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Neutrino masses in the effective rank-5 subgroups of E6. II. Supersymmetric case
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We present a complete analysis of the neutral fermion sector of supersymmetric E6-inspired low-energy
models containing an extra SU�2�, concentrating on the alternative left-right and inert models. We show
that the R-parity conserving scenario always exhibits a large Dirac mass for �L with maximal mixing with
an isosinglet neutrino