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Chiral symmetry and density waves in quark matter
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A density wave in quark matter is discussed at finite temperature, which occurs along with the chiral
condensation, and is described by a dual standing wave in scalar and pseudoscalar condensates on the
chiral circle. The mechanism is quite similar to that for the spin density wave suggested by Overhauser
and entirely reflects many-body effects. It is found within a mean-field approximation for the
Nambu–Jona-Lasinio model that the chiral-condensed phase with the density wave develops at a high-
density region just outside the usual chiral-transition line in phase diagram. A magnetic property of the
density wave is also elucidated.
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I. INTRODUCTION

In a recent decade, the condensed matter physics of
QCD has been an exciting area in nuclear physics. In
particular, its phase structure at finite density and relatively
low-temperature region is studied actively, since it was
suggested that the color superconductivity (CSC) involved
the observable consequence of quark matter due to the
large magnitude of its gap energy over a few hundred
MeV [1–3]. Although QCD at finite densities has impor-
tant implications for physics in other fields, e.g., the core of
compact stars and their evolution [4], it remains not under-
stood adequately.

Whereas the quark Cooper-pair (p-p) condensations
attract much interest, particle-hole (p-h) condensations,
which are related to the chiral condensation [2,3] or ferro-
magnetism in quark matter [5–7], have also been studied,
and their interplay with CSC has been discussed. Since the
Cooper instability on the Fermi surface occurs for arbi-
trarily weak interaction, the p-p condensation should
dominate at an asymptotically free high-density limit. On
the other hand, there exists a critical strength of the inter-
action in the p-h channel for its condensation.

At moderate densities, however, where the interaction is
strong enough, p-p and p-h condensations are competi-
tive, and various types of the p-h condensations are pro-
posed [8,9] in which the p-h pairs in scalar or tensor
channels have a finite total momentum indicating standing
waves. Instability for the density wave in quark matter was
first discussed by Deryagin et al. [10] at asymptotically
high densities where the interaction was very weak, and
they concluded that the density-wave instability prevailed
over the Cooper one in the large Nc (the number of colors)
limit due to the dynamical suppression of colored p-p
pairings.

In general, the density waves are favored in one-
dimensional (1D) systems and have the wave number Q �
2kF according to the Peierls instability [11,12], e.g.,
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charge-density waves in quasi-1D metals [13]. The essence
of its mechanism is the nesting of Fermi surfaces and the
level repulsion (crossing) of single-particle spectra due to
the p-h interaction with the finite total wave number. Thus,
the low dimensionality has an essential role to make the
density-wave states stable. In higher dimensional systems,
however, the transition occurs provided the interaction of a
corresponding (p-h) channel is strong enough. For the 3D
electron gas, it was shown by Overhauser [14,15] that the
paramagnetic state was unstable with respect to formation
of a static spin density wave (SDW), in which spectra of
up- and down-spin states deform to bring about a level
crossing due to the Fock exchange interactions, while the
wave number does not precisely coincide with 2kF because
of incomplete nesting in the higher dimension.

In a recent paper [16], we suggested a density wave in
quark matter at moderate densities in analogy with SDW
mentioned above. It occurs along with the chiral conden-
sation and is represented by a dual standing wave in scalar
and pseudoscalar condensates [we have called it ‘‘dual
chiral-density wave’’ (DCDW)]. The DCDW has different
features in comparison with the previously discussed
chiral-density waves [8–10] and emerges at a moderate-
density region �B=�0 ’ 3–6 (where �0 � 0:16 fm�3, the
normal nuclear matter density).

In this paper, we would like to further discuss DCDW
and figure out the mechanism in detail. We also present a
phase diagram on the density-temperature plane. In Sec. II
we start by introducing the order parameters for the dual
chiral-density wave and show the nature of the ground state
on the analogy of the spin density wave: a level crossing of
single-particle spectrum in the left- and right-handed
quarks. Section III is devoted to concrete calculations by
use of the Nambu–Jona-Lasinio (NJL) model [17] to
present a phase diagram at finite density and temperature,
in the case of 2 flavors and 3 colors. In Sec. IV we
summarize and give some comments on outlooks.
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FIG. 1 (color online). Two branches of the single-particle
spectrum (5) are plotted along the pz axis at px � py � 0,
where q k ẑ. Dashed (solid) lines correspond to M � 0 (M � 0).
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II. NATURE OF DUAL CHIRAL-DENSITY WAVE

In the pioneering studies of chiral-density waves [8–10],
a spatial modulation in the chiral condensation was con-
sidered; the scalar condensation with a wave number vec-
tor q occurs, h �  i / cos�q � r	. In this section, we consider
a directional modulation with respect to the chiral rotation,
since the directional excitation modes should be lower than
the radial ones in the spontaneously symmetry-broken
phases. We propose the DCDW in scalar and pseudoscalar
condensation,

h �  i � �cos�q � r	; h � i�5 i � �sin�q � r	; (1)

where the amplitude � corresponds to the magnitude of the
chiral condensation; h �  i2 
 h � i�5 i2 � �2.

We give the single-particle spectrum, in the presence of
the density wave (1) as an external field. The Lagrangian
density of the system in the chiral limit then reads

L � � �r	�i@6 
 2G�fcos�q � r	 
 i�5 sin�q � r	g� �r	;

(2)

where 2G is a coupling constant between the quark and
DCDW. In the chiral representation, it becomes clear how
the density wave affects the quark fields: The Lagrangian
shows that the density wave connects left- and right-
handed particles in pairs with the total momentum q,

Z
d3rL �

Z d3p

�2�	3
 L�p� q=2	

 R�p
 q=2	

 !
y

�
����p� q=2	� �M

�M ���p
 q=2	�

 !

