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Testing saturation with diffractive jet production in deep inelastic scattering
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We analyze the dissociation of a photon in diffractive deep inelastic scattering in the kinematic regime
where the diffractive mass is much bigger than the photon virtuality. We consider the dominant q �qg
component keeping track of the transverse momentum of the gluon which can be measured as a final-state
jet. We show that the diffractive gluon-jet production cross-section is strongly sensitive to unitarity
constraints. In particular, in a model with parton saturation, this cross-section is sensitive to the scale at
which unitarity effects become important, the saturation scale. We argue that the measurement of
diffractive jets at HERA in the limit of high diffractive mass can provide useful information on the
saturation regime of QCD.
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I. INTRODUCTION

The understanding of diffractive interactions in electron-
proton deep inelastic scattering (DIS) has been a great
theoretical challenge since diffractive events were ob-
served at HERA [1]. There exist many attempts to describe
the diffractive part of the deep inelastic cross-section
within perturbative QCD (for an excellent review, see
Ref. [2]). One of the most successful approaches is based
on the dipole picture of DIS [3,4] which expresses the
scattering of the photon of virtuality Q2 through its fluc-
tuation into a color-singlet q �q pair (dipole) of a transverse
size r� 1=Q. That naturally incorporates the description
of both inclusive and diffractive events into a common
theoretical framework [5,6], as the same dipole scattering
amplitudes enter in the formulation of the inclusive and
diffractive cross-sections.

The dipole approach revealed that the total diffractive
cross-section is much more sensitive to large-size dipoles
than the inclusive one [7]. More precisely, it showed that
unitarity, and the way it is realized, should be important
ingredients of the description of diffractive cross-sections,
making those ideal places to look for saturation effects at
small-x. The saturation parametrization of the dipole scat-
tering amplitude [7] was quite successful in describing
both the inclusive and diffractive structure functions. In
other studies of saturation effects in diffractive DIS, non-
linear evolution equations for the structure function have
been derived [8,9], new measurements proposed [10], and
fits of different sets of data performed [11,12].
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In this paper, we analyze hard diffraction when the
proton stays intact after the collision and the mass MX of
the diffractive final state is much bigger than Q2. This
process is called diffractive photon dissociation. We extend
the study of [11] by keeping track of the transverse
momentum of the final-state partons. We propose the mea-
surement of the final-state configuration X� jet� gap�
p in virtual-photon-proton collisions. In order to connect
the measured jet with the final-state gluon in our calcula-
tions, the jet should form the edge of the rapidity gap. The
transverse momentum of the jet provides a hard scale
necessary for the use of perturbative QCD, making our
calculations valid even at very low values of Q2.

We express the diffractive cross-section in terms of
dipole scattering amplitudes, using the results derived in
[13] in the eikonal approximation, valid at very high 	�p
center-of-mass energy. We show that in the context of
saturation theory, the transverse momentum distribution
of the measured jet is resonant with the scale at which
the contributions of large-size dipoles start to be sup-
pressed, called the saturation scale. Using the parametri-
zation [7] of saturation effects, we make predictions for the
kinematic domain of HERA and exhibit the potential of the
diffractive jet production measurement for extracting the
saturation scale.

The plan of the paper is as follows. In Sec. II we recall
the derivation of [13] for the diffractive production of a
gluon off a q �q dipole. In Sec. III, we derive the cross-
section for the diffractive photon dissociation with produc-
tion of a gluon jet and study its model-independent prop-
erties. In Sec. IV, we present the saturation model that we
use for the calculation of the jet production cross-section.
Section V displays our predictions for the HERA energy
range, and Sec. VI contains conclusions.
-1  2005 The American Physical Society
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II. DIFFRACTIVE GLUON PRODUCTION OFF A
Q �Q DIPOLE

In this section we recall the derivation of [13] of the
cross section for the diffractive production of a gluon in the
high-energy scattering of a q �q dipole off an arbitrary
target. We shall use the light-cone coordinates with the
incoming dipole being a right mover and work in the light-
cone gauge A� � 0: In such a case, when the dipole passes
through the target and interacts with its gauge fields, the
dominant couplings are eikonal. The partonic components
of the dipole have frozen transverse coordinates, and the
gluon fields of the target do not vary during the interaction.
This is justified since the incident dipole propagates at
nearly the speed of light and its time of propagation
through the target is shorter than the natural time scale
on which the target fields vary. The effect of the interaction
with the target is that the components of the dipole wave-
function pick up eikonal phases.

