By requiring that the total energy must be stationary with
respect to infinitesimal variations of the chiral fields one
obtains the equations

�1

g2
r2&� 4

%

g4
&�&2 � '2 � 1� � Nch%jxi#hxj%i � 0;

(9)

�1

g2
r2'a � 4

%

g4
'a�&

2 � '2 � 1�

� Nch%jxii#�5hxj%i � 0: (10)

Equations (6), (9), and (10) represent a self-consistent set
of equations for the quark orbitals j%i and the classical
chiral fields. The chiral soliton state is a solution of such
equations, in which the chiral fields are assumed to be time
independent and have a hedgehog shape:
-3
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&�x� � &�x�; 'a�x� � x̂a'�x�: (11)

In the chiral soliton model of Diakonov and Petrov [17],
the fields � and  a are restricted to the chiral circle, �2 �
 2 � �20. With the ansatz (11), the Dirac equation (6)
generates a bound state composed of valence and Dirac-
sea quarks:

j�i �
Y

�2valence

ay�
Y
%2sea

ay%j0i: (12)

The first product of creation operators excites three valence
quarks of different colors in a s-state wave function in the
form:

hxuj%i �
1���
2
p

i F�x�
jxj j #i

� G�x�
jxj � � x̂j #i

0@ 1A;
hxdj%i �

1���
2
p

�i F�x�
jxj j "i

G�x�
jxj � � x̂j "i

0@ 1A:
(13)

The radial functions F�x� and G�x� are normalized accord-
ing to

Z 1
0
d3x�F2�x� �G2�x�� � 1; (14)

and can be computed numerically.
The second product of creation operators in (11) gen-

erates the contribution of quarks in the Dirac sea. In this
work, we shall neglect such a contribution and retain only
the valence part of the soliton wave function.

After having solved for the valence component of the
soliton wave function j�i, it is straightforward to compute
the different diquark densities:

�	�r� � h�jF
ay
	 �r; 0�F

a
	�r; 0�j�i;

	 � 1; i�5; �4; �3; �4�5:
(15)

We begin by contracting the color index a. The diquark
density becomes

�	�r� � �	C�s1s2�C	�s3s4h�jd
c3y
s1 u

c2y
s2 u

c2
s3d

c3
s4

� dc3ys1 u
c2y
s2 u

c3
s3d

c2
s4 j�i; (16)

where s1, s2, s4, s4 � 1; . . . ; 4 are Dirac indices and c2,
c3 � 1; . . . ; 3 are color indices. By applying Wick’s theo-
rem we get
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h�jdc3ys1 u
c2y
s2 u

c2
s3d

c3
s4 � d

c3y
s1 u

c2y
s2 u

c3
s3d

c2
s4 j�i

� N2c
X

%�2D

h%jxs1dihxs4dj%ih�jxs2uihxs3uj�i

� N2c
X

%�2D

h%jxs1dihxs3uj%ih�jxs2uihxs4dj�i

� Nc
X

%�2D

h%jxs1dihxs3uj%ih�jxs2uihxs4dj�i

� Nc
X

%�2D

h%jxs1dihxs4dj%ih�jxs2uihxs3uj�i:

(17)

Substituting the explicit expression for the valence orbits
(13), and performing the summation over the spinor in-
dices, it is straightforward to obtain the result (choosing x
along the ẑ direction):

�1�r� � 0; (18)

��5�r� � Nc�Nc � 1�
�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
; (19)

��4�r� � 2Nc�Nc � 1�
�
F�g�0r�G�g�0r�
�g�0r�2

�
2
; (20)

��3�r� � Nc�Nc � 1�
�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
; (21)

��4�5�r� � Nc�Nc � 1�
�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
; (22)

where we have used the relationship between x and r given
by (7).

These results correspond to the different diquark den-
sities in the soliton state, which is neither an eigenstate of
the angular momentum nor an eigenstate of the isospin
operator. Instead, it is characterized by its (vanishing)
eigenvalue of the grand-spin G � J� I operator. In order
to make contact with the proton, one has to perform a
projection onto a state with �T � 1=2;MT � 1=2�. The
operators Fay	 �x� are all color zero and flavor zero opera-
tors, except for the operators Fay�4 �x� and Fay�3 �x�. Thus the
operators D	�r; 0� � Fay	 �r; 0�F

a
	�r; 0� with 	 �

�1; �5; �4�5� are flavor zero operators, so that their expec-
tation value in the nucleon state is equal to their expecta-
tion value in the soliton state.

