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Models of neutrino mass with a low cutoff scale
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In theories with a low quantum gravity scale, global symmetries are expected to be violated, inducing
excessive proton decay or large Majorana neutrino masses. The simplest cure is to impose discrete gauge
symmetries, which in turn make neutrinos massless. We construct models that employ these gauge
symmetries while naturally generating small neutrino masses. Majorana (Dirac) neutrino masses are
generated through the breaking of a discrete (continuous) gauge symmetry at low energies, e.g., 2 keV�
1 GeV. The Majorana case predicts �N� ’ 1 at BBN, neutrinoless double beta decay with scalar
emission, and modifications to the CMB anisotropies from domain walls in the Universe as well as
providing a possible Dark Energy candidate. For the Dirac case, despite the presence of a new light gauge
boson, all laboratory, astrophysical, and cosmological constraints can be avoided.
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I. INTRODUCTION

The hierarchy between the electroweak scale and the
Planck scale is one of the most puzzling aspects of the
Standard Model (SM). On the one hand, allowing the cut-
off scale of the SM to be the Planck scale allows us to
naturally understand both the stability of the proton and the
smallness of the neutrino masses through the seesaw
mechanism. On the other hand, an enormous fine-tuning
is required to prevent the Higgs mass from being destabi-
lized by radiative corrections proportional to the cutoff
scale. Our options appear to be to either live with fine-
tuning (for example [1]) or find a dynamical solution that
may well affect the successes of the Standard Model with a
high cutoff scale.

The most dramatic solution to the hierarchy problem is
to lower the cutoff scale of the SM close to the weak scale.
In scenarios with large or warped extra dimensions [2– 4],
the cutoff scale of the SM is the fundamental scale of
quantum gravity. All global symmetries are expected to
be violated by quantum gravity effects, in particular,
baryon and lepton number are violated leading to ex-
tremely rapid proton decay and way-too-large Majorana
neutrino masses. There are intrinsically extra dimensional
solutions to these problems [5,6], for example, by separat-
ing fermions within a fat brane. The solution to the too-
f absence.
e.g., the interesting proposal of [5], in which
auged in the bulk. The needed geography is to
anded neutrinos from right-handed neutrinos from
king fields in the extra dimensional space. It also
ional scalar fields with suitable profiles to stabilize
of the fermions. Furthermore, the smallest cutoff

parametrically larger than the inverse distance
t-handed and right-handed leptons to ensure the
overlaps are sufficiently small.
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large Majorana neutrino mass problem, however, requires
more structure beyond fermion geography.1

In this paper we consider simple, four-dimensional so-
lutions to the problems of baryon and lepton number
violation. Our proposals are applicable to models of large
extra dimensions, as well as any other model that lowers
the cutoff scale of the SM, violating the global symmetries.
We propose to avoid those problems by imposing new
gauge symmetries in the effective theory that forbid the
dangerous operators. Baryon number and lepton number
violation are eliminated (up to �B � 3 and �L � 3) by
imposing a gauged Z9 baryon number and a gauged Z3
lepton number. Similar gauged discrete symmetries were
employed in [7,8].

Gauging discrete baryon number eliminates the proton
decay problem. Gauging discrete lepton number causes the
neutrinos of the SM to be massless. Since the cutoff scale is
low, we lose the usual seesaw mechanism as an explanation
for the smallness of neutrinos masses. Here we will con-
sider two models to generate neutrino masses of the ex-
perimentally observed size. The first is to break Z3 lepton
number by a small amount, generating small Majorana
neutrino masses. The second is to introduce right-handed
neutrinos and a new U�1� gauge symmetry that is sponta-
neously broken at a scale deep in the infrared, generating
small Dirac-neutrino masses. We subject our models to
severe experimental, astrophysical, and cosmological con-
straints and demarcate the regions of parameter space that
survive. Remarkably, despite the presence of new scalars
and/or a gauge boson with mass well below the electro-
weak scale, we find these models provide viable solutions
to the problems of baryon and lepton number violation
from low cutoff scale operators.

The models we present are similar to those in
Refs. [9,10], in that neutrino mass originates from a sym-
-1  2005 The American Physical Society
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metry breaking at low scales, and hence a phase transition
at late times. There is, however, an important difference.
While they have focused on nearly massless pseudo-
Nambu-Goldstone bosons due to spontaneously broken
global symmetries, we insist on all symmetries to be
gauged and we do not have any nearly massless bosons.
Therefore, in general, the phenomenological constraints
are correspondingly quite different. We note that models
with a low cutoff scale based on discrete symmetries, but
without dynamics in the infrared regime we consider, have
been studied in Ref. [8].

The paper is organized as follows. In the next section,
we introduce flavor-blind discrete gauge symmetries that
ensure the absence of too-rapid proton decay and Majorana
neutrino masses. In section III, we break the discrete gauge
symmetry spontaneously and induce the Majorana neu-
trino masses at the required size. We show that the con-
straints from the Big-Bang Nucleosynthesis (BBN) as well
as the neutrinoless double beta decay with an additional
scalar emission are marginal. The network of domain walls
is an inevitable prediction, which naturally satisfies the
constraint from cosmic microwave anisotropy and can be
a candidate for Dark Energy. We discuss the Dirac case in
section IV. We first show that an additional discrete gauge
symmetry can suppress the Dirac-neutrino mass, but the
predicted domain wall network requires a high cutoff scale.
We then focus on a new continuous gauge symmetry,
which necessarily predicts a new very light gauge boson,
and show that all laboratory, astrophysical, and cosmologi-
cal constraints can be satisfied. Finally we comment on the
hierarchy between the neutrino mass scale and the funda-
mental scale in section V, and conclude in section VI.