In Fig. 1 we present the production of a gluon of trans-
verse momentum k and rapidity y off a quark-antiquark
dipole with transverse coordinates x0 and x1. The trans-
verse size of the dipole jx0 � x1j is supposed to be small in
order to justify the use of perturbative QCD (jx0 � x1j �
1=�QCD). We work in a frame in which the dipole rapidity
is not too large so that the radiation of extra softer gluons is
described by quantum evolution of the target.

The incident hadronic state is a colorless q �q dipole state
which has the following decomposition on the Fock states:

jdi � jdi0 � jdgi0 (1)

where the bare dipole jdi0 is characterized by the wave-
function

jdi0 �
X
� ��

��; ��������
Nc

p j
�; x0�; 
 ��; x1�i (2)

with � and �� denoting colors of the quark and antiquark,
and x0 and x1 being their transverse positions. The q �qg part
k, y

x0

x1

FIG. 1. Diffractive gluon production off a q �q dipole. x0 and x1 are
y are the transverse momentum and rapidity of the measured gluon. B
vertical wavy lines correspond to a color-singlet interaction with a t
comes with a minus sign.
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of the dressed dipole jdgi0 is characterized by the wave-
function

jdgi0 �
1������
Nc

p
X
� ���a

Z
d2zdy

igs
�

�

�
��:
x0 � z�

jx0 � zj2
�
��:
x1 � z�

jx1 � zj2

�

� Ta���j
�; x0�; 
 ��; x1�; 
a; �; z; y�i; (3)

where 
a; �; z; y� characterize gluon color, polarization,
transverse coordinate and rapidity, respectively. In addi-
tion, �� is the transverse component of the gluon polariza-
tion vector, and Ta is a generator of SU
Nc� in the
fundamental representation. The term in brackets in (3) is
the well-known wavefunction for the emission of a gluon
off a q �q dipole [4]. The two contributions correspond to
emission from the quark and antiquark. The only assump-
tion made to write down (3) is that the gluon is soft, that is
its longitudinal momentum fraction with respect to the
incident dipole is small. As already mentioned, we work
in the frame in which only bare or one-gluon components
need to be considered in the wavefunction jdi. Softer
gluons will be included through quantum evolution of the
target.

Let us denote by jti the initial state of the target. The
outgoing state is obtained from the incoming state jdi 
 jti
by the action of the S � matrix. In the eikonal approxima-
tion, S acts on quarks and gluons as (see for example
[2,9,14]):

S
j
�; x�i 
 jti� �
X
�0

�WF
x����0 j
�0; x�i 
 jti;

S
j
a; �; z; y�i 
 jti� �
X
b

�WA
z��abj
b; �; z; y�i 
 jti
(4)

where phase shifts due to the interaction are described by
the eikonal Wilson lines WF and WA in the fundamental
and adjoint representations, respectively, corresponding to
k, y

x1

x0

the transverse coordinates of the quark and antiquark while k and
lack points represent emission of a gluon from the dipole and the
arget. The amplitude for the gluon emission after the interaction
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the propagating quarks and gluons. They are given by the
following path ordered exponential

WF;A
x� � P expfigs
Z
dz�Aa

�
x; z��TaF;Ag (5)

with Aa
� being the target gauge field, and TF;A are gen-

erators of the color group in the fundamental and adjoint
representation. Thus, the state j�outi � Sjdi 
 jti, emerg-
ing from the eikonal interaction, is given by
114005
j�outi � j�1i � j�2i (6)

with

j�1i �
1������
Nc

p
X
� ��

�Wy
F
x1�WF
x0�� ���j
�; x0�; 
 ��; x1�i 
 jti;

(7)
j�2i �
1������
Nc

p
X
� ���b

Z
d2zdy

igs
�

�
�� � 
x0 � z�

jx0 � zj2
�
�� � 
x1 � z�

jx1 � zj2

�

� �Wy
F
x1�T

aWF
x0�� ����WA
z��
abj
�; x0�; 
 ��; x1�; 
b; �; z; y�i 
 jti: (8)