�
 L�p� q=2	

 R�p
 q=2	

 !
; (3)

where q� � �0;q	, and M ( � �2G�) corresponds to the
dynamical mass if the density wave is generated by quark
interactions as the mean field. The single-particle (quasi-
particle) spectrum is obtained from the poles of the propa-
gator:

det� ����p� q=2	����p
 q=2	� �M2� � 0: (4)

From the above equation we found the spectrum: positive
and negative energies, E��p	 and �E��p	,

E��p	 �

��������������������������������������������������������������������������������
E0�p	2 
 jqj2=4�

�������������������������������������
�p � q	2 
M2jqj2

qr
;

E0�p	 � �M2 
 jpj2	1=2:
(5)

Because of the finite q and �, the spectrum is deformed
and split into two branches denoted by E��p	, as shown in
Fig. 1, where the direction of q is taken parallel to the z
axis. The two branches exhibit a level crossing between the
left- and right-handed particles.

For q � �0; 0; q	, the corresponding eigenspinors are
given, in the chiral representation, by
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u��p	 �N �

 ��	L �p� q=2	

 ��	R �p
 q=2	

0@ 1A
for positive energy E��p	; (6)

v��p	 � u��p	jE��p	!�E��p	

for negative energy � E��p	; (7)

where N � is a normalization factor for uy�u� � vy�v� �
1, and

 ��	R �p
 q=2	 �
�

������������
p2
z
M2

p

q=2
E��p	

px
ipy
1

0
@

1
A; (8)

 ��	L �p� q=2	 �
M

pz �
�������������������
p2
z 
M2

q �3 
��	
R �p
 q=2	: (9)

Here it should be noted that the original spinor in Eq. (2),
 �r	, is represented as a plane wave expansion for the
eigenspinors in Eqs. (6) and (7):

 �r	 � e�i�5q�r=2
X
s��

Z d3p

�2�	3
fas�p	us�p	


 bs�p	vs�p	ge�ip�r

� e�i�5q�r=2
Z d3p

�2�	3
~ �p	e�ip�r; (10)

where a��p	 [b��p	] is the annihilation operator for
the positive (negative) quasiparticle state. The factor
exp��i�5q � r=2	 comes from the momentum shifts
�q=2 in the left- and right-handed particles in Eq. (3)
due to the presence of DCDW and, thus, reflects the nature
of the spatially chiral-rotated ground state. The factor
corresponds also to a kind of Weinberg transformation,
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which changes the system from a spatially modulated one
to a uniform one [16,18].

In the previous section, we mentioned that, in general,
density waves should be favored in 1D systems. If we
assume a quasi-1D system along the direction of the z
axis, suppressing the radial (x-y) degrees of freedom, a
gap ( ’ 2M) opens just above the Fermi surface, provided
that q is taken to be 2kF (kF: the Fermi momentum for free
quarks), as illustrated in Fig. 1. In this case, only the lower
branch is occupied, and the total energy lowers for for-
mation of the density wave with wave number 2kF due to
the nesting effect [12,13]. In the uniform 3D system we
discuss in this article, however, the wave number dynami-
cally depends on the balance between the kinetic and
interaction energies and becomes smaller than 2kF: The
spatial modulation due to DCDW makes the kinetic-energy
loss, and the energy gain is generated by the deformation of
the single-particle spectrum which originates from the p-h
interaction. This situation is essentially the same as SDW
in a 3D electron system discussed by Overhauser [14]. In
the next section, we demonstrate the actual manifestation
of DCDW by taking a definite model.
III. APPLICATION TO THE NJL MODEL

Since DCDW defined by Eq. (1) is associated with the
chiral condensation, we consider the moderate-density
region where nonperturbative phenomena are expected to
remain even in quark matter. We here employ the NJL
Lagrangian with Nf � 2 flavors and Nc � 3 colors [17,19]
to describe such a situation,

L NJL � � �i@6 �mc	 
G�� �  	2 
 � � i�5� 	2�; (11)

where � is isospin matrix, and mc is the current mass,
mc ’ 5 MeV.

We assume the mean fields in the direct (Hartree) chan-
nels,

h �  i � �cos�q � r	; h � i�5'3 i � �sin�q � r	;
(12)

where we fix the isospin direction to '3 because of degen-
eracy on the isospin hypersphere; the other mean fields
vanish consistently, h � i�5'1 i � h � i�5'2 i � 0. In other
words, it is assumed that DCDW is a charge eigenstate, and
there is no amplitude which mixes states with different
charges [20]. As for the Fock exchange terms, we have
briefly examined them in Appendix B and shown that the
tensor exchange terms might affect DCDW implicitly
through the deformation of a one-particle spectrum. In
the present study, however, we will treat only the direct
terms since the exchange terms correspond to pure quan-
tum processes and have less contribution than the direct
ones. It is interesting that the configuration (12) is similar
to the pion condensation in high-density nuclear matter
within the � model, suggested by Dautry and Nyman [21],
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where � and �0 meson condensates take the same form as
Eq. (12). It may imply a kind of quark-hadron continuity
[22].