II. PROTECTING MATTER

The most pressing problems of lowering the cutoff scale
in the SM are fast proton decay and too-large Majorana
neutrino masses. We propose a set of two discrete symme-
tries; the SM quarks transform under one symmetry, and
leptons transform under the other. Here, we have assumed
that the chiral fermion content is the same as in the
minimal SM. The discrete symmetries are assumed to be
flavor-blind (although we comment on a non-flavor-blind
variation that suppresses �! e
 in Appendix A). To
ensure that the gauged discrete symmetries are not badly
broken at the electroweak scale, the Higgs is taken to be
neutral. Allowing ordinary Yukawa couplings enforces the
conditions ZqA�Q� � �ZqA�u

c� � �ZqA�d
c� and Z‘B�L� �

�Z‘B�e
c�. This leaves us with
Q
 uc
 dc
 L
 ec
ZqA
 a
 �a
 �a
 0
 0

Z‘B
 0
 0
 0
 b
 �b
The ZqA-SU�3�-SU�3� and ZqA-grav-grav anomalies are can-
celed for any a, A. The ZqA-SU�2�-SU�2� anomaly requires
9a � 0 mod A. We choose �A; a� � �9; 1�. Similarly the
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Z‘B-SU�2�-SU�2� and Z‘B-grav-grav anomalies require
3b � 0 mod B, and hence �B; b� � �3; 1�. Mixed
U�1�-discrete anomalies can be satisfied by redefining the
U�1� normalization, and pure discrete anomalies can be
satisfied by adding additional massive matter with suitable
(fractional) discrete charges [7,11]. Note that these discrete
symmetries, up to certain charge redefinitions, have been
proposed before in supersymmetric [7] and nonsupersym-
metric [8] contexts. In particular, our Z‘3 is equivalent to L3
of [7]. Our Zq9 is equivalent to R�3

3 L
�3
3 Y of [7] where R�3

3 ,
L�3
3 is understood to mean R3, L3 promoted to R9, L9 with

all fields’ discrete charge multiplied by �3, and Y refers to
the Z9 subgroup of U�1�Y .

The lowest dimension operators leading to baryon and
lepton number violation are schematically

Q9L3

�14
� others . . . (1)

The most conservative assumption is to require this �B �
3 process leads to a multinucleon lifetime that is longer
than the proton lifetime,

� �
�28

m29nuc
> 1033 yrs (2)

and thus � * 200mnuc. This constraint is easily satisfied
for the cutoff scales we consider in this paper. Similarly
Majorana neutrino mass is completely forbidden so long as
Z‘3 is exact.
III. Z3 BREAKING AND MAJORANA NEUTRINOS

With exact Z‘3 lepton number symmetry, Majorana neu-
trino masses arising from cutoff scale operators are forbid-
den. To generate nonzero neutrino masses, of Majorana
type, the Z3 symmetry must be broken. We show that a low
breaking scale is needed, of order 2–400 keV, to give a
consistent framework. Discrete symmetry breaking leads
to domain walls, that can induce a too-large anisotropy in
the CMB. However, a frustrated network of domain walls
may avoid this constraint and even provide a candidate for
dark energy.

To generate neutrino masses that are purely Majorana,
Z‘3 is broken by a complex scalar field � with Z‘3 charge
that acquires a vacuum expectation value (vev). Without
loss of generality we can choose the Z‘3 charge of � to be
equal to the leptons. This allows us to write the dimension-
6 operator

c
�LHLH

�2
(3)

with a coefficient that we assume takes on a natural value,
c� 1. The other nontrivial choice of discrete charge for �,
namely Z‘3��� � 2, leads to the same dimension-6 operator
upon simply replacing �! �	 in the above. The effective
Yukawa coupling is
-2



2There are logical possibilities to avoid such large deviation.
For example, small cubic and quartic couplings + of � such as
m & 10�3h�i and + & 10�6 may suppress the interaction rate
sufficiently.

MODELS OF NEUTRINO MASS WITH A LOW CUTOFF SCALE PHYSICAL REVIEW D 71, 113004 (2005)
g���; g � c
v2

�2
; (4)

giving a neutrino mass

m� � gh�i � �0:06 eV�c
�
h�i
2keV

��
30 TeV

�

�
2
: (5)

An important constraint on the Yukawa coupling g arises
from 0�  � process where the � is emitted in the 0�  
transition [12]. Assuming a natural potential where m� �

h�i, a physical � is easily emitted in the nuclear transition
0�  � with no kinematic suppression. Experimental con-
straints on this process have determined that the effective
coupling of ��� must be smaller than 3� 10�5 [13]. This
implies �> 30 TeV, taking c � 1, independent of any
other assumptions. The smallest neutrino mass that can
explain the atmospheric neutrino oscillation data is ap-

proximately
��������������
�m2atm

p
’ 0:06 eV, which implies h�i>

2 keV from Eq. (5).
Spontaneous breaking of a discrete symmetry can lead

to a domain wall problem. A network of domain walls
typically ‘‘scales,’’ i.e., the walls stretch and simplify their
configuration and there is basically always only one (or a
few) of the walls within the horizon. The energy density of
the walls is approximately !=L, where!� h�i3 is the wall
tension and L�H�1 is the typical interwall distance. This
implies the energy density of the walls is

�wall �
!H

M2PlH
2 � 10

�12

�
h�i
2 keV

�
3

(6)

which implies the upper bound h�i< 25 MeV such that
the walls do not overclose the Universe. However, there is a
more stringent constraint from the cosmic microwave
background (CMB) photons being affected by the walls
themselves. The simple estimate is that �T=T �GN!L
[14]. The observational bound�T=T & 10�5 requires!�
h�i3 & �400 keV�3, which gives the upper bound � &

400 TeV. Smaller breaking scales may still leave an inter-
esting imprint on the power spectrum or galaxy distribution
functions. Unfortunately we are not aware of a detailed
study of the imprint of a domain wall network due to a late
time phase transition, and we cannot make any further
quantitative statements.