This outgoing state would be the one to consider to compute inclusive cross-sections, as no restrictions on the final state
have been imposed. To compute diffractive cross-sections, one has to project the outgoing state j�outi on the subspace of
color-singlet states. We have defined diffractive processes as ones in which the target does not break up, therefore one also
has to project the outgoing state on the subspace spanned by the target state jti. Those projections are described in detail in
[13]. They create the rapidity gap, preventing the emissions of gluons softer than the one described by (8). Let us denote the
resulting state j�diffi; it is given by:

j�diffi � j�d
1i � j�d

2i (9)

with

j�d
1i �

1

Nc
htjTr
Wy

F
x1�WF
x0��jtijdi0 
 jti; (10)

j�d
2i �

1

CFNc

1������
Nc

p
X
� ���a

Z
d2zdy

igs
�

�
�� � 
x0 � z�

jx0 � zj2
�
�� � 
x1 � z�

jx1 � zj2

�
htjTr
Wy

F
x1�T
bWF
x0�Tc�

� �WA
z��
bcjtiTa���j
�; x0�; 
 ��; x1�; 
a; �; z; y�i 
 jti: (11)

The state j�d
2i represents the first contribution pictured in Fig. 1 when the interaction happens after the emission of the

gluon. The second contribution when the interaction happens before the gluon emission is part of j�d
1i. In order to see that,

one has to substitute jdi0 � jdi � jdgi0 in j�d
1i: the term that comes with jdi is the contribution of elastic scattering while

the term that comes with jdgi0 and a minus sign represents the second contribution of Fig. 1. One can drop the elastic part
since it does not contribute to gluon production and write:

j�diffi �
1

CFNc
������
Nc

p
X
� ���a

Z
d2zdy

igs
�

�
�� � 
x0 � z�

jx0 � zj2
�
�� � 
x1 � z�

jx1 � zj2

�
�
z�Ta���j
�; x0�; 
 ��; x1�; 
a; �; z; y�i 
 jti (12)

with

�
z� � htjTr
Wy
F
x1�T

aWF
x0�T
b�Wab

A 
z�jti � CFhtjTr
W
y
F
x1�WF
x0��jti: (13)

From this final state, one calculates the diffractive cross-section for the production of a gluon of transverse momentum k
and rapidity y using the following formula:

d(diff

d2kdy

x01� �

1

2
2��3
Z
d2b

X
���

XN2
c�1

c�1

h�diffja
y
c;�
k; y�ac;�
k; y�j�diffi (14)

where ayc;�
k; y� and ac;�
k; y� are, respectively, the creation and annihilation operators of a gluon with color c, polarization
�, rapidity y and transverse momentum k. The quantity x01 � x0 � x1 is the transverse size of the incoming dipole, and
b � 
x0 � x1�=2 is the impact parameter. The cross-section is computed in details in [13], the final result is:
-3
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d(diff

d2kdy

x01� �

�s
�2CFN2

c

Z
d2b

Z d2z1
2�

d2z2
2�

eik�
z2�z1�
�
x0 � z1
jx0 � z1j2

�
x1 � z1
jx1 � z1j2

�
:
�
x0 � z2
jx0 � z2j2

�
x1 � z2
jx1 � z2j2

�
�
z1��

�
z2�

(15)

with � given by formula (13). Making use of the following identity

2Tr
Wy
F
x1�T

aWF
x0�T
b��WA
z��

ab � Tr
Wy
F
x1�WF
z��Tr
W

y
F
z�WF
x0�� �

1

Nc
Tr
Wy

F
x1�WF
x0��; (16)
one is able to rewrite Eq. (13) in terms of the following S �
matrices:

S
x0; x1� �
1

Nc
htjTr
Wy

F
x1�WF
x0��jti (17)

for the scattering of a dipole with the quark and antiquark
at transverse coordinates x0 and x1 respectively, and

S
2�
x0; z; x1� �
1

N2
c

�htjTr
Wy
F
x1�WF
z��Tr
W

y
F
z�WF
x0��jti

(18)

for the scattering of two dipoles, one with the quark and
antiquark at transverse coordinates x0 and z and the other
with the quark and antiquark at transverse coordinates z
and x1 . One obtains:

2

N2
c
�
z� � S
2�
x0; z; x1� � S
x0; x1�: (19)

We have not specified the rapidity dependence of the S �
matrices, it is the rapidity at which the target is evolved. If
Y is the total rapidity, then the S � matrices in � depend
on Y � y:

Note that if one considers that the target is a nucleus, and
that each scattering on the nucleons happens via a two-
gluon exchange, then the target averages in (13) are com-
putable (see e.g. [9]) and one recovers the result of [15].
Formulas (15) and (13) are a generalization to any target
that includes all numbers of gluon exchanges. Note also
that if one writes Eq. (19) in terms of T � matrices (S �
1� T), one recovers the two-gluon exchange approxima-
tion calculated in [16,17] by neglecting the term propor-
tional to T2. Let us now apply formulas (15) and (13) to
diffractive photon dissociation.
III. DIFFRACTIVE PHOTON DISSOCIATION