Within the mean-field approximation, the effective
Lagrangian becomes

LMF � � �i@6 
��0 �Mfcos�q � r	 
 i�5'3 sin�q � r	g� 

�
M2

4G
; (13)

where we have introduced the chemical potential � and
taken the chiral limit (mc � 0) assuming �� mc. Since
only the difference between u and d quark is the sign of the
wave number vector (q$ �q) due to the isospin matrix
'3, the single-quark spectrum takes the same form as in
Eq. (5). Thus, we need not distinguish two flavors in the
energy spectrum, though the eigenspinors depend on the
sign of q.

Hereafter, we take the direction of the wave number
vector parallel to the z axis, q � �0; 0; q	 without loss of
generality, and show the Fermi surface for various values
of �, M, and q in Fig. 2.

In the density-wave state, all the energy levels below the
chemical potential are occupied in the deformed spectrum.
Accordingly, the thermodynamic potential density at zero
temperature becomes

�tot � NfNc
Z d3p

�2�	3
X
s��

�fEs�p	 ��g(��� Es�p		

� Es�p	� 

M2

4G

� �fer 
�vac 

M2

4G
; (14)

where �fer (�vac) denotes the Fermi-sea (Dirac-sea) con-
tribution. We can see that the finite wave number effect
enters only through the deformation of the energy spectrum
and gives nontrivial contributions to the behavior of the
chiral condensation or the dynamical mass M. The energy
gap between the two branches is generated by the dynami-
cal mass which comes mainly from the Dirac sea, and the
energy gain due to the density wave (to a finite q) comes
essentially from the Fermi sea, which is responsible for the
finite baryon-number density; thus, the DCDW is produced
cooperatively by the Dirac and Fermi seas.

Since the NJL model is unrenormalizable, we need some
regularization procedure to evaluate the negative-energy
contribution �vac. Because of the spectrum anisotropy, we
cannot apply the momentum cutoff regularization scheme.
Instead, we adopt the proper-time regularization (PTR)
scheme [23]. We show the result (the derivation is detailed
in Appendix A),
-3



FIG. 2. Fermi surfaces of the spectrum (5) for q k ẑ. pt �
�����������������
p2
x 
 p2

y

q
. The outer (inner) closing line corresponds to E��p	 [E
�p	].

(a) For M � q=2; the minimum of E��p	 is at the origin. (b) For M � q=2; there are two minima at points �pt; pz	 �
�0;�

���������������������������
�q=2	2 �M2

p
	. (c) For M � q=2 and � � q=2
M; the minor Fermi sea vanishes.
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�vac �
�

8�3=2

Z 1

1=#2

d'

'5=2

Z 1

�1

dpz
2�

� �e��
�����������
p2
z
m2

p

q=2	2' 
 e��

�����������
p2
z
m2

p
�q=2	2'� ��ref ;

(15)

where # is the cutoff parameter, and we subtracted an
irrelevant constant �ref in the derivation. All the physical
quantities should be taken to be smaller than the scale # in
the following calculations.

A. Phase transition at zero temperature

To investigate threshold density for formation of the
density wave at T � 0, we expand the potential (14) up
to the second order in q, and examine the sign of its
coefficient,

�tot � �0
tot 


1
2�*fer 
 *vac	q2 
O�q4	; (16)

*fer �
@2�fer

@q2

��������q!0
� �NfNc

M2

�2 H��=M	; (17)
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FIG. 3. The dynamical-mass M dependence of the coefficient *
0:37–0:39 and (b) for �=# � 0:5–0:7.
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*vac �
@2�vac

@q2

��������q!0
� NfNc

#2

2�2 J�M
2=#2	; (18)
where J�x	 � x
R
1
x d' exp��'	=', and H�x	 �

ln�x

��������������
x2 � 1
p

	. The coefficient of the second-order
term in �fer is always positive for finite dynamical mass
M � 0, while the counterpart of �vac is negative, indicat-
ing that the Dirac sea is stiff against the formation of the
density wave. In contrast, the Fermi sea favors it as men-
tioned in the previous section. The total coefficient *tot �
*fer 
 *vac depends on the dynamical mass and the chemi-
cal potential for fixed #, as shown in Fig. 3. For larger
values of the chemical potential in Fig. 3(b), *tot becomes
negative and reaches its maximum at a finite M. As for the
small chemical potential �=#< 0:38 in Fig. 3(a), *tot

never becomes negative for any value of M. It leads to a
rough estimation of the critical coupling constant G#2 ’
4:63, which is the value to occur the usual chiral conden-
sation (q � 0) at �=# � 0:38 in the PTR scheme.

The magnitudes of M and q are obtained from the
minimum of the potential (14) at T � 0, and their
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M/Λ

-β
to

t

(b)

µ/Λ=0.5 

  0.6
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tot for various values of the chemical potential (a) for �=# �
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FIG. 5. Wave number q and dynamical mass M are plotted as
functions of the chemical potential at T � 0. Solid (dotted) line
for M with (without) the density wave and dashed line for q.
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FIG. 4 (color online). Contours of �tot at T � 0 are shown in the M-q plane as the chemical potential increases, �a	 ! �f	. The cross
in each figure denotes the absolute minimum.
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values satisfy the stationary conditions @�tot=@M �
@�tot=@q � 0.

Figure 4 shows contours of �tot in the M-q plane for a
given chemical potential, where the parameters are set as
G#2 � 6 and # � 850 MeV, which are not far from those
for the vacuum (� � 0) [19]. The crossed points denote the
absolute minima. There appear two critical chemical po-
tentials � � �c1; �c2: For the lower densities [Figs. 4(a)
and 4(b)], the absolute minimum lies at the point �M �

0; q � 0	 indicating a finite chiral condensation. At � �
�c1 [Fig. 4(c)], the potential has the two absolute minima
at �M � 0; q � 0	 and �M � 0; q � 0	, showing the first-
order transition to the DCDW phase, which is stable
for �c1 <�<�c2 [Figs. 4(d) and 4(e)]. At � � �c2
[Fig. 4(f)], any point on the line M � 0 and a point
�M � 0; q � 0	 become minimum, and thereby the system
undergoes the first-order transition to the chiral-symmetric
phase which is stable for �>�c2.