It is possible that the domain wall network is frustrated,
namely, that the network is so complicated that it cannot
simplify its configuration easily and the configuration ex-
pands without simplifying. It may happen if Z3 is em-
bedded into a larger non-Abelian discrete group. In this
case, the domain wall network can behave as dark energy
with w � �2=3. Even though the current data do not
prefer this possibility, analyses without priors actually
allow it [15], and it will surely be interesting to investigate
this possibility in forthcoming supernovae studies such as
SNAP.
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There is a prediction on the effective number of neutri-
nos at the time of BBN. The � particle can be generated in
early universe through processes such as ��! �, ��!
��, and ��! ���. Although the ��! ��� process has
the largest interaction rate for reasonable range of �, we
can give a parameter independent conclusion with the
former two processes. The interaction rate of those pro-
cesses at temperature T is roughly given by

!�
m2�
16)T

: (7)

Here, we have used the natural assumption that m�m� �

h�i, with m being the coefficient of the three-point cou-
pling term m�3. Since the interaction rate ! at T �
TBBN � 1 MeV is larger than the expansion rate H �
T2BBN=MPl for m� * 10�4 eV, the production process is
in thermal equilibrium and thus �N�, the effective number
of neutrinos minus three, is predicted2 to be 8=7. This is
rather large and in apparent disagreement with the bound
Neff� < 3:4 at 95% CL found in Ref. [16]. However, addi-
tional systematic errors in the helium abundance measure-
ments may allow such a large effective number of
neutrinos, albeit the errors on the Particle Data Group
(PDG) central value [17] would have to be significantly
increased, as discussed in [16]. Alternatively, a large
chemical potential for �e allows up to �N� & 4:1 [18].

One may worry about the erasure of the baryon number
at high temperature due to lepton number violating inter-
actions. It is indeed important for relatively large m��h�i�
because the lepton number erasure process becomes effec-
tive before turning off the sphaleron process. When we
assign lepton number �2 for �, the process which violates
lepton number is ��! ��	�	 through m�3 term. This
process enters thermal equilibrium when temperature
drops down to

T	 � 300 GeV
�

m
300 keV

�
2=3
: (8)

By comparing the critical temperature of the electroweak
phase transition Tc � 300 GeV, we find it is safe for m &

300 keV.
Here, we note that the neutrinos interact among them-

selves by exchanging � with a cross section !�� �
g4T2=m4�. At the time of decoupling, corresponding to T �

1 eV, the neutrino mean free path is longer than the hori-
zon scale, and therefore neutrinos free-stream. However,
the presence of extra degrees of freedom below the scale of
BBN generates a shift �lk in the position of the kth
acoustic peak of the CMB. Using the large k results dis-
cussed in Ref. [9], for the model discussed in this section,
-3
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we get �lk � �29:3; the SM prediction for this quantity is
�23:3. Given the sensitivity of the Planck experiment, this
deviation will be measurable in the future.

The Z‘3 symmetry could be generalized to a Z3N , with N
an integer, where the leptons are assigned charge N (leav-
ing Z3N nonanomalous as before) while � is assigned a unit
charge. In this case neutrino masses come from even higher
dimensional operators such as

�
�
�

�
N LHLH

�
: (9)

The symmetry breaking scale in this case is estimated to be

h�i � 101=29��19=N�� GeV
�
�

30 TeV

�
1��1=N�

; (10)

where the neutrino mass was fixed to be 0.1 eV. By using
� * 30 TeV and h�i & 400 keV from the constraint from
the domain wall formation, we find the only viable possi-
bility is N � 1. Hence, our choice of Eq. (3) is unique.
IV. NEW GAUGE THEORIES AND
DIRAC NEUTRINOS

In this section, we discuss how to generate small Dirac-
neutrino masses. Obviously we need to introduce right-
handed neutrinos. The smallness of Dirac-neutrino masses
can be ensured by either an additional discrete or a new
continuous gauge symmetry. The former case, however,
has severe cosmological constraints. The latter case pre-
dicts a new very light gauge boson, yet can satisfy all
laboratory, astrophysical, and cosmological constraints de-
pending on the dimension of the operator responsible for
the neutrino masses.

A. Discrete Gauge Symmetry

The unwanted large Dirac Yukawa interaction HL�R
can be forbidden by introducing a new gauge symmetry.
We discuss new discrete symmetries under which only the
right-handed neutrino and a scalar field HR transform. The
Dirac-neutrino masses are generated after the symmetry
breaking through a higher dimensional operator as in the
Majorana case. We show that the constraints from BBN
and the domain wall formation exclude almost all the range
of the cutoff scale � except for a high cutoff region ��
108 GeV.