In deep inelastic scattering, a photon of virtuality Q2

collides with a proton. In an appropriate frame, called the
dipole frame, the virtual photon undergoes the hadronic
interaction via a fluctuation into a dipole. The wavefunc-
tions  	T and  	L, describing the splitting of the photon on
the dipole, are given by
114005
j 	T 
r; �;Q�j
2 �

�emNc
2�2

X
f

e2f

�
2 � 
1� ��2�"2fK

2
1
"fjrj�

�m2
fK

2
0
"fjrj��

j 	L
r; �;Q�j
2 �

�emNc
2�2

X
f

e2f4Q
2�2
1� ��2K2

0
"fjrj�

(20)

for a transversely and longitudinally polarized photon,

respectively. In the above "f �
��������������������������������������
�
1� ��Q2 �m2

f

q
with

mf the mass of the quark f; r is the transverse size of the q �q
pair and � (resp. 1� �) is the longitudinal momentum
fraction of the antiquark (resp. quark). The dipole then
interacts with the target proton and one has the following
factorization

(	
�p �

Z
d2r

Z 1

0
d�
j 	T 
r; �;Q�j

2

� j 	L
r; �;Q�j
2�(
r; �� (21)

which relates a cross-section for an incident photon(	
�p to

the corresponding cross-section with an incident dipole
(
r; ��: In the leading logarithmic approximation we are
interested in, the dipole cross-sections do not depend on �
and one defines then:

0
r;Q� �
Z
d�
j 	T 
r; �;Q�j

2 � j 	L
r; �;Q�j
2�: (22)

We are going to use the factorization formula (21) to
compute the diffractive photon dissociation cross-section.

In diffractive deep inelastic scattering, the proton gets
out of the collision intact and there is a rapidity gap
between that proton and the final state X; see Fig. 2. If
the final-state diffractive mass MX is much bigger than Q;
then the dominant contributions to the final state come
from the q �qg component of the photon wavefunction or
from higher Fock states, i.e. from the photon dissociation.
By contrast, if MX � Q; the dominant contribution comes
from the q �q component. In this paper we investigate the
q �qg component, in the kinematical region where

1 �
Q2

Q2 �M2
X

� 1: (23)

One can easily express the diffractive mass of the q �qg final
state in terms of the kinematical variables of the partons:
-4
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FIG. 2. Diffractive photon dissociation in virtual-photon-
proton collisions. This is the dominant contribution to the
diffractive cross-section when the final-state diffractive mass
MX is much bigger than the photon virtuality Q:
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M2
X �

k2q
zq

�
k2�q
z �q

�
k2g
zg

(24)

where zq, z �q; and zg are the longitudinal momentum frac-
tions of the quark, antiquark and gluon, respectively, (zq �
z �q � zg � 1), and kq, k �q; and kg are their transverse mo-
menta (kq � k �q � kg � 0). Several kinematical configura-
tions can provide 1� 1; however the configuration that
gives the dominant contribution to the cross-section is:

k2g
zg

�
k2q
zq
;

k2�q
z �q
; Q2: (25)

This is due to the infrared singularity of QCD. Indeed, as
we shall see later, this ordering corresponds to the resum-
mation of Feynman diagrams in the leading logarithmic
log
1=1� approximation. It also corresponds to a final-state
configuration where the gluon jet is the closest to the gap.

In the previous section, we obtained the diffractive
cross-section for the production of a gluon with transverse
momentum k and rapidity y in the collision of a dipole of
tranverse size x01 with the target proton in the approxima-
tion (25). The result reads

d(diff

d2kdy

x01� �

�sN2
c

4�2CF

Z
d2bA
k; x0; x1; �2�

� A�
k; x0; x1; �2� (26)

where x0 � b� x01=2, x1 � b� x01=2, Y is the total ra-
pidity and �2 � Y � y is the rapidity gap. The two-
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dimensional vector A is given by