Figure 5 shows the behaviors of order parameters M and
q as functions of � at T � 0, where that of M without the
density wave is also shown for comparison. It is found
from the figure that the magnitude of q becomes finite just
before the critical point of the usual chiral transition, and
DCDW survives at the finite range of � (�c1 � � � �c2)
where the dynamical mass is reduced in comparison with
that before the transition and decreases with �. On the
other hand, the wave number q increases with �, but its
114006
value is smaller than twice the Fermi momentum
2kF ( ’ 2� for free quarks) due to the higher dimensional
effect; the nesting of Fermi surfaces is incomplete in the
present 3D system. Actually, the ratio of the wave number
-5
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FIG. 6 (color online). Baryon-number density as a function of
�. �0 � 0:16 fm�3: the normal nuclear density. Solid (dashed)
line is for the finite q (q � 0).
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and the Fermi momentum (at normal phase q � M � 0)
becomes q=kF � 1:17–1:47 for the baryon-number den-
sities �b=�0 � 3:62–5:30 where DCDW develops. The
baryon-number density is shown in Fig. 6 as a function
of � for the normal and the density-wave cases. The jumps
of the baryon-number density reflect the first-order transi-
tion. In the DCDW phase, the relation q=2>M is retained,
and the Fermi surface looks like Fig. 2(b).

Here we show the coupling-strength dependence of the
critical chemical potentials �c1;c2 in Fig. 7, including the
semiempirical value G#2 � 6:35 (# � 660:37 MeV) to
reproduce the pion decay constant f� � 93 MeV and the
constituent-quark mass ’ 330 MeV, one-third of the nu-
5.0 5.5 6.0 6.5

0.40

0.45

0.50

0.55

0.60

GΛ2

µ c
/Λ

µc1

µc2

FIG. 7 (color online). Critical chemical potentials �c1;c2 are
plotted as functions of the dimensionless coupling G#2 at T �
0. The DCDW phase appears between �c1 and �c2. The critical
coupling at �c1 � �c2 is estimated to be G#2 ’ 4:72.
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cleon mass in the vacuum. The range of the DCDW phase
between �c1 and �c2 starts to open at G#2 ’ 4:72 and
broadens with an increase of the coupling strength. It
should be noted that the effective potential (14) can be
scaled by the cutoff #, and, thus, the dimensionless cou-
pling G#2 becomes only one parameter to determine
whether or not the phase transition itself occurs in the
present model.

It should be kept in mind that the order of the transitions
may depend on the parameter choice of G and # and also
on the regularization scheme.

B. Magnetic properties

Using the eigenspinors in Eqs. (6)–(10), we can calcu-
late various expectation values with respect to the DCDW
state. For an operator O, which does not depend on the
spatial coordinate, its expectation value becomes a simple
form:

h y�r	O �r	i �
Z d3p

�2�	3

�h ~ y�p	ei'3�5q�r=2Oe�i'3�5q�r=2 ~ �p	i:

(19)

We can confirm that baryon-number density O � 1 is
still constant even in the density-wave state: summation of
quasiparticle state in momentum space,

�B �
Z d3p

�2�	3
h ~ y�p	 ~ �p	i � constant: (20)

On the other hand, the spin expectation value O �
�0�5�3=2 � 'z vanishes in each flavor,

h'zi �
1

2

Z d3p

�2�	3
h ~ y�p	�0�5�3

~ �p	i � 0; (21)

because the stationary condition for the wave number q is
proportional to the expectation value:

0 �
@�tot�q;M	

@q
/ h'zi: (22)

Here we show an interesting feature of DCDW: a spatial
modulation of the anomalous magnetic moment. The
Gordon decomposition of the gauge coupling term gives
the magnetic interaction with external field F�1 in the form
gL�e

�=2M	� � ��1 	F
�1, where gL is a form factor and e�

an effective electric charge. The operator of the magnetic
moment for the z component is defined by O � �0�12,
which is not commuted to �5,

ei'3�5q�r=2�0�12e
�i'3�5q�r=2 � �0�12 cos�q � r	

� i�3 sin�q � r	; (23)

and then its expectation value is given by
-6
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h � �r	�12 �r	i � h�0�12i cos�q � r	 � ih�3i sin�q � r	;
(24)

where h�0�12i �
Z d3p

�2�	3
2M�������������������

M2 
 p2
z

q �n
�p	 � n��p	�;

(25)

h�3i � 0: (26)

The function n��p	 is the momentum distribution for the
eigenstate corresponding to E��p	. The expectation value
h�0�12i is proportional to an asymmetry of the momentum
distribution in n��p	. In DCDW phase, the asymmetry
becomes finite as shown in Fig. 2, and thus the magnetic
moment is spatially modulated with wave number q. The
expectation value h�3i vanishes in each eigenspinor:
uy��3u� � vy��3v� � 0. We also confirmed that the other
components of the magnetic moment, �0�23;13, vanished
analytically after the integration in momentum space.