This, however, is not true for the operators Fay�4 �x� and
Fay�3 �x� which are flavor T � 1, MT � 0 operators. Indeed,
acting at time t � 0 on a flavor zero state j0i (which is not
the soliton state), the operator Fay�4 produces the state

Fay�4 �r; 0�j0i � "abc��4C�stjrsdb; rtuci; (23)

which is symmetric under the exchange of the flavor
indices. Similarly, the Hermitian conjugate operator Fa�4
-4
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produces the state:

Fa�4�r; 0�j0i � "abc�C�4�tsjrtdb; rsuci; (24)

which is a flavor T � 1, MT � 0 state. Therefore the
operator D�4�r� � Fay�4 �r; 0�F

a
�4�r; 0� behaves, under flavor

rotations as the following mixture of T � 0 and T � 2
operators:

D�4�r� �
1���
3
p DT�0;MT�0

�4 �r� �

���
2

3

s
DT�2;MT�0
�4 �r�; (25)

where 1��
3
p and �

��
2
3

q
are Clebsch-Gordon coefficients. The

second term, which is a flavor T � 2 operator, has a
vanishing expectation value in the nucleon state which
has flavor T � 1

2 . Therefore only the first term of (25)
contributes to the diquark density in the proton:

��4�r� � hPjD�4�r�jPi �
1���
3
p hPjDT�0;MT�0

�4 �r�jPi: (26)

We need to determine the operator D�4
T�0;MT�0

�r�. To do
this we use a simplified and more transparent notation:

Fay�4 �x� � Faydu �x� � Fayud �x�

Fa�4�x� � Fadu�x� � Faud�x�:
(27)

Then the inverse Clebsch expansion reads

DT�0;MT�0
�4 �r� � �

1���
3
p Fayuu �r; 0�Fauu�r; 0�

�
1���
3
p Faydd �r; 0�F

a
dd�r; 0�

�
1���
3
p Faydu �r; 0�F

a
du�r; 0�: (28)

On the right-hand side, the operators Fayuu and Faydd are the
T � 1, MT � �1 operators:

Fayuu �x� � "abcucys �x���4C�stu
by
t �x�

Faydd �x� � "abcdcys �x���4C�std
by
t �x�:

(29)

Since the DT�0;MT�0
�4 �r� is a flavor zero operator, its expec-

tation value in the proton state jPi is equal to its expecta-
tion value in the soliton state j�i. Therefore, the diquark
density ��4�r� of the proton is

��4�r� �
1���
3
p h�j �

1���
3
p Fayuu �r; 0�Fauu�r; 0�

�
1���
3
p Faydd �r; 0�F

a
dd�r; 0�

�
1���
3
p Faydu �r; 0�F

a
du�r; 0�j�i

� �
1

3
�uu�4 �r� �

1

3
�dd�4 �r� �

1

3
�ud�4 �r�: (30)
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The densities �uu�4 �r� and �dd�4 �r� can be computed in com-
plete analogy with the ��4ud�r� [which leads to Eq. (20)]. For
a generic direction r̂ the result is

�uu�4 �r� � �dd�4 �r�

� �2Nc�Nc � 1�
F�g�0r�G�g�0r�

2�g�0r�2
�r̂2x � r̂

2
y�:

(31)

Since we have chosen r along the ẑ direction, we get a
vanishing contribution. So, in the chiral soliton model, the
density ��4�r� in the proton state (as opposed to the density
in the soliton state) reads

��4�r� �
2

3
Nc�Nc � 1�

�
G�g�0r�F�g�0r�
�g�0r�2

�
2
: (32)

Notice that projecting onto the proton leads to a reduction
of this density by a factor 3.

We can repeat the same calculation to obtain the chiral
soliton model prediction for the ��3�r� density in the
proton. Also in this case, the contribution from the �uu�3
and �dd�3 densities vanish, if r is chosen along the ẑ direc-
tion. The final result is

��3�r� �
1

3
Nc�Nc � 1�

�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
: (33)

Also in this channel, the projection onto the proton has
generated an extra 1=3 factor.

In conclusion, the chiral soliton model predictions for
the diquark densities in the proton are

�1�r� � 0; (34)

��5�r� � Nc�Nc � 1�
�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
; (35)

��4�r� �
2Nc�Nc � 1�

3

�
F�g�0r�G�g�0r�
�g�0r�2

�
2
; (36)

��3�r� �
Nc�Nc � 1�

3

�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
; (37)

��4�5�r� � Nc�Nc � 1�
�
F2�g�0r� �G2�g�0r����

2
p
�g�0r�2

�
2
: (38)

B. Nonrelativistic SU�6� quark model

In the conventional SU�6� nonrelativistic quark model,
the proton wave function is defined as

jP"i �
1���
2
p �'MS&MS � 'MA&MA� � jcolori � jspatiali;

(39)

where
-5



M. CRISTOFORETTI et al. PHYSICAL REVIEW D 71, 114010 (2005)
'MA �
1���
2
p j�"# � #"� "i; &MA �

1���
2
p j�ud� du�ui;

(40)

'MS �
1���
6
p j�"# � #"� " �2 ""#i;

&MS �
1���
6
p j�ud� du�u� 2uudi:

(41)

The spacial (color) wave function is totally symmetric
(antisymmetric).