A
k; x0; x1; �2� �
Z d2z

2�
e�ik�z

�
z� x0
jz� x0j

2 �
z� x1
jz� x1j

2

�

�
S
2�
x0; z; x1; �2� � S
x0; x1; �2��

(27)

where S
x0; x1; �2� is the elastic S � matrix for the colli-
sion of the dipole 
x0; x1� on the target proton evolved at
the rapidity �2, and S
2�
x0; z; x1; �2� is the elastic S �
matrix for the collision of two dipoles 
x0; z� and 
z; x1�.
These formulae are valid at leading logarithmic accuracy in
y � log
1=1� as pointed out before. Indeed, after squaring
the term in brackets in (27), one obtains the BFKL kernel.
The first (resp. second) term in the brackets corresponds to
the emission of the gluon at transverse position z from the
quark (resp. antiquark) at transverse position x0 (resp. x1).
The S
2� (resp. S) term represents the case where the
interaction with the target takes place after (resp. before)
the emission of the gluon. We shall refer to it as the real
(resp. virtual) term.

Let us introduce the usual kinematics of diffractive DIS:
Y � log
1=x� and �2 � log
1=xP� with

x �
Q2

Q2 �W2 ; xP �
Q2 �M2

X

Q2 �W2 ; (28)

where W2 is the center-of-mass energy of the photon-
proton collision. Using the factorization (21), one obtains
the q �qg component of the diffractive cross-section in the
virtual-photon-proton collision:

d(	diff
d2kdMX

�
2MX

M2
X �Q2

Z
d2x010
jx01j; Q�

d(diff

d2kdy

x01�:

(29)

with the photon wavefunction given by formula (22) and
the dipole cross-section given by formulae (26) and (27). It
is differential with respect to the diffractive mass MX and
to the final-state gluon transverse momentum k; which can
be identified with the transverse momentum of the jet
which is the closest to the rapidity gap. Note that the
transverse momentum k provides the hard scale, so that
we can apply our formulae to even low values of Q2:

Let us make some general comments on the k�
dependence of the cross-section (29).
(a) W
-5
hen k! 0. The amplitude A given by Eq. (27)
takes a constant value. The infrared divergences a
priori appearing for the virtual term cancel between
the x0 and x1 part and the dominant contribution to A
is determined by the large z behavior of
S
2�
x0; z; x1; �2�. In particular, the value of z at
which S
2�
x0; z; x1; �2� starts decreasing to zero
plays the role of a natural cutoff and determines
the value of A. The constant value of the cross-
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section (29) at k � 0 is then very sensitive to the
way that unitarity sets in.
(b) W
hen k! 1. The amplitude A decreases as 1=k2.
By changes of variables, one can write

A
k; x0; x1; �2� �
e�ik:x0

jkj

Z d2z
2�

e�ik:z=jkj
z

jzj2

� 
S
2�
x0; z=jkj � x0; x1; �2�

� S
x0; x1; �2�� � 
x0 $ x1�:

(30)

Then taking k! 1, and using

S
2�
x0; x0; x1; �2� � S
2�
x0; x1; x1; �2�

� S
x0; x1; �2�; (31)

one sees that the 1=jkj term vanishes leaving the
dominant contribution behaving as 1=k2:

A
k; x0; x1; �2� �
1

k2

e�ik:x0rzS


2�jx0

� e�ik�x1rzS

2�jx1�: (32)

Squaring and integrating the impact parameter one
obtains

d(diff

d2kdy

x01� /

F
jx01j� �G
jx01j� cos
k � x01�

k4

(33)

with F and G depending on the precise form of S
2�:
When integrating over the angle of x01 in (29), theG
part becomes suppressed due to the J0
kjx01j� func-
tion, and the cross-section then falls as 1=k4.
These features are general, independent of the form of
the S � matrices. If one looks at the behavior of the ob-
servable

k2
d(	diff
d2kdMX

(34)
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as a function of the gluon transverse momentum k, it is
going to rise as k2 for small values of k and fall as 1=k2 for
large values of k. A maximum will occur for a value k0
which is related to the inverse of the typical size for which
the S � matrices approach zero; in other words, the maxi-
mum k0 will reflect the scale at which unitarity sets in. We
want to explore this phenomenon in the framework of the
theory of parton saturation where unitarity is realized
perturbatively.
IV. SATURATION MODEL FOR THE
S � MATRICES

The exact form of the S � matrices is unknown, and we
have to consider models in order to produce values of the
observable (34) at any value of k. For this purpose we
consider the following model, inspired by the GBW pa-
rametrization [7] of parton saturation effects:

S
x0; x1; �2� � �
Rp � jbj�e�Q
2
s 
xP�x201=4 ��
jbj � Rp�;