Equation (24) shows that the amplitude of the modulated
magnetic moment depends on the dynamical mass, reflect-
ing delay of chiral restoration due to the presence of
DCDW. The magnetic order of DCDW should have some
observable consequence of compact stars with quark cores.
We estimate the magnitude of the amplitude (25) at
�B=�0 � 3–4: The tensor expectation value per quark is
calculated to be h�0�12i=h�0i � 0:1–0:3. Thus, a local
magnetic-flux density ( induced by DCDW,

( �

�
2

3
�

1

3

�
e

2mq

h�0�12i

h�0i
3�B; (27)

amounts to O�1016	 Gauss, which is comparable with
observed values in magnetars [24]. The flux strength on
the star surface from the quark core might be smaller, since
it is given by summation of the quark-magnetic moment
(24) modulated rapidly with the wave length q=2� ’
O�10	 fm; nevertheless, contributions from near the
quark-core surface may remain without the cancellation.
As an effect of the spatially modulated strong magnetic
field, it scatters charged particles and, thus, enhances
opacity of the particles inside the star core, which directly
affects the thermal evolution of compact stars.

C. Correlation functions

In this section, we consider scalar- and pseudoscalar-
correlation functions, )s;sp�k;�	, at the chirally restored
phase and discuss their relation with DCDW at T � 0. The
correlation functions depend on an external four-
momentum k � �k0;k	, chemical potential, and the effec-
tive quark mass for a given chemical potential. In the static
limit k0 ! 0, the correlation functions have a physical
correspondence to the static susceptibility functions for
the spin- or charge-density wave [11], while they have no
primal singularity at jkj � 2kF reflecting the higher di-
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mensionality that has a differential singularity at k � 2kF
instead.

In general, a divergence of the correlation function
implies a second-order phase transition. As for the case
of DCDW, the effective potential analysis in the previous
section shows the first-order transition. Nevertheless, as
shown in Fig. 4(f), the potential barrier from DCDW to the
normal phase at the critical point � � �c2 is very small,
and it is expected that the correlation function has some
information of the transition point.

We evaluate effective interactions, +s;sp�k;�	, within
the random phase approximation [17,19], which are related
to the correlation functions, i.e., 2G)s;sp�k;�	 �
+s;sp�k;�	)0

s;sp�k;�	:

i+s;ps�k;�	 �
2Gi

1� 2G)0
s;ps�k;�	

; (28)

where )0
s;ps�k;�	 is the polarization function in medium,

which has form at the static and chiral limits (see
Appendix C):

)0
s �jkj;�	 � )0

ps�jkj;�	

�
NfNc
4�2 �#

2 � 2�2	 � 2NfNcik2I�k2	jM!0



NfNcjkj
4�2

�
kF log

�
2�
 jkj
2�� jkj

�



jkj
2

log
�
�2�
 jkj	�2�� jkj	

jkj2

��
: (29)

Inverse of the correlation function in the chiral limit cor-
responds to the coefficient of M2 of the effective potential,

�tot � �totjM!0 

1
2+
�1
ps �q;�	jM!0M2 
O�M4	: (30)

From the behavior of the function +ps�jkj;�	�1 shown in
Fig. 8(a), it is found that the function takes the lowest value
at a finite external momentum for each value of the chemi-
cal potential, and thus a finite wave number q gives the
lower potential energy in Eq. (30). Assuming the second-
order transition, the critical density �t and wave number
jktj are determined from the following simultaneous equa-
tions:

+sp�jkj;�	�1 � 0 and
@+sp�jkj;�	�1

@jkj
� 0: (31)

A numerical calculation in the chiral limit gives �t��
kF	 � 0:5320# and jktj � 1:498kF, which almost coin-
cide with the correct result �c2 � 0:53254# and q �

1:469kF (where kF �
���������������������
�2
c2 �M2

q
; M � 0:034#) from

the effective potential analysis. A complex structure of
the effective potential makes a little difference between
jktj and q at � � �c2.

The above argument might also be available even for the
case of a finite current-quark mass, mc ’ 10 MeV: The
-7



0.48 0.50 0.52 0.54 0.56
0.0

0.2

0.4

0.6

µ/Λ

M
/Λ

,  
q/
Λ

Order Parameters at T≠0

M (T/Λ=0.02)
q      ``
M (T/Λ=0.03)
q      ``

FIG. 9. The wave number q and the dynamical mass M are
plotted as a function of � at finite temperature. The solid
(dashed) line corresponds to q (M) at T=# � 0:02 (thick lines)
and 0:03 (thin lines).

0.0 0.5 1.0 1.5 2.0

0.00

0.01

0.02

k/kF

[ Γ
s p,s

|(
k

)|
Λ

2  ]
1-

(a) mc=0

µ/Λ=0.4911

µ/Λ=0.5

µ/Λ=0.5325

µ/Λ=0.55

0.0 0.5 1.0 1.5 2.0

0.00

0.01

0.02

0.03

|k|/kF

[ Γ
sp

|(
k

)|
Λ

2  ]
1-

(b) mc=10 MeV

kF/Λ=0.4911

kF/Λ=0.5

kF/Λ=0.5325

kF/Λ=0.55

FIG. 8 (color online). Function 1=+ps�jkj	 is plotted for various values of �, �=# � 0:4911; 0:5; 0:53254�� �c2	, and 0:55, for
(a) mc � 0 and (b) mc � 10 MeV. In the case of �=# � 0:4911, the mass-gap equation has an extremum solution M � 0.