Since the right-handed neutrinos �R are gauge singlets, it
is easy to construct a model with satisfying the anomaly-
free condition. For example, a model with Z3 symmetry
and the following charge assignment trivially satisfies the
condition.
�1R
 �2R
 �3R
ZR3
 1
 1
 1

Z‘3
 �1
 �1
 �1
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The new ZR3 symmetry forbids Dirac Yukawa interaction
terms. The neutrino masses are generated after the sponta-
neous ZR3 breaking by the vev of a Higgs field HR through
the operator:

L R � +,i
HR�HL,��iR

�
; (11)

where we assigned the charges of HR to be ZR3 :� 1, and
+,i are O�1� coefficients. As we did in the Majorana case,
we can generalize the symmetry to ZR3n and in this case the
neutrino masses are generated through the interaction
terms:

L R � +,i
�
HR

�

�
n
�HL,��iR: (12)

Since this is the general form of the interaction term for any
choices of the discrete symmetry group, we do not specify
the gauge group hereafter and discuss the constraint for
each n. The symmetry breaking scale is estimated by fixing
the neutrino masses as follows:

hHRi � 10
3��12=n� GeV

�
�

1 TeV

�
: (13)

Now we consider the constraint on the cutoff scale �
from BBN. The agreement of the light element abundances
with the predictions of BBN theory does not allow more
than one extra neutrino species during BBN. In our model,
�R are light degrees of freedom during BBN, and hence
should satisfy the constraint �N� & 1. At the time of the
QCD phase transition, any preexisting amount of �R is
diluted by a factor of order 10 and hence naturally satisfies
the limit if �R’s are not in the thermal bath. Instead, the
more important constraint arises from the repopulation of
R-sector particles �R and HR through the interaction in
Eq. (12) after the QCD phase transition.

The simplest constraint arises from dimension-6 opera-
tors such as

�%l
�l�� %�R
��R�

�2
(14)

that lead to �R production. Requiring that this process is
frozen out at T � 200 MeV, one finds the constraint �>
5 TeV independent of n.
R-sector particles can also be produced through the

n-dependent operator, Eq. (12). We first consider the case
n � 1. After electroweak symmetry breaking, neutrinos
have a Yukawa interaction with HR:

L Y �
+,iv
�

�,L�
i
RHR: (15)

This interaction is important for the generation of �R and
HR through the processes �L %�L ! �R %�R and �L %�L !
HRH	

R via t-channel HR and �R exchange diagrams. The
abundance of these R-sector particles is approximately
given by
-4



3If we allow to introduce another discrete symmetry Z2, Q �
��1;�1; 0� is possible with assigning Z2 odd for �3R. In this case,
one of the three neutrinos remains massless.
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1R �
nR
T3

�min
�
v4

4)�4
MP

T
; 1
�
; (16)

where nR is the number density of the R-sector particles.
Even if there is no preexisting abundance of R-sector
particles, the small amount produced by the above pro-
cesses triggers more efficient production processes such as
�L�R ! HRH

	
RH

	
R and �LHR ! %�RHRH

	
R through the

Yukawa coupling in Eq. (15) and the four-point coupling
of HR. The interaction rate is approximately given by

!� 1R
v2

�4)�3�2
T: (17)

By requiring the interaction rate in Eq. (17) to be smaller
than the expansion rate of the Universe at the time of BBN
(T � 1 MeV), we obtain a lower bound on the cutoff scale
to be � * 4� 108 GeV with assuming O�1� quartic cou-
pling constant of HR. The bound corresponds to the dis-
crete symmetry breaking scale to be hHRi * 400 keV.
Since the bound from the domain wall formation is hHRi &

400 keV, a small coefficient for the four-pointHR coupling
allows to have a viable parameter region around ��
108 GeV.

If we assume that R-sector particles are in thermal
equilibrium with standard model particles above the tem-
perature of the QCD phase transition, the number density
of R-sector particles are only suppressed by 1=10 com-
pared to the photon number density. In this case, a more
severe constraint � * 1010 GeV is obtained.

For n � 2, R-sector particles are most effectively pro-
duced through dimension-6 operators Eq. (14) and

1

�2
%�L
��LH	

R@�HR: (18)

Again, a small amount of the R-sector particles is enough
to quickly thermalize through the processes �LHR !
%�RH	

R and �L�R ! H	
RH

	
R via the dimension-5 operator

v

�2
�L�RH

2
R: (19)

Since the interaction rate of this process is larger at higher
temperature, we require that these processes are already
frozen out by the time the Universe cools to the tempera-
ture of the QCD phase transition T � 200 MeV. We obtain
the bound � * 30 TeV (hHRi * 30 MeV) and thus this
model is excluded by the domain wall constraint.

The models with n � 3 are obviously also excluded by
domain wall formation since the symmetry breaking scale
is larger than 100 MeV for � * 1 TeV.

We conclude that BBN and domain wall formation
severely constrain the model. The only nonexcluded region
we found is around �� 108 GeV, leaving intact a large
hierarchy between the cutoff scale and the electroweak
scale.
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B. A New U�1� Gauge Symmetry

Since we could not find interesting Dirac-neutrino mod-
els with discrete symmetries, we then consider the models
with a continuous gauged symmetry which are free from
the domain wall problem. We assume right-handed neu-
trinos �iR, i � 1; � � � ; nR carry U�1�R charges while quarks
and leptons do not, because the observed matter does not
appear to have any gauge interactions beyond the usual
SU�3�C � SU�2�L �U�1�Y . The right-handed neutrino
charges Q � �q1; � � � ; qnR� are subject to anomaly cancel-
lation conditions, X

i

qi � 0; (20)

X
i

q3i � 0: (21)

Also, since the right-handed neutrinos should carry Z‘3
charge �1 to form Dirac masses, we need at least three
�R’s to cancel the gravitational anomaly.