(35)
S
2�
x0; z; x1; �2� � �
Rp � jbj�e�Q
2
s 
xP�
x0�z�2=4

� e�Q
2
s 
xP�
z�x1�2=4 ��
jbj � Rp�;

(36)

where Rp is the radius of the proton. Qs is the saturation
scale, the basic quantity characterizing saturation effects
[18–21]. It is a rising function of energy through its xP �
dependence. The b� dependence of the S� matrices is
justified if the dipole sizes jx01j; jx0 � zj and jz� x1j
contribute only when they are much smaller than Rp:
That is we assume that xP is always such that Qs
xP� �

�QCD. Note that the model (36) for S
2� neglects correla-
tions between the two dipoles, as it is a product of two S’s.

Interestingly enough, since the S-matrices (35) and (36)
are Gaussians, one can analytically compute the amplitude
A given by Eq. (27). The details of the derivation and the
final result (A9) are presented in the Appendix. With these
results, we obtain for the product A � A�:
A
k; x0; x1; �2� � A
�
k; x0; x1; �2� � �
jbj � Rp�

�
x201
4k2

e�x
2
01Q

2
s=2

j2
cos
k � x01=2� � e�k
2=
2Q2

s ��Q2
sx201=8�k� sin
k � x01=2�Q

2
sx01j

2


k2=Q2
s �Q2

sx
2
01=4�

2 � 
k � x01�
2 ;

(37)

where we suppress the dependence of Qs on xP in the notation. Because of the theta function, the b� integration in
Eq. (27) gives a factor �R2

p � (0=2. The result of the integration is then a function ofQs and the two-dimensional vectors
k and x01. Inserting (37) into (29), one finally writes
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k2MX

d(	diff
d2kdMX

�
�sN

2
c(0

4�2CF

M2
x

M2
x �Q2

Z rdrd6


k=
rQ2
s� � rQ2

s=
4k��2 � cos26
0
r;Q�e�r

2Q2
s=2

�

��
cos

�
1

2
kr cos6

�
� e�k

2=
2Q2
s ��Q

2
sr

2=8
�
2
�
Q4
sr

2

4k2
sin2

�
1

2
kr cos6

�
�
rQ2

s

k
cos6 sin

�
1

2
kr cos6

�

�

�
cos

�
1

2
kr cos6

�
� e�k

2=
2Q2
s ��Q2

sr2=8
��

(38)
where now k � jkj, and 0
r;Q� is given by Eq. (22). The
�-integration to calculate 0
r;Q� and the integrations over
r and 6 can easily be done numerically.

V. NUMERICAL ANALYSIS AND ITS
IMPLICATIONS

Let us analyze the k� dependence of the diffractive
cross-section (38). For this purpose, we define the scaled
diffractive cross section

(scaled
k;Q2; Qs� �
1

�s(0

�
M2
X �Q2

M2
X

�
MX

d(	diff
d2kdMX

; (39)

which allows us to leave aside the problem of uncertainties
due to �s and (0: The inclusion of �s and (0; which have
constant values in the kinematical domain we consider
here, in the actual observable (34) of course will not
change the following discussion. In addition to the gluon
Q2=1 GeV2

k (GeV)

σ
delacs

Ve
G( 

2-
)
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10
-5

10
-4

10
-1

1 10

FIG. 3 (color online). The scaled cross section (scaled and k2(scaled

Q2 � 1 GeV2 and four indicated values of the saturation scale Qs.
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transverse momentum k, (scaled is a function of two vari-
ables: the photon virtuality Q2 and the saturation scale Qs.
We have to keep in mind that the diffractive cross section
(38) was derived under the assumption that M2

X � Q2,
thus the factor in the brackets on the r.h.s. of Eq. (39) is
close to 1.

In Fig. 3 we plot (scaled and k2(scaled as a function of k,
for fixed Q2 � 1 GeV2 and four values of the saturation
scale, Qs � 0:5; 1; 2; 3 GeV. As discussed in Sec. III, in-
dependently of the form of the S� matrix, (scaled goes to a
constant at small momenta while at large momenta
(scaled � 1=k4. We check that this is the case on the first
plot. In the model with parton saturation (35) the value of
(scaled as k! 0 is strongly related to the saturation scale
Qs. This relation is better illustrated on the second plot
which represents the dimensionless quantity k2(scaled. We
see that the transition region between two distinct behav-
iours at small and large k2, which features a marked bump,
is linked to the value of Qs. It is interesting to explore this
Q2=1 GeV2