The diquark density operators are constructed by ex-
panding the field operators in Fa	�x� on a basis of the
constituent quark creation/annihilation operators and tak-
ing the nonrelativistic limit for the spinors:

Fa	�r; 0� �
X

s0;s�";#

ûbs0 �r�d̂
c
s�r�M	

s0s; (42)

where

M	
s0s � />s0C	/s; (43)

/s � �'s; 0; 0�; (44)

'" � �1; 0�; '# � �0; 1�: (45)

It is immediate to verify thatM�4
s0s � M1

s0s � 0 and there-
fore the densities �1�r� and ��4�r� vanish in the nonrela-
tivistic limit. On the other hand, one has

M�5
s0s � �i's0�2's; (46)

M�3
s0s � 's0�1's; (47)

M�4�5
s0s � i's0�2's: (48)

From these relationships it follows that the operators
Fa�5�x� and Fa�4�5�x� absorb two quarks when they are
coupled to zero total angular momentum, while the opera-
tor Fa�3�x� absorbs them in the J � 1, Jz � 0 channel.

The matrix elements (3) can be computed from the
expressions (39) using the anticommutation relations for
the quark creation/annihilation operators. Alternatively,3

one can obtain them simply by taking the nonrelativistic
limit of the chiral soliton model results [i.e. by setting
G��0gr� � 0 in Eqs. (34)–(38)] [21].

The result is

�1�r� � 0; (49)

��5�r� � Nc�Nc � 1�
Z
d3r0 ��r0; r; r� �r0; r; r�; (50)
3We thank Diakonov for making this observation and pointing
out an algebraic mistake in the first version of this manuscript.
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��4�r� � 0; (51)

��4�5�r� � Nc�Nc � 1�
Z
d3r0 ��r0; r; r� �r0; r; r�; (52)

��3�r� �
Nc�Nc � 1�

3

Z
d3r0 ��r0; r; r� �r0; r; r�: (53)

Notice that, as long as one is interested in ratios of
densities, it is not necessary to specify the spatial wave
function  �r1; r2; r3�. In the simple nonrelativistic model,
ratios of diquark densities are completely determined by
the color, spin and flavor structure of the SU�6� nucleon
wave function. This is in general not the case in relativistic
models, or in SU�6� breaking nonrelativistic quark models,
where spin and spatial degrees of freedom do not factorize.

C. Random instanton liquid model

Instantons are topological gauge configurations which
extremize the Euclidean Yang-Mills action and therefore
appear as saddle points in the semiclassical approximation
to QCD. They generate the so-called ’t Hooft effective
quark-quark interaction, that solves—at least on a quali-
tative level—the U�1� problem [22] and spontaneously
breaks chiral symmetry [23]. On the other hand, present
instanton models do not lead to an area law for the Wilson
loop.

The instanton liquid model assumes that the QCD vac-
uum is saturated by an ensemble of instantons and anti-
instantons. The only phenomenological parameters in the
model are the average instanton size and density:

�� � h�i ’ 1=3 fm; �n � hni ’ 1 fm�4: (54)

These values are fixed to reproduce the global vacuum
properties (quark and gluon condensates) [24].

The instanton liquid model can be used to account
numerically for the ’t Hooft interaction to all orders.
Such calculations are performed by exploiting the analogy
between the Euclidean generating functional and the par-
tition function of a statistical ensemble [25], in close
analogy with what is usually done in lattice simulations.
After the integral over the fermionic degrees of freedom is
carried out explicitly, one computes expectation values of
the resulting Wick contractions by performing a
Monte Carlo average over the configurations of an en-
semble of instantons and anti-instantons. In each instanton
background configuration, the quark propagators are ob-
tained by inverting numerically the Dirac operator. In the
random instanton liquid, the density and the size of the
pseudoparticles are kept fixed and coincide with the aver-
age values (54). On the other hand, the position and the
color orientation of each instanton and anti-instanton are
generated according to a random distribution.

In order to compute the diquark densities in the random
instanton liquid model we start by considering the follow-
-6



FIG. 1. Graphical representation of the integrand in Eq. (65).
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ing Euclidean three-point correlation function:

G	�xi; xf; y� � h0jJ
!�xf�D	�y� �J

!�xi�j0i; (55)

where D	�y� is the diquark density operator defined in (1),
and

J!�x� � �abcuaT�x�C�5d
b�x�uc!�x�; ! � 1; . . . ; 4

(56)

is an interpolating operator which excites states with the
quantum numbers of the proton. The correlator (55) repre-
sents the probability amplitude to create a state with the
quantum numbers of a proton at point xi, to absorb and
reemit two quarks in a given diquark configuration at the
point y, and to finally reabsorb the three-quark state at the
point xf.

By inserting two complete sets of eigenstates of the
QCD Hamiltonian in (55) we obtain

G	�xi; xf; y� �
X
s;s0

Z d3p0

2!p0 �2 �
3

Z d3p
2!p�2 �

3

� Tr�h0jJ�xf�jN�p0; s0�i

� hN�p0; s0�jD	�y�jN�p; s�i

� hN�p; s�j �J�xi�j0i� � � � � ; (57)

where jN�p; s�i denotes a proton state of momentum p and
spin s and the ellipsis represents all terms depending on its
excitations (including the continuum contribution). In the
limit of large Euclidean separations (jxi � yj; jxi � xfj and
jxf � yj ! 1), the contribution from the excited states to
the correlation function is exponentially suppressed and
only the proton state propagates between the operators.