There are additional requirements on the U�1�R charge
assignments. Ordinary dimension-4 Dirac-neutrino masses
LH�R should be forbidden by gauge symmetry, since the
purpose of the gauge symmetry is to, at least ideally, avoid
requiring unnaturally small Yukawa couplings. This means
at least three neutrinos must have U�1�R charge.3 Given
just one scalar field that breaks the U�1�R symmetry, the
neutrino U�1�R charges should be equal or opposite to that
of the breaking field.

One obvious choice ofU�1�R charges for the neutrinos is
-5
�1R
 �2R
 �3R
 �4R
QR
 �1
 �1
 �1
 �1

Z‘3
 �1
 �1
 �1
 0
Note that Majorana mass terms for vanishing U�1�R charge
combinations of �R’s are forbidden by the unbroken Z‘3
symmetry. Also, for Z‘3 to be anomaly-free, three neutrinos
must have Z‘3 charge �1 while the other is neutral. The
neutral one, �4R, can obtain a Majorana mass after the
U�1�R breaking.

There are other possible U�1�R charge assignments,
including chiral ones. In fact, as we show in Appendix B,
there are no integer solutions to both requirements,
Eqs. (20) and (21), with up to and including five right-
handed neutrinos. With six neutrinos, one can find many
solutions: Q � �1; 1; 1;�4;�4; 5�, �1; 1; 5;�9;�9; 11�,
etc. We expect the phenomenology of the model is more
or less the same for such cases.

The Dirac-neutrino masses are generated by the U�1�R
symmetry breaking in low energy. If we assume U�1�R is
broken by the vev of a Higgs field HR with charge �1=n,
we can write down an operator similar to that in Eq. (12)
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L R � +,i
�
H�	�
R

�

�
n
�HL,��iR; (22)

where complex conjugation for HR is necessary for the
generations with QR � �1. The U�1�R breaking scale is
the same as the discrete case and given in Eq. (13).

In the case of the charge assignment Q �
��1;�1;�1;�1�, one of the right-handed neutrinos with
vanishing Z‘3 charge acquires a Majorana mass through the
operator ��4R�

2H2nR =�
2n�1. In the chiral case with Q �

�1; 1; 1;�4;�4; 5�, one neutrino with charge �5 and one
of the two neutrinos with charge �4 couple to Hn

R to
become a Dirac neutrino with mass of order hHRi

n=�n�1.
The other right-handed neutrino with charge �4 may have
small Majorana masses of the order of hHRi

8n=�8n�1.
After U�1�R symmetry breaking, the gauge field AR�

acquires a mass mA � qRgRhHRi, where qR is the U�1�R
charge of HR. From Eq. (13), we expect hHRi to be at least
of order 1 eV. Therefore mA * 10 eV (assuming O�1�
coupling constants), and hence AR� does not mediate a
long range force.

C. Kinetic Mixing

The neutrino sector and the electroweak sector are not
completely decoupled. Kinetic mixing between U�1�R and
U�1�Y arises at the renormalizable level, resulting in new
interactions between AR� and charged fermions of the SM.
We parametrize the effective size of the mixing by " that
we will treat as a perturbation, i.e., "� 1.

Below the electroweak breaking scale, the gauge kinetic
terms for the unbroken gauge symmetries are

L A � �
1

4
�F��F�� � FR��FR�� � 2"F��FR���; (23)

where F�R�
�� � @�A

�R�
� � @�A

�R�
� . We consider the following

redefinition of the fields4

A� ! A� � "AR�; AR� ! AR�; (24)

resulting in

L A � �
1

4
�F��F

�� � FR��F
R��� �O�"2�: (25)

With the gauge kinetic terms canonical, the charged fer-
mions now couple to AR� via

Qf
% 6A ! Qf

% 6A � "Qf
% 6AR : (26)

Hence, A� is identified as the usual photon, however,
fermions of electric charge Qf have picked up a charge
QR � "Qf under U�1�R.
4We note that U�1�R will be spontaneously broken, resulting in
a massive vector boson. This redefinition is the only one that
keeps the mass term for AR� diagonal, and hence is the canonical
choice.
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What is the size of the kinetic mixing "? Above the
electroweak scale we can write

�
"0 � "2

HyH

�2
� . . .

�
FY��F��R; (27)

where "i correspond to the coefficients of the i�
4-dimensional operators. The effective value evaluated at
the cutoff scale, "��� � "0 � "2v

2=�2 � . . . , renormal-
izes to a low energy value "��� through radiative correc-
tions that appear at (2� n)-loops, see Fig. 1. We estimate
the loop-induced kinetic mixing between B and AR to be

"rad �
gYgR

�16)2�2�n
; (28)

where gY � e= cos8W is the U�1�Y coupling and gR the
U�1�R coupling. (At the electroweak scale this trivially
matches to the kinetic mixing between the photon and
AR, "� �16)2��2�negR.) Hence, it is technically natural
to assume that the kinetic mixing at the cutoff scale is of
the order of "��� � �16)2��2�ngYgR. An appropriate UV
completion could justify this assumption, for example by
embedding U�1�R into an SU�2�R that is broken down to
U�1�R at a low scale �� �, but we will not pursue this
further. Instead, we will simply assume the cutoff scale
value is zero and that the leading order contribution to the
kinetic mixing arises only from the loop contributions. We
now proceed to examine phenomenological constraints on
the parameters of the model.