k (GeV)
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 •
σ

delacs
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-3

0 1 2 3 4 5 6 7 8 9 10

as a function of gluon transverse momentum k for a fixed value of
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FIG. 4 (color online). The dimensionless cross section
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equal to 0:1 and 100 GeV2. The four curves for each value of Q2

correspond to four values of the saturation scale: Qs �
0:5; 1; 2; 3 GeV.
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observation hoping for the possibility to extract the satu-
ration scale from the measured dependence of the diffrac-
tive cross section (34) on the gluon transverse momentum.
Of course, in the experimental situation the gluon is seen as
a jet. In the kinematic region of high diffractive mass (1�
1) the gluon jet is the closest to the edge of the rapidity gap.
The contributions from quark-initiated jets close to the
rapidity gap in such a kinematic domain are suppressed
by log
1=1�:

In order to quantify the dependence of the position of the
maximum of k2(scaled onQs, we plot this cross section as a
function of the rescaled transverse momentum k=Qs for the
four values of the saturation scale indicated in Fig. 3. In
Fig. 4 we show the result of this study for two extreme
values of the photon virtuality, Q2 � 0:1 and 100 GeV2.
As clearly seen, the maximum for each curve is indepen-
dent of Qs and Q2 in a broad range of considered values.
From this figure we find that kmax=Qs � 1:4� 1:5, thus
within the saturation model, the maximum of k2(scaled
k� is
proportional to the saturation scale Qs with a coefficient of
proportionality independent of Q2. In this way, if the
saturation model is accurate, the diffractive gluon produc-
tion in the domain of large diffractive mass offers a unique
opportunity to determine the saturation scale Qs and its
dependence on xP.

As already discussed, in the experimental verification of
the validity of our description in the ep collisions at
HERA, one should consider large-mass diffractive pro-
114005
cesses (MX � Q) with a final-state configuration with a
jet close to the rapidity gap: X� jet� gap� p. Then, the
diffractive cross section (34) should be determined as a
function of the jet tranverse momentum for different values
of xP. Positions of the maximum of the measured cross
section should be independent of Q2, leading to the xP �
dependence of the saturation scale. The absolute value of
the saturation scale depends of the coefficient of propor-
tionality between kmax and Qs, which in our model equals
1:4� 1:5. Note that since kmax is independent of Q2; a
wide range of photon virtuality could be used to carry out
this measurament, as long as one keeps 1� 1:

However, from the experimental point of view there
exists an important limitation related to the minimal value
of the transverse momentum which could be measured for
a jet. In the most pesymistic scenario, considering even
rather high values of the saturation scale,Qs
xP� � 1 GeV,
it is unlikely that the maximum kmax of the cross section
(34) can be seen at HERA. Thus, to see the transition
between the two different behaviours of the cross section
(34) seems like a major experimental challenge.

In Fig. 5 we illustrated such a situation, when the
saturation scale was taken from the model [7] in which
Qs
xP� � 
x0=xP�
�=2 GeV (40)
with the following parameters: � � 0:288
0:277� and x0 �
3:04� 10�4
0:4� 10�4�, where the numbers in parenthe-
sis refer to the case where, in addition to the light quarks,
the charm quark is included in (21). The cross-section (39),
shown in Fig. 5, is computed for the above saturation scale
and the parameters: �s � 0:15 and (0 � 23:03
29:12�mb
taken from [7]. With these values and the saturation scale
(40), the diffractive cross-section (34) integrated over
transverse momentum k, d(diff=dMX, is well described
[11]. The values of photon virtuality Q2, energy W and
diffractive mass MX indicated in Fig. 5 were taken form a
recent analysis by the ZEUS Collaboration [22]. One sees
that, unfortunately, the data should always lie on the per-
turbative side of the bump. However, it is not necessary to
see the whole bump to confirm the influence of the satura-
tion scale on the results. In particular, there is a big
difference in the rise towards the bump between the highest
xP � bin (MX � 40 GeV andW � 100 GeV) and the low-
est xP � bin (MX � 5 GeV and W � 245 GeV). A con-
firmation of such a behavior would be a sign that the
saturation region is indeed close and could lead to the
determination of the saturation scale. If however this be-
havior is not observed, it could reflect that our saturation
model is incomplete, e.g. for example (36) neglects dipole
correlations. It could also mean that in this process, uni-
tarity does not come from saturation, but rather from soft
physics [23].
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VI. CONCLUSIONS