The overlap of the current operator with the nucleon can
be written as

h0jJ�xf�jN�p0; s0�i �  /s�p�eip�xf ; (58)

where /s�p� denotes a Dirac spinor. Following [7], the
matrix elements of the diquark density operator can be
parametrized as

hN�p0; s�jD	�y�jN�p; s�i � h	�q
2�e�iq�y/s0 �p0�/s�p�:

(59)

Substituting (58) and (59) into (57) one obtains

G	�xi; xf; y� �  
2
Z d3p0

2!p�2 �3

�
Z d3p
2!p0 �2 �3

ei�xf�p
0�xi�p�y�q�

� h	�q
2�Tr��p6 0 �M��p6 �M�� � � � � :

(60)

Next, we use the definition of the free fermion propagator
in the forward time direction:
114010
S�x0; x� �
Z d3p
�2 �32!p

eip��x
0�x��p6 �M�;

�x04 > x4� � ���x
0 � x��!1�jx

0 � xj� �M!2�jx
0 � xj�

(61)

where

!1�x� �
�iM2

4 2x2

�
K0�Mjxj� �

2

Mjxj
K1�Mjxj�

�
; (62)

!2�x� �
iM2

4 2jxj
K1�Mjxj� (63)

and introduce the Fourier transform of the function h	�q2�,

R	�z� �
Z d4q

�2 �4
eiz�qh	�q

2�: (64)

We obtain

G	�xi; xf; y� �  2
Z
d4zR	�y� z�Tr�S�xf; z�S�z; xi��:

(65)

The physical interpretation of this result is the following
(see also Fig. 1). In the large Euclidean separation limit, the
correlator G	�xi; xf; y� is governed by the function R	�x�,
which encode information about the probability amplitude
to find the diquark at a given distance from the center of the
nucleon. Notice that xi, xf, z and y are four-dimensional
vectors, so Eq. (65) accounts for relativistic retardation
effects. On the other hand, the convolution of R	�x� with
the trace of proton propagators takes into account the
center of mass motion.

In order to clarify the relationship between the correlator
(55) and the diquark density (3) it is instructive to consider
first the static approximation for the nucleon, in which
-7
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M ! 1. In this limit, the proton propagator reads

S�x; y� ’ 8�x� y�e�M�x4�y4�
�1� �4�
2

; (66)

and Eq. (65) becomes

G	�xi; xf; y� � 2 
2e��x

4
f�x

4
i �M8�xf � xi�

Z
dz4R	�r; z4�;

(67)

where we have used translational invariance to set y4 � 0
and we have introduced r :� y � xi, the distance between
the center of the proton and the position where the diquark
is absorbed. The last integral term in this expression rep-
resents the time-integrated probability amplitude to find a
diquark at a distance r from the center of the nucleon. We
can therefore identify this quantity with the diquark density
(3) defined in Sec. II:

�	�r� �
Z
dz4R	�r; z4�: (68)

Hence, for an infinitely heavy nucleon, the expression
relating the correlation function (55) to the diquark density
is simply

G	�xi; xf; y� � 2 2e
��x4f�x

4
i �M8�xf � xi��	�r�: (69)

If the nucleon mass is kept finite, there are corrections to
Eq. (69) arising from replacing the static propagator (66)
with the exact expression (61).4 As a result, the convolu-
tion function Tr�S�xf; z�S�z; xi�� in (65)—which deter-
mines the position of the center of mass of the nucleon—
is delocalized on a volume which depends on the Euclidean
time $. We have verified that for a typical massM ’ 1 GeV
and a typical Euclidean separation $ ’ 1 fm the position of
the center of mass of the nucleon is smeared on a volume of
radius ’ 0:3 fm, centered around the origin.

A spatial dependence of the point-to-point propagator is
a signal that our nucleon is not at rest. Indeed, in order to
isolate completely the zero-momentum component of the
nucleon wave function in our calculation, one would need
to use very large Euclidean time separations. However, this
would be extremely computationally demanding, because
the signal-to-noise ratio for the propagators drops expo-
nentially with the Euclidean time separation.

From these considerations it follows that one should not
quantitatively compare the detailed shape of the diquark
densities of the chiral soliton model and constituent quark
model with that of the random instanton liquid model.
However we shall see below that, as long as one is inter-
ested in ratios of diquark densities, it is still possible to
draw important qualitative conclusions about the relative
strength of the diquark correlations.
4We thank Negele for his observations on this point.
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In this work, we shall estimate ratios of different diquark
densities �	0 �r�=�	�r� by computing ratios of correlation
functions G	

0
�xf; xi; y�=G	�xf; xi; y�. Taking ratios allows

one to maximally reduce the effects of the corrections due
to center of mass motion. In fact, such corrections affect in
the same way both the numerator and the denominator and
do not change the normalization of the correlation func-
tion. We have computed (55) choosing xi � xf � 0, y �
�0; 0; r; 0� and x4f � �x

4
i :� $, with $ � 1 fm. Previous

analyses in the random instanton liquid model have shown
that the proton pole is isolated from its excited states for
$ * 0:9 fm [16,20,26]. The numerical calculation has been
done averaging over 800 configurations of an ensemble of
492 instantons of 0.33 fm size, in V � 4:53 � 5:4 fm4 box
with the topology of a torus. We have used rather large
current quark masses (mu � md ’ 100 MeV) in order to
reduce finite-volume artifacts.