D. Phenomenological Constraints

We now consider several experimental bounds on the
size of the kinetic mixing ".

1. Precision data

Precision data on g� 2 of the electron agree with the
SM to better than 1 part in 1012. For mA � me, this
suggests that the one-loop contribution with AR in place
of a photon is "2,=), and therefore " & 10�4 which is
satisfied for any n. The case with mA � me is less con-
strained because of further suppression of m2e=m2A.

2. Cosmic strings

The spontaneous breaking of the U�1�R gauge symmetry
leads to formation of cosmic strings. The existence of the
cosmic string causes discontinuities in the temperature of
the CMB. The bound of�T=T & 10�5 puts a constraint on
the breaking scale: hHRi & 10�2:5MP. By comparing this
with Eq. (13), one finds it does not give a useful bound as
long as we are interested in low-cutoff theories.

3. BBN

The number of relativistic degrees of freedom during
BBN is constrained by the effective number of neutrino
species �N� & 1 as we discussed with in the discrete
-6
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Dirac-neutrino case, Sec. IVA. All of the constraints that
we found arising from the Yukawa interaction also apply to
the continuous U�1�R symmetry case.

Here we discuss additional constraints from the new
gauge interaction. Since the QCD phase transition is suffi-
cient to dilute any preexisting abundance of R-sector par-
ticles, we need only consider processes that are in
equilibrium below the temperature of the QCD phase
transition. To delineate the restrictions on the parameter
space, each production process can then be further divided
into three cases depending on the mass of the gauge boson.

One important process is e�e� ! �R %�R through
AR-exchange that occurs at a suppressed level proportional
to the amount of kinetic mixing. We require that this
process is not in equilibrium at whatever temperature
(between BBN to the QCD phase transition) yields the
maximum interaction rate. This gives the following con-
straints that depend on the gauge boson mass,

g2R,"
2T &

T2

MP
�mA < 1 MeV;T � 1 MeV�;

g2R,"
2T5

m4A
&
T2

MP
�1 MeV<mA < 200 MeV;T � mA�;

g2R,"
2T5

m4A
&
T2

MP
�mA > 200 MeV;T � 200 MeV�:

(29)

The resulting constraints are shown in Figs. 2–4.
The second process is the production of AR through for

example e�e� ! 
AR. Again, requiring that this process
is not in equilibrium at the temperature that yields the
maximum interaction rate yields the following constraints
that depend on the gauge boson mass,

4),2"2T & T2=MP �mA < 1 MeV;T � 1 MeV�;

4),2"2T & T2=MP �1<mA < 200 MeV;T � mA�;

�no constraint� �mA > 200 MeV�: (30)

The resulting constraints are again shown in Figs. 2–4.

4. Red Giant and Supernova Cooling

Astrophysical bounds from excessive energy loss
through the emission of light, extremely weakly interacting
...

L

HR

H
AR

L

νR

νR

B

FIG. 1. (2� n)-loop diagram that radiatively induces kinetic
mixing between U�1�Y and U�1�R.
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particles from stars and supernovae are potentially much
more severe if kinematically allowed. This is well known
to put significant constraints on axions, and here we will
use these bounds to constrain the emission rate of AR.

Consider the emission of a light axion a, coupled to a
fermion  with strength g 

L a � �ig % 
5 a: (31)

Here, g � m =fa, where m is the fermion mass and fa
is the effective Peccei-Quinn scale. Using astrophysical
data on red giants, one finds, for  � e, ge & 2:5�
10�13, corresponding to roughly fa * 109 GeV [19,20].

Axion emission proceeds through the pseudoscalar in-
teraction, Eq. (31), that vanishes in the nonrelativistic limit.
Emission of AR, however, proceeds through the usual
vector interaction without any nonrelativistic suppression.
This means that the amplitude for the emission of AR� off an
electron is expected to be enhanced by an amount
�me=Tgiant � 50 with respect to axion emission, where
Tgiant � 10 keV is the core temperature of the red giant.
Using "� 50ge, we obtain the stringent upper limit " &

10�14 when mA & Tgiant. It is straightforward to translate
the constraints on the parameters " and mA into constraints
on gR and �. We obtain the following exclusion regions:

n � 1 : gR * 10�7 or gR� & 107 GeV
n � 2 : gR * 10�5 or gR� & 10 GeV

(32)

for the two cases. The excluded region for the cases n � 1,
2 are shown as the lower triangular regions in Figs. 2 and 3.
Given the range of scales shown in Fig. 4, there is no
constraint for n � 3.

Are AR’s ever strongly enough coupled to matter to be
trapped in red giants? Assuming the scattering of AR is
dominated by Compton scattering, the cross section can be
estimated as !� "2,2m�2

e � "210�25 cm2. Using ne �
1030 cm�3 as the average number density of electrons in
the core, we obtain d� �ne!��1 � "�210�5 cm. This can
be written as

d�
105�4n cm

g2R
: (33)

This distance is larger than the core radius of a red giant,
Rcore � 109 cm, regardless of the dimension of the opera-
tor or other parameters so long as gR & 1.