E. NAKANO AND T. TATSUMI PHYSICAL REVIEW D 71, 114006 (2005)
effective potential for a small current-quark mass (mc �
�) is approximated to

�tot ’ �totjM!mc

 1

2+
�1
ps �q;�	jM!mc

�M�mc	
2


O��M�mc	
4�: (32)

Figure 8(b) shows that the behavior of the coefficient
function has little shift from that of the chiral limit and,
thus, suggests a DCDW transition with a small current-
quark mass as in the chiral limit.

D. Phase diagram on the �-T plane

To complete a phase diagram, we derive the thermody-
namic potential at finite temperature in the Matsubara
formalism. The partition function for the mean-field
Hamiltonian is given by

Z* �
Z
D � D exp

Z *

0
d'

�
Z
d3r

�
� �i~@
M exp�i�5q � r	 � �0�� �

M2

4G

�
;

(33)

where * � 1=T, and ~@ � ��0@' 
 i�r. Taking the
Fourier transform of the spinor with the Matsubara fre-
quency !n, the partition function becomes

 �r;�i'	 � e�i'3�5q�r=2T
X
n

Z d3k
�2�	3

ei!n'
ik�r ~ �k; n	;

Z* �
Y

k;n;s��

f�i!n 
�	2 � E2
s�k	gNfNc

� exp
�
�

�
M2

4G

�
V*

�
; (34)

where V is volume of the system. Thus, the thermodynamic
potential �* per unit volume is obtained,
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�*�q;M	 � �T logZ*�q;M	=V

� �NfNc
Z d3k
�2�	3

X
s��

fT log�e�*�Es�k	��	 
 1�

� �e�*�Es�k	
�	 
 1� 
 Es�k	g 

M2

4G
; (35)

where we have utilized a contour-integral technique for the
frequency sum to get the final form.

From the absolute minimum of the thermodynamic po-
tential (35), it is found that the order parameters at T � 0
behave similarly to those at T � 0 as a function of�, while
the chemical-potential range of DCDW, �c1�T	 � � �
�c2�T	, gets smaller as T increases. Figure 9 shows the
order parameters at finite temperature. The discontinuities
of the order parameters reflect the two absolute minima at
-8



FIG. 10. A phase diagram obtained from the thermodynamic
potential equation (35). The solid (dashed) line shows the chiral-
transition line without (with) the DCDW. The shaded area shows
the DCDW phase.
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the critical chemical potential �c1;2, and it indicates a first-
order transition. Thus, the region of DCDW in the �-T
phase diagram is surrounded by the first-order transition
lines.

We show the resultant phase diagram in Fig. 10, where
the usual chiral-transition line is also given for reference.
Comparing phase diagrams with and without q, we find
that the DCDW phase emerges in the area (shaded area in
Fig. 10) which lies just outside the boundary of the ordi-
nary chiral transition. We thus conclude that DCDW is
induced by finite-density contributions and has the effect
to extend the chiral-condensed phase (M � 0) to a low
temperature (Tc ! 50 MeV) and high-density region. The
above results suggests that QCD at finite density involves
rich and nontrivial phase structures, as well as color super-
conducting phases.

IV. SUMMARY AND OUTLOOKS

We have discussed the possibility of the dual chiral-
density wave in moderate-density quark matter within the
mean-field approximation, employing a 2-flavor and 3-
color NJL model. The mechanism of the density wave is
quite similar to the spin density wave in 3D electron
systems; the total-energy gain comes from the Fermi-sea
contribution in the deformed spectrum, while its amplitude
has a different origin corresponding to the chiral conden-
sation from the Dirac-sea effect.

In this paper, we have considered only the direct chan-
nels (Hartree terms) of the interaction. If the exchange
channels (Fock terms) are involved, there appear additional
interaction channels by way of the Fierz transformation
[19]. In particular, self-energies in axial-vector and tensor
channels related to a ferromagnetism [6,25] might affect
the density wave through nontrivial correlations among
them. Interactions in the p-p channels are also obtained
114006
by the Fierz transformation, and their strength is smaller
than that of the direct channels by the factor of O�1=Nc	.
Because the Cooper instability is independent on the
strength of the interaction, it is interesting to investigate
the interplay among the density wave, superconductivity
[8,9,26], and the other ordered phases, e.g., chiral-density
waves mixing isospins which may cause a charge-density
wave due to difference of electric charges of u and d
quarks, as future studies.

Finally, it is worth mentioning fluctuation modes on the
density-wave phase, which give the excitation spectrum
and are important for the dynamical description of the
phase. In particular, Nambu-Goldstone modes are essential
degrees of freedom for low-energy phenomena and may
bring some observable consequences, e.g., slowing down
of star cooling through enhancement of specific heat due to
fluctuations of such low-energy modes.
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APPENDIX A: REGULARIZATION OF �vac

We regularize the Dirac-sea contributions to the poten-
tial �vac by applying Schwinger’s proper-time method.
�vac can be described in the form of the one-loop order
contribution,

�� � �vav�q;M	 ��N � �
Z
C

d4k

i�2�	4
X
s��

log
Ds

DN

(A1)

with D� � k20 � E2
��k	 and DN � k20 � k2 �m2;

(A2)

where �N is the normal vacuum contribution. Using the
identity for G 2 R

�G
 i:	�1 � �i
Z 1

0
dsei�G
i:	s; (A3)

we find

log
D� 
 i:
DN 
 i:

� �
Z 1

0

ds
s
�ei�D�
i:	s � ei�DN
i:	s	: (A4)