Let us comment on the dependence of the random
instanton liquid model predictions on the value of the
bare (current) quark mass chosen in our simulations. It is
well known that quarks propagating in the instanton vac-
uum acquire an effective mass associated to the breaking of
chiral symmetry. More specifically, the position of the pole
of the quark propagator in the instanton background is
shifted by an amount Meff�p;mq�, which depends on both
the momentum of the quark p and of its current mass, mq.

The dependence of the effective mass on the current
quark mass mq has been studied in a number of works,
using different approximations (see e.g. [27] and referen-
ces therein). In all such studies it was found that the sum of
the effective mass at zero momentum and the current quark
massMconst � mq �Meff�0; mq� (which can be interpreted
as the constituent quark mass) remains of the order ’
350 MeV for all current masses mq & 200 MeV. In other
words, in this model the constituent quark mass is rather
insensitive on the value of the current quark mass. So, we
do not expect that the predictions of the random instanton
liquid model presented in this work would change dramati-
cally if a smaller current quark mass was used.

D. Note on lattice calculation of diquark densities

We conclude this section by noting that the calculation
scheme based on point-to-point correlation functions, used
to compute the diquark densities in the random instanton
liquid model, can also be applied to compute the same
quantities in lattice QCD. Conceptually, one needs to re-
place the average over the configurations of the instanton
ensemble with an average over all lattice configurations,
performed in the usual way, i.e. by sampling the space of
lattice links. Unlike instanton models, lattice QCD calcu-
lations are affected by ultraviolet divergences, which are
regularized by the lattice spacing. Hence, in a lattice
computation, the diquark density operators D	�r� have to
be treated as usual Wilson operators and need to be re-
normalized.
-8
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IV. COMPARISON AND DISCUSSION

In this session, we discuss the results of the phenome-
nological calculations presented in the previous session.
We choose to consider only the ratios constructed by
dividing the densities ��3�r�,. ��4�5�r� and ��4�r� by the
scalar density ��5�r�. There are several reasons for this
choice. In general, ratios are less model dependent than the
individual densities. For example, in the nonrelativistic
quark model, they are completely insensitive to the details
of the spatial wave function. Moreover, in lattice and
random instanton liquid model calculations, taking ratios
allows one to remove the dependence on the proton mass,
Euclidean time and the coupling [see Eq. (69)]. We shall
not discuss the ratio constructed with the �1�r� density, as it
is identically zero in all the models we have considered.

Let us first analyze the ratio constructed with the density
of axial vector and scalar diquarks:

R1�r� �
��3�r�
��5�r�

: (70)

The results of our phenomenological calculations are
shown in Fig. 2. In the SU�6� nonrelativistic quark model,
this ratio is completely determined by the SU�6� spin-
flavor structure of the wave function, and is identically
equal to 1=3. In the random instanton liquid model, R1�r� is
sizably reduced in magnitude (by a factor ’ 5). In the
chiral soliton model, at r � 0 the p-wave contribution
from the lower components of the spinors vanishes and
one recovers the nonrelativistic quark model results. On the
other hand, the axial-vector diquark density drops down
very rapidly at the border of the soliton, where the pion
field is most intense.
0 0.5
r   [fm]

0

0.5

R
1(

r)

NRQM
CSM (projected)
RILM

FIG. 2 (color online). Predictions for the ratio R1�r� �
��3 �r�=��5 �r� in the nonrelativistic quark model (NRQM), in
the random instanton liquid model (RILM) and in the chiral
soliton model (CSM). The CSM results include the projection
onto the proton state.
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These results can be interpreted as follows. In the ran-
dom instanton liquid model, the spin- and flavor-dependent
’t Hooft interaction generates a strong attraction which
enhances the probability amplitude of finding two quarks
in the same point in the 0� antitriplet configuration, rela-
tive to the amplitude of finding them in the 1� configura-
tion. This explains why the random instanton liquid model
prediction for R1�r� is much smaller than that of the SU�6�
nonrelativistic quark model and the chiral soliton model.
The discrepancy between the random instanton liquid
model and mean-field chiral soliton model calculations is
a signal that in the instanton vacuum at Nc � 3 there are
strong two-body correlations, which are not captured by
the large Nc approximation.

From this comparison it follows that a lattice calculation
of R1�r� could provide information about the strength of
scalar diquark correlations in the nucleon. If the nonper-
turbative QCD interactions generate a strong correlation in
the 0� antitriplet channel, as assumed in the Jaffe-Wilczek
model, then we predict that the curve obtained from a
lattice calculation should lie much below 1=3. If lattice
simulations found that R1�r� � 1=3, then this would imply
that diquarks are not particularly correlated in the 0�

diquark channel and therefore the Jaffe-Wilczek picture
is not correct. R1�r�> 1=3 would represent an indication
that the quark-quark interaction is less attractive in the 0�

channel, relative to the 1� channel. This would certainly be
a very surprising result, since the (�3c; �3f) channel is fa-
vored by both the perturbative and the instanton-mediated
interactions.