We note that assuming gR * 1 is not a viable solution
either. In this case, we have mA � gRhHRi * 100 MeV,
given our previous bounds. However, in the examples that
we have considered, there is always a �R with small
(� 1 eV) Majorana mass in the spectrum. The decay
rate of AR is then bounded from below by g2RmA *

100 MeV� 1022 s�1. Thus, AR quickly decays into
�R %�R which, in turn, escape the star. Hence, AR particles
cannot be trapped in a red giant in any regime of
parameters.
-7
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FIG. 2 (color online). The astrophysical constraints for the
case n � 1 are shown in the ��; gR� plane. The shaded region
on the left-hand side is excluded. The constraints come from
e�e� ! �R %�R [Eqs. (29)]; e�e� ! 
AR [Eqs. (30)]; the D � 6
operator Eq. (14); the Yukawa mediated processes �L�R !
HRH

	
RH

	
R or �LHR ! %�RHRH

	
R; overcooling red giants

[Eq. (32)]; and overcooling SN1987A [Eq. (34)]. The diagonal
dashed lines show contours of constant mA. In the case of a
discrete symmetry, all constraints except for Yukawa and D � 6
disappear. If we assume the R-sector particles are in thermal
equilibrium with the standard model particles before the QCD
phase transition, the Yukawa constraint moves to the dotted line.
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The observation of neutrinos from SN1987A can also be
used to place bounds on the emission of axions and AR.
Axions are emitted via bremsstrahlung off of nucleons in
the nucleon scattering process NN ! NNa via pion ex-
change [21]. As a result, the axion-nucleon coupling range
10−6
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10−2
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100

103 104 105 106 107

g R

Λ [GeV] 

D
=

6

e+e−→νRν
-

R n=2

SN1987A

Red Giant

Excluded

1 keV

m
A= 1 MeV

Y
ukaw

a

FIG. 3 (color online). Same as Fig. 2 but for n � 2 and the
scales are quite different.
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3� 10�10 < gN < 3� 10
�7 is ruled out [17]. Values

larger than the upper limit are allowed for axions due to
the possibility of trapping inside the supernova.

Translating this bound on axions into a bound on ", there
is again a relative enhancement of the AR coupling to
nucleons since it does not have a nonrelativistic suppres-
sion compared with axions. The coupling enhancement is
roughly mN=TSN1987A � 30, where TSN1987A � 30 MeV,
suggesting that the range 10�11 < "< 10�8 is excluded
so long as mAR & TSN1987A. This implies gR * 0:1 for n �

1may be allowed for trapped AR’s. However, this is not the
case. In a similar fashion as in the case of red giants, we get
an upper bound on the lifetime of AR of order 10�20 s. This
is much shorter than the typical cooling timescales for a
supernova, which is of order seconds. The fast decay AR !
�R %�R then results in overcooling of the supernova and
trapping is again irrelevant here. We thus obtain the fol-
lowing exclusion bounds:

n � 1 : gR > 10
�4 unless gR�> 10

11 GeV
n � 2 : gR > 0:02 unless gR�> 50 TeV:

(34)

The excluded region of parameters for n � 1, 2 is shown in
Figs. 2 and 3, respectively. There is no constraint for n �
3.
V. HIERARCHY

Our models contain a (smaller) hierarchy problem of
their own: the hierarchy between the gauge symmetry
breaking scales and the cutoff scale. In Majorana case,
we considered symmetry breaking in the infrared, in the
range 2–400 keV. It is possible that this scale could be
stabilized by supersymmetry. In the effective theory below
the electroweak scale, the scalar fields� acquire a one-loop
quadratically divergent contribution proportional to g2. If
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FIG. 4 (color online). Same as Fig. 3 but for n � 3.
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this were the only contribution to the scalar �mass�2, the
hierarchy would be stabilized. However, there are cutoff
suppressed contributions such as ZyZ�y�=�2, where Z is
a hidden sector field with an F-term, that are not forbidden
by symmetries. One possibility is to remove these opera-
tors through sequestering, thereby allowing anomaly me-
diation to dominate [22]. One might be concerned about
the quadratic divergence of the scalar masses below the
supersymmetry breaking scale. This arises at two or three
loops, giving a contribution at most of order m2� �
m6SUSY=��16)

2�3�4�. But, it is easy to see that so long as
the scale of the soft breaking mSUSY & 4)v, this higher
order contribution is subdominant to the already safe one-
loop quadratically divergent contribution below the elec-
troweak breaking scale discussed above.

Another way to stabilize this hierarchy is to use techni-
color. Consider the Dirac case for purposes of illustration.
Suppose there is a new SU�3� gauge group with dynamical
scale �R, that couples to two triplets qi�30� with i � 1, 2
and two antitriplets %q��3�1� and %q��3�1�. The subscripts
here refer to the U�1�R charges. Note that the gauge invari-
ance completely forbids mass terms for techniquarks. The
theory is identical to the two-flavor QCD and is known to
cause a condensate h %q�q1i � h %q�q2i ’ �

3
R � 0 that

breaks U�1�R. This model corresponds to n � 3 case in
Eq. (22) with H3R replaced by the fermion bilinear

L R � +,i
�HL,�� %q�q2��

i
R�

�3
: (35)

While this mechanism stabilizes �R against �, and natu-
rally leads to the small Dirac-neutrino masses, the U�1�
symmetry breaking scale is much larger, �R �
�m�=v�1=3� * 10�4�. Choosing a cutoff � * 100 TeV
(to avoid FCNC problems in the SM) implies �R *

10 GeV.
We note that lowering the cutoff scale of the Standard

Model may also be constrained by too-large flavor-
changing neutral current processes from cutoff scale sup-
pressed flavor-violating operators. The Majorana case and
the n � 2 Dirac cases are roughly safe from these con-
straints, since we found the cutoff scale must be larger than
tens of TeV. (This is curiously reminiscent of the smallest
cutoff scale that was found by using split fermions as a
solution to global symmetry breaking [5].) For n � 3 in the
Dirac case, the flavor problem becomes more acute as the
cutoff scale is taken to the lowest possible value, of order
5 TeV.