By way of the Wick rotation, which is done simulta-
neously for k0 integration of �vac and �N,
-9
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��� �
Z
C

d4k

i�2�	4
Z 1

0

ds
s
�eiD�s � eiD0s	

�
Z 1

�1

d4kE
�2�	4

Z 1

0

ds
s
�expif�k2E � k2t � �

������������������
k2z 
M2

q
� q=2	2gs� expif�k2E � k2t � k2z �m2gs�

�
Z 1

�1

d4kE
�2�	4

Z 1

0

d'
'
�expf�k2E � k2t � �

������������������
k2z 
M2

q
� q=2	2g'� expf�k2E � k2t � k2z �m2g'�

�
1

8�3=2

Z 1

0

dkz
2�

Z 1

0

d'

'5=2
�expf��

������������������
k2z 
M2

q
� q=2	2'g � expf��k2z 
m2	'g�: (A5)

The above integration of ' is singular at ' � 0 and thus not well defined. The proper-time regularization is to replace the
lower limit of ' by the cutoff 1=#2, Z 1

0
d'!

Z 1

1=#2
d'; (A6)

where # corresponds to a momentum cutoff.
Eventually, we obtain the regularized potential from the Dirac sea,

�� � ��
 
 ���

�
1

8�3=2

Z 1

0

dkz
2�

Z 1

1=#2

d'

'5=2
�expf��

������������������
k2z 
M2

q

 q=2	2'g 
 expf��

������������������
k2z 
M2

q
� q=2	2'g � 2 expf��k2z 
m2	'g�:

(A7)

The normal vacuum contribution �N has an explicit form,

�N � NcNf
1

8�2

Z 1

1=#2

d'

'3
e�m

2' � NcNf
#4

16�2 f�� ~m2 
 1	e� ~m2

 ~m4+�0; ~m2	g; (A8)

where ~m � m=#, and +�a; z	 �
R
1
z d''

a�1 exp��'	 is the incomplete gamma function.

APPENDIX B: FOCK EXCHANGE CONTRIBUTIONS

We briefly examine how the Fock exchange terms of the NJL interaction affect DCDW. After the Fierz transformation,
one can find the exchange interaction terms, discarding color-octet contributions [19]:

F �� �  	2 
 � � i�5' 	
2� �

1

8Nc
�2� �  	2 
 2� � i�5' 	

2 � 2� � ' 	2 � 2� � i�5 	
2 � 4� � �� 	

2 � 4� � i�5�� 	
2


 � � ��1 	2 � � � ��1' 	2�: (B1)
The overall factor 1=8Nc indicates that the exchange terms
are less relevant in comparison with the direct terms.

The first two terms come to be added to the Hartree
terms and contribute to DCDW through changing the
effective interaction in these channels by a factor.

The third and fourth terms have opposite sign of inter-
actions, and thereby they cannot gain condensation
energies.

The fifth one has an expectation value in its temporal
term, which corresponds to the baryon-number density,
h y i � 0, and is renormalized into the chemical potential
[27,28]. Thus, it might not change DCDW qualitatively,
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except for changing the value of a bare chemical potential
for a fixed baryon-number density. The other spatial terms
vanish self-consistently in the present formalism [6].

The sixth term, the axial-vector interaction, seems to
contribute DCDW because the Weinberg transformation
leaves it unchanged, but scalar and pseudoscalar terms for
DCDW changed to another axial-vector mean field with
isospin '3. However, it is found that this term does not
affect DCDW by itself: The Hartree-Fock free energy with
both the axial-vector mean field VA and DCDW (the
wave number q) is given, after the Weinberg transforma-
tion, by
-10
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H HF �
Z

� �p2 
M2 
 �3�5�VA 
 '3q=2	� 

M2

4GS



V2
A

4GA

�
Z

� u�p2 
M2 
 �3�5A� u 

Z

� d�p2 
M2 
 �3�5B� d 

M2

4GS


�A
 B	2

16GA
;

A � VA 
 q=2; B � VA � q=2;

(B2)

where  u;d are spinors of u; d quark, and GS;A are reduced coupling constants in scalar and axial-vector channels.
Equation (B2) shows that the minimum of the effective potential is always given by A
 B � 2VA � 0, because the first
two terms have the same structure in their energy spectrum with respect to A;B independently of the sign of A;B, and
implies, therefore, that the expectation value of the axial-vector channel vanishes.

The last two terms, the tensor interactions, might give a nontrivial contribution to DCDW through a feedback effect of
the nonzero expectation value of the tensor operator, h�0�12i [see Eq. (24)], although their interaction strengths are small
by the factor 1=8Nc. This problem is left for a future study.

APPENDIX C: SCALAR AND PSEUDOSCALAR SCATTERING AMPLITUDES

Following Nambu [17], we consider the quark-quark scattering matrix generated by the chain diagram in the
pseudoscalar channel. Then the polarization function �i)0

ps is given by

�i)0
ps�k2	 � �

Z d4p

�2�	4
tr
�
i�5'3iS

�
p


1

2
k
�
i�5'3iS

�
p�

1

2
k
��
; (C1)

with the quark propagator in medium,

S�p	 �
1

p6 �m

 i

�
Ep
�p6 
m	(��� Ep	=�p0 � Ep	 � �p6 
m	~S�p	 � �p6 
m	�~SF�p	 
 ~SD�p	�: (C2)

Then the scattering matrix Mps
33 can be written in the form

iMps
33�k

2	 � �i�5	'3

�
2iG

1� 2G)0
ps�k2	

�
�i�5	'3: (C3)