Unfortunately, the ratio R1�r� does not encode informa-
tion about the microscopic dynamical mechanism under-
lying such diquark correlations. In fact, two completely
different quark-quark effective interactions (e.g. one with a
chirality-conserving vertex and one with a chirality-
flipping vertex) may lead to the same predictions, as long
as the short-range attraction in the scalar channel is suffi-
ciently strong.

In order to gain some insight on the microscopic origin
of diquarks we need to analyze a different ratio:

R2�r� �
��5�4�r�
��5�r�

: (71)

The results of our calculations in the three phenomeno-
logical models are reported in Fig. 3. In the nonrelativistic
quark model, both the ��5�r� and ��5�4�r� densities probe
the 0� scalar diquark content of the proton, so R2�r� � 1.
In the random instanton liquid model the magnitude of this
ratio is smaller than in the nonrelativistic quark model, by a
factor 3 or so. The fact that, in the random instanton liquid
model, R2�r�  1 has an important dynamical explana-
tion. It is due to the different sensitivity of the numerator
and denominator to the so-called direct-instanton contri-
bution. The ��5�r� diquark density receives maximal con-
tribution from the interaction of quarks with the field of
-9
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FIG. 4 (color online). Predictions for the ratio R3�r� �
��4 �r�=��5 �r� in the nonrelativistic quark model (NRQM), in
the random instanton liquid model (RILM) and in the chiral
soliton model (CSM). The CSM results include the projection
onto the proton state. The nonrelativistic quark model curve is
identically zero.
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FIG. 3 (color online). Predictions for the ratio R2�r� �
��4�5 �r�=��5 �r�, in the nonrelativistic quark model (NRQM),
in the random instanton liquid model (RILM) and in the chiral
soliton model (CSM).

5We recall that in both the random instanton liquid model and
in the chiral soliton model relativistic effects are included.

6We thank Weise for his comments on this point.
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the closest (direct) instanton, in the vacuum. This state-
ment can be verified by computing the correlator in the
single-instanton approximation, discussed in [28]. On the
other hand, the density in the numerator, ��5�4�r� does not
receive such a direct-instanton contribution and instanton-
induced effects come only from the interactions of quarks
with many instantons. The magnitude of the latter contri-
butions are parametrically suppressed by the diluteness of
the instanton vacuum, ; � �n ��4  1. Physically, this is the
same reason why vector and axial-vector channels have a
rather large ‘‘Zweig rule,’’ forbidding flavor mixing, while
for scalar and pseudoscalar channels such a mixing is very
strong.

We remark that the very strong channel dependence of
hadronic correlation functions is a well-known dynamical
implication of instanton models. It is quite hard to obtain
this effect in alternative dynamical mechanisms (for a de-
tailed discussion see [29]). This was initially pointed out
by Novikov, Shifman, Vainstein and Zakharov, in the con-
text of operator product expansion and QCD sum rules for
hadronic correlation functions [30]. Diquark correlations
induced by the direct instantons were discussed also in
[31].

In the chiral soliton model, the ratio R2�r� remains of
order 1 for jrj & 1 fm and drops rapidly at the border of the
soliton. The significant deviation of the chiral soliton
model result from the random instanton liquid model pre-
diction shows that a mean-field approach does not capture
correlations associated to the direct-instanton effects.

From this discussion it follows that, if the scalar diquark
correlations are mainly induced by instantons or in general
by a Nambu-Jona-Lasinio (NJL) type of interaction (i.e.
chirally symmetric, with a chirality-flipping vertex), then a
114010
lattice measurement should give ��4�5�r�  ��5�r�, so
R2�r�  1.

Let us now analyze a third ratio:

R3�r� �
��4�r�
��5�r�

: (72)

The results of our calculations in the three phenomeno-
logical models are reported in Fig. 4. This quantity is
identically zero in the nonrelativistic quark model, so it
represents a probe of relativistic effects in the nucleon. The
ratio is also rather small in the random instanton liquid
model, denoting that quarks propagating in the nucleon
receive small relativistic corrections.5 On the contrary,
R3�r� in the chiral soliton model increases rapidly and
approaches 1=3, near the border of the soliton. The inter-
pretation of this result is the following.6 Near the edge of
the soliton, the quark field changes very rapidly. This rapid
change gives rise to a large derivative of the wave function
in coordinate space or, equivalently, to large high-p com-
ponents, in momentum space. Such modes enhance the
contribution from the lower components of the spinor
wave function, which give rise to relativistic corrections.