Let us summarize the main results of this paper. We
analyzed the contribution of the q �qg component of the
virtual-photon wavefunction to the diffractive cross sec-
tions measured at HERA. In particular, we studied in detail
diffractive jet production in the large diffractive mass limit
(1� 1) with a jet close to the rapidity gap. In such a case,
the jet is initiated by the gluon. We expressed the diffrac-
tive photon dissociation cross-section (34) in terms of
dipole scattering matrices, formulae (26)–(29). We found
114005
that this cross section is strongly sensitive to unitarity
constraints. In particular, independently of the form of
the scattering matrices, the cross section (34) is a rising
(falling) function of the final-state gluon transverse mo-
mentum in the limit k! 0 (k! 1), with the maximum
related to the scale at which unitarity effects become
important.

In the context of saturation theory in which unitarity is
realized perturbatively, the maximum is determined by the
saturation scale Qs. Using the saturation parametrization
(35) and (36) of the scattering matrices, we verify that the
-9
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relation between the maximum of (34) and the saturation
scale is universal, i.e. independent of Q2. Therefore, we
propose the measurement of the diffractive jet production
cross section in 	�p collisions at HERA featuring the final-
state configuration: X� jet� gap� p with a jet close to
the rapidity gap. We argue that such a process offers an
opportunity to extract the saturation scale from the experi-
ment, provided a low enough jet transverse momentum can
be measured.
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APPENDIX: DERIVATION OF THE AMPLITUDE A

In this Appendix, we compute the amplitude (27),

A
k; x0; x1; xP� �
Z d2z

2�
e�ik:z

�
z� x0
jz� x0j

2 �
z� x1
jz� x1j

2

�

�
S
2�
x0; z; x1; xP� � S
x0; x1; xP��;

(A1)

with the S � matrices given by the saturation model (35).
The virtual contribution is proportional to

Z d2z
2�

e�ik:z
�
z� x0
jz� x0j

2 �
z� x1
jz� x1j

2

�

� 
e�ik�x0 � e�ik�x1�
Z d2z

2�
e�ik�z

z

jzj2

� �
2k

jkj2
e�ik�b sin

�
1

2
k � x01

�
: (A2)

One can then write
A
k; x0; x1; xP� � �
Rp � jbj�
e�ik�x0I
k; x01� � e�ik�x1I
k;�x01� �
2k

jkj2
e�ik�b sin

�
1

2
k � x01

�
e�Q

2
sx201=4� (A3)

where we have introduced

I
k; r� �
Z d2z

2�
e�ik�z

z

jzj2
e�Q

2
sz

2=4e�Q
2
s 
z�r�

2=4: (A4)

Introducing 6, the angle between z and k, and 0, the angle between r and k; one has:

I
k; r� � e�Q
2
sr2=4

Z djzj
jzj

e�Q
2
sz2=2irk

Z d6
2�

e�ijkjjzj cos6�
1
2Q

2
s jzjjrj cos
6�0�: (A5)

The angular integration gives:

Z 2�

0

d6
2�

e�ijkjjzj cos6�
1
2Q

2
s jzjjrj cos
6�0� � I0
jzj

�������������������������������������������������
r2Q4

s=4� ik � rQ2
s � k2

q
� (A6)

and differentiating with irk, one obtains

I
k; r� � �
ik� rQ2

s=2�������������������������������������������������
r2Q4

s=4� ik � rQ2
s � k2

p e�Q
2
sr2=4

Z 1

0
dze�Q

2
sz2=2I1
z

�������������������������������������������������
r2Q4

s=4� ik � rQ2
s � k2

q
�: (A7)

Then performing the final integration, one gets

I
k; r� �
ik� rQ2

s=2

k2 � r2Q4
s=4� ik � rQ2

s
e�Q

2
sr2=4
e�k

2=
2Q2
s ��r2Q2

s=8�ik�r=2 � 1�: (A8)

Inserting (A8) into (A3) finally gives:

A
k; x0; x1; xP� � �
Rp � jbj�e�ik�b�Q
2
sx201=4

�
ik� x01Q

2
s=2

k2 � x201Q
4
s=4� ik � x01Q

2
s

e�k

2=
2Q2
s ��x201Q

2
s=8 � e�ik�x01=2�

�
ik� x01Q

2
s=2

k2 � x201Q
4
s=4� ik � x01Q

2
s

e�k

2=
2Q2
s ��x201Q

2
s=8 � eik�x01=2� �

2k

jkj2
sin

�
1

2
k � x01

��
: (A9)
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