There are three kinds of contributions to )0
ps�k

2	,

)0
ps�k2	 � )FF

ps �k2	 
)DD
ps �k2	 
 2)DF

ps �k2	 (C4)

with

�i)ij
ps�k2	 � �4NfNc

Z d4p

�2�	4

�
�p2 
m2 


1

4
k2
�
~Si

�
p


1

2
k
�
~Sj

�
p�

1

2
k
�
: (C5)

First, we consider the vacuum contribution,

�i)FF
ps �k

2	 � 2NfNc
Z d4p

�2�	4

�
1

�p
 1
2 k	

2 �m2



1

�p� 1
2 k	

2 �m2

�

� 2NfNck2
Z d4p

�2�	4
1

��p
 1
2 k	

2 �m2���p� 1
2 k	

2 �m2�
: (C6)

The integrals in the first term are easily evaluated to getZ d4p

�2�	4
1

�p� 1
2 k	

2 �m2
� �

i

16�2

Z d'

'2
e�m

2'; (C7)

in the proper-time representation. The integral in the second term is denoted by I�k2	,

I�k2	 �
Z d4p

�2�	4
1

��p
 1
2 k	

2 �m2���p� 1
2 k	

2 �m2�
: (C8)
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Using Feynman’s trick,

I�k2	 �
Z 1

0
dt
Z d4p

�2�	4
1

�p2 �m2 
 �k2 
 2pk	t�2
�
Z 1

0
dt
Z d4p

�2�	4
@

@m2

1

p2 �m2 
 k2t�1� t	
; (C9)

and introducing the proper-time ', we find

I�k2	 �
i

16�2

Z 1

0
dt
Z 1

0

d'
'
e��m

2�k2t�1�t		': (C10)

The vacuum contribution is summarized as follows:

�i)FF
ps �k

2	 � �
iNfNc
4�2

Z d'

'2
e�m

2' 

iNfNc
8�2 k2

Z 1

0
dt
Z 1

0

d'
'
e��m

2�k2t�1�t		': (C11)

Second, let us consider )DF
ps �k

2	,

�i)DF
ps �k2	 � �4NfNc

Z d3p

�2�	4

�
�

�
1

2
k0 
 Ep��1=2	k

�
2

 p2 
m2 


1

4
k2
�

�
1

�k0 
 Ep��1=2	k	
2 � �p
 1

2k	
2 �m2

i�
Ep��1=2	k

(��� Ep��1=2	k	: (C12)

Taking the static limit k0 ! 0, we have

� i)DF
ps �jkj	 ! 2NfNci

Z d3p

�2�	3
p � k

2p � k
 k2

1

Ep
(��� Ep	

� 2NfNci
Z 1

�1
dx
Z p2dp

�2�	2

�
1�
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2px
 jkj

�
1
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(��� Ep	

� i
NfNc
4�2

�
pF��m2 ln

�
pF 
�
m
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�
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2

Z pF

0
pdp ln

��������2p
 jkj2p� jkj

�������� 1
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�


NfNcjkj
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�
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�
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4

�
1=2
�
: (C13)

The integral over the Fermi sea can be analytically performed, but we do not write it down here because of its complexity.
Finally, we calculate )DD

ps �k
2	,

�i)DD
ps �k

2	 � �
Z d4p

�2�	4
4NfNc

�
�p2 
m2 


1

4
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�
~SD

�
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1

2
k
�
~SD
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�

� �
Z d3p

�2�	4
4NfNc

�
�

�
1

2
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�
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�
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1

2
k
�
2

m2 


1

4
k2
�

�
i�
Ep
k

(��� Ep
k	=�k0 
 Ep � Ep
k	(��� Ep	: (C14)

In the static limit k0 ! 0,

�i)DD
ps �jkj	 ! �NfNc

jkj
4�

�
��

�
m2 


k2

4

�
1=2
�
; (C15)

which exactly cancels the imaginary part arising from )DF
ps �jkj	.

Collecting them together, we have the denominator of the scattering amplitude in the static limit,
114006-12
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1� 2G)0
ps�jkj	 � 1� 2G�)FF

ps �jkj	 
 2)FD
ps �jkj	 
)DD

ps �jkj		

� 1� 2G
NfNc
4�2

Z d'

'2
e�m

2' � 4GiNfNck2I�k2	


G
NfNc
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�
pF��m2 ln

�
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�
m

�
�
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2

Z pF

0
pdp ln

��������2p
 jkj2p� jkj

�������� 1

Ep

�
: (C16)

On the other hand, the gap equation in this case reads

m � mc 

1

2�2GNfNcm
Z d'

'2
e�m

2' �G
NfNc
�2 m

�
pF��m2 ln

�
pF 
�
m

��
: (C17)

Thus, we find at a stationary point (at a solution of the gap equation),

1� 2G)0
ps�jkj	 �

mc

m
� 4GiNfNck2I�k2	 �G

NfNc
2�2 jkj

Z pF

0
pdp ln

��������2p
 jkj2p� jkj

�������� 1

Ep
: (C18)

In a similar way, the scattering amplitude of the scalar channel is given by

1� 2G)0
s �jkj	 � 1� 2G

NfNc
4�2

Z d'
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e�m

2' � 4GiNfNc�k2 
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G
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�������� 1

Ep

�


 2GNfNci
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2�jkj
���

�����������������������
m2 
 k2=4

q
�(�2kF � jkj	: (C19)
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G. Grüner, Charge Density Waves in Solids, Modern
114006
problems in condensed matter sciences Vol. 25 (North-
Holland, Amsterdam, 1989).

[12] R. E. Peierls, Quantum Theory of Solids (Oxford
University Press, London, 1955).
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