V. PHYSICAL PROPERTIES OF THE SCALAR
DIQUARK IN THE INSTANTON VACUUM

In the previous section we have shown that instantons
generate a strong attraction between a u and a d quark in
-10
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FIG. 5. Logarithm of the diquark two-point function, lnG2�$�
computed in the random instanton liquid model. The linear slope
is a clean signature of the existence of a bound state.

8We choose quark masses of the same order of magnitude of
the smallest bare masses used in present lattice simulations.
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the color antitriplet 0� channel. In this section, we provide
unambiguous evidence that such forces are strong enough
to form a bound diquark state. We also estimate the diquark
size by computing its electric charge radius in the random
instanton liquid model.

A. Mass of the scalar diquark

The question if instanton models lead to a bound 0�

color antitriplet diquark has been first posed by Diakonov
and Petrov [32] and investigated in a number of works. In
an exploratory study [16] Shuryak, Schäfer and
Verbaarshot computed some diquark two-point functions
in coordinate space, using the random instanton liquid
model. They found some evidence for a light diquark
bound state (of roughly 450 MeV mass), by performing
an analysis of the correlation function, based on a pole-
plus-continuum parametrization of the spectral density. On
the other hand, Diakonov, Petrov and collaborators have
analyzed diquarks by solving Schwinger-Dyson equations
at the leading order in 1=Nc [33]. They found evidence for
correlations, but no binding.7

In order to clarify this issue, we have followed an
approach which is usually applied to extract hadron masses
in lattice simulations. As usual, we have replaced the
average over all gauge configurations with an average
over the configurations of the instanton ensemble. This
method presents some advantages with respect to the
coordinate-representation calculation of Shuryak et al.
On the one hand, it avoids the undesired additional model
dependence associated with the parametrization of the
spectral function. On the other hand, it makes unambigu-
ously evident the existence of the bound state and allows
one to determine more precisely its mass.

The starting point consists of computing the Euclidean
two-point function:

G2�$��
Z
d3rh0jT�JD�0;$�J

y
D�r;0�Pe

R
dy�A��y��j0i; (73)

where JD�x� is the usual diquark current:

JaD�x� � �abcubT�x�C�5dc�x�: (74)

The path-ordered exponent in (73) represents a Wilson line
connecting the two extremes of the two-point function and
is needed to assure gauge invariance of the correlator. In
the instanton vacuum, the contribution from the Wilson
line is very small, as heavy quarks couple very weakly with
instantons.

In the large Euclidean time limit, only the lightest state
with the quantum numbers of the current JD�x� propagates
in the two-point function. If there is a diquark bound state,
then, in the large Euclidean time limit, the logarithm of the
two-point function must scale linearly with $:
7Except for Nc � 2, in which case the diquark is a baryon and
its mass is protected by Pauli-Gursey symmetry.
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lnG2�$� ���!$!1 ln 2D � $MD; (75)

whereMD is the mass of the diquark and the constant D is
its coupling to the current, defined by h0jJD�0�jDi �  D.

We have computed such a correlation function in the
random instanton liquid model, averaging over 100 con-
figurations in a 43 � 8 fm4 box. In analogy with lattice
simulations, a rather large quark mass was needed to
reduce the finite-volume artifacts.8 The result for our cal-
culation of the correlation function (73) with mq ’

100 MeV is shown in Fig. 5. We clearly see that, in the
large $ limit, the logarithm of the two-point function
becomes a linear function of $.

In order to study the sensitivity of the diquark mass on
the current quark mass, we have computed the correlation
function for different values of the u and d quark mass,
mu � md � mq � f180 140 100g MeV. The dependence
of the diquarks mass on the current quark masses is plotted
in Fig. 6. A rough estimate of the diquark mass can be
obtained by linearly extrapolating to the physical value of
the current quark mass.9 We find a diquark mass of
�500 MeV, in good agreement with the previous estimate.

B. Diquark size

An important question to address is the size of the
diquark. From general arguments, we expect that it should
be comparable with the size of the proton. In fact even the
most tightly bound QCD excitation, the pion, is known to
have a rather large electric charge square radius, r E ’
0:6 fm. On the other hand, an early naive analysis in the
A precise extrapolation fit should include logarithmic correc-
tions associated with chiral physics. We do not need to discuss
these effects here, as we are interested in the order of magnitude
of the diquark mass.
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FIG. 7 (color online). The diquark form factor (normalized to
the total charge) evaluated in the random instanton liquid model
(points) and compared with the dipole parametrization of the
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FIG. 6 (color online). The mass of the u-d diquark, computed
in the random instanton liquid model, as a function of the u and d
bare quark mass.
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instanton liquid model [34] gave a surprisingly small esti-
mate for the diquark charge radius, rE � 0:3 fm. It is hard
to estimate the accuracy of such an estimate which was
based on a number of assumptions.10 Hence, it is worth
performing a direct calculation of the diquark electromag-
netic form factor.

To this end, we have computed the diquark electromag-
netic three-point function,

G3D�$;q� �
Z
d3yd3xeiq�yh0jT�JD�0; $�J

e=m
4 �y; 0�

� JyD�x;�$�Pe
R
dy�A��y��j0i (76)

where JD�x� is the usual diquark interpolating operator and
Je=m� �x� � 2=3u�x���u�x� � 1=3d�x���d�x� is the elec-
tromagnetic current operator. In the large $ limit, the
correlation functions (76) relate directly to the diquark
form factor,11 FD�Q

2�:

G3D�$;q� ���!$!1 2De��M� ������������
M2
D�q

2
p

�$FD�Q
2�; (77)

where the values of the diquark mass and the constant  D
can be extracted from the two-point correlation function.

The result of the random instanton liquid model calcu-
lation of the form factor (normalized to the total u-d
diquark charge, eD � 1=3 ) is presented in Fig. 7, where
it is compared to the phenomenological dipole fit which
reproduces the low-energy data on the proton electric form
factor. These results imply that the diquark is an extended
10For example, it was assumed that the diquark form factor
follows a monopole fit.

11For a discussion of these relationships and of the details of the
numerical integration method used for performing the Fourier
transform in (76) see [20,35].
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object, whose size is comparable with that of the nucleon.
Its electric charge radius is found to be r2E�diquark� ’
�0:70 fm�2, which should be compared to the value of the
electric charge radius of the proton, r2E�proton� ’
�0:76 fm�2 computed in the random instanton liquid model
in [20]. As expected, the electric charge radius of the
diquark is larger than that of the pion and smaller than
that of the proton.
VI. CONCLUSIONS

In this work we have addressed the question of how is it
possible to study two-body diquark correlations in hadrons,
using lattice QCD. We have identified some suitable
lattice-calculable correlation functions, which allow one
to probe directly the diquark content of the nucleon. We
have argued that these Green’s functions provide important
information about nonperturbative correlations, in differ-
ent color antitriplet diquark channels.

In particular, the ratio R1�r�, defined in Eq. (70), mea-
sures the strength of the correlations in the scalar diquark
channel, relative to that in the axial-vector channel. It can
be used to check the main dynamical assumption of the
Jaffe-Wilczek model. In fact, if the quark-diquark picture
is correct, then we predict that a lattice measurement must
lead to R1�r�  1=3.

The ratio R2�r�, defined in Eq. (71), can be used to gain
some insight on the dynamical origin of the nonperturba-
tive interaction in the scalar diquark channel. In particular,
it can be used to check the hypothesis according to which
-12
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of these forces are mediated by instantons (or more gen-
erally by a NJL-like, chirality-flipping interaction). We
have argued that, in this case, we expect that lattice mea-
surements should give R2�r�  1.

We have computed these ratios using three phenomeno-
logical models. We have found that they lead to radically
different predictions for the matrix elements we have se-
lected. Hence, a lattice measurement could point out which
picture is most realistic. It is worth stressing that from the
fact that the chiral soliton model predictions differ sub-
stantially from the random instanton liquid model results
one should not conclude that the chiral soliton model is not
correctly reproducing the physics of instanton-induced
interactions. In fact, such a mean-field model can account
for one-body local operators. On the other hand, our results
show that it is much less reliable for computing matrix
elements of two-body operators. The discrepancy between
the random instanton liquid model and the chiral soliton
model should be taken as an indication that rather strong
direct two-body correlations are generated in the instanton
vacuum.

We would like to stress that the qualitative differences
between the predictions of the three models considered in
the present analysis are dramatic and therefore quite ro-
bust. However, one should be careful in comparing the
details of the curves associated to the diquark density
ratios, at a quantitative level. In fact, on the one hand, the
random instanton liquid model predictions are affected by
the smearing effects associated to the center of mass mo-
tion (see the discussion in Sec. 4). On the other hand, the
chiral soliton model and the random instanton liquid model
calculations are performed using different values12 of the
12In the chiral soliton model calculation we have assumed
massless current quarks, while in the random instanton liquid
model calculation we have used current quarks of mq ’
100 MeV.
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current quark mass mq. This fact may reflect itself in a
slightly different value of the effective mass of the quarks
propagating in the chirally broken vacuum (see the dis-
cussion at the end of Sec. 4).

In the second part of the work, we have studied in detail
the physical properties of instanton-induced diquarks. We
have provided unambiguous evidence that instantons gen-
erate a scalar diquark bound state of mass �500 MeV, in
good agreement with earlier estimates based on point-to-
point correlation functions in coordinate space.

We have also studied its electric charge distribution. Our
results show that the scalar diquark is an extended object,
whose size is of the order of the fm, hence comparable with
that of the proton. Thus, phenomenological quark-diquark
models cannot treat the diquark as a pointlike object.

As a concluding remark, we stress that the analysis
performed in this work focused on the diquark content of
the proton. However, the same study could be repeated, in
order to investigate the diquark content of other lowest-
lying baryons. For example, it would be particularly inter-
esting to compare the diquark densities in the nucleon and
in the delta. In fact, in the delta, the leading direct-
instanton effects are suppressed, due to the Dirac and flavor
structure of the ’t Hooft interaction. Hence, if diquark
correlations are instanton mediated, then we expect that
the strong enhancement of the scalar density observed in
the proton should be much less pronounced in the delta.
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