VI. CONCLUSION

The hierarchy problem may be solved by lowering the
cutoff scale of the SM. However, this leads to unacceptably
large violations of baryon and lepton numbers. We have
shown there are simple discrete gauge symmetries that can
be imposed on the SM to protect against rapid proton decay
and too-large Majorana neutrino mass. We then con-
113004
structed models that generate small neutrino mass through
spontaneous (discrete or continuous) gauge symmetry
breaking at small scales.

In our first model, Majorana neutrino mass were gener-
ated once Z‘3 is broken. This model is restricted by the
experimental constraints from the nonobservation of
0�  �, which requires �> 30 TeV, and the nonobserva-
tion of modifications to �T=T in the CMB from a (non-
frustrated) domain wall network, which requires
� & 400 TeV. Generating neutrino masses near the ob-
served size implies the scale for Z‘3 breaking is of order 2–
400 keV. Values near the upper end of this range yield
domain walls in the Universe that modify the CMB at
observable levels. If the domain wall network were frus-
trated, such as if Z‘3 came from a larger discrete symmetry,
the domain walls could provide the dark energy of the
Uuniverse with w � �2=3.

Dirac-neutrino masses arise when Z‘3 is exact and right-
handed neutrinos are added to the model. We proposed a
new discrete and U�1�R symmetry that acts only on right-
handed neutrinos. Dirac-neutrino masses of the observed
size are generated once the symmetry is broken. Limiting
the light degrees of freedom during BBN gives the stron-
gest constraint on the models. We found that the models
with a discrete symmetry are disfavored by the domain
wall constraint. Models with a U�1�, however, are viable
with � * 5-30 TeV when the dimension of the operator
that generates the Dirac-neutrino masses is more than six
(n � 2). More precise constraints are shown in the figures.
The new gauge boson mass ismA ’ gR100 MeV for n � 2
and higher for larger n. If the gauge coupling is small, a
very light gauge boson is possible.
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APPENDIX A: ALTERNATIVE DISCRETE
LEPTON NUMBER

Note that flavor-blindness in the lepton sector can be
relaxed with interesting consequences for allowed FCNC
operators. For example, the assignment
-9
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forbids not only Majorana masses for neutrinos, but also
the flavor-changing lepton decay �! e
. Majorana neu-
trino masses with arbitrary flavor mixing can be generated
with two fields �1;2 with charges �1, �2 that acquire vevs
and spontaneously break the Z‘5 symmetry. The process
�! e
 also reappears, but now is further suppressed by
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h�ii=�. While we find this an amusing option, we adopt
the flavor-blind Z‘3 in the body of the paper.
APPENDIX B: U�1� CHARGES

In this appendix, we show that there are no anomaly-free
charge assignments with fewer than six neutrino species
that are (1) chiral, and (2) two of the charges are the same.

It is easy to show that there are no chiral charge assign-
ments up to four neutrinos. Without a loss of generality, we
can always choose one of the charges to be �1. With four
neutrinos, the charges are Q � �1; ,;  ; 
�. The anomaly
freedom requires

1� ,�  � 
 � 0; (B1)

1� ,3 �  3 � 
3 � 0: (B2)

Solving for 
 in the first equation and substituting into the
second, we find

�3�1� ,��1�  ��,�  � � 0: (B3)

All solutions to this equation give vectorlike charge assign-
ments: For, � �1, we findQ � �1;�1;  ;� �. For �
�1, we find Q � �1; ,;�1;�,�. For , � � , we find
Q � �1; ,;�,;�1�.

With five neutrino species, one can find nontrivial chiral
charge assignments. There are integer solutions, such as
Q � �1; 5;�7;�8; 9� or �2; 4;�7;�9; 10�. However, with
only one Higgs that breaks the U�1�R gauge symmetry, we
need at least two neutrino species to have the same charge
so that both of them can acquire masses. Without a loss of
generality, we can normalize the charges such that two
113004
species have charge unity, Q � �1; 1; ,;  ; 
�. Then the
anomaly freedom requires

2� ,�  � 
 � 0; (B4)

2� ,3 �  3 � 
3 � 0: (B5)

Substituting the solution for , from the first equation to the
second, we find

, � �

2 � 4
� 4�

���������������������������������

�
3 � 8
� 8�

p
4� 2


; (B6)

 � �

2 � 4
� 4�

���������������������������������

�
3 � 8
� 8�

p
4� 2


: (B7)

Therefore, for any choice of 
, we can always find appro-
priate , and  .

However, there are no integer solutions. The integer
solutions would require that ,,  , and 
 are all rational
numbers. We can always write 
 � p=q, where p and q are
relatively prime. In order for , and  to be also rational,
the argument of the square root


�
3 � 8
� 8� �
p�p� 2q��p2 � 2pq� 4q2�

q4
; (B8)

must be a complete square. Therefore, the numerator on the
right-hand side must be a complete square of an integer.
Because there is a factor of p already, other two factors
must contain a factor of p. However, both p� 2q and
p2 � 2pq� 4q2 are relatively prime with p because q is
relatively prime with p Q.E.D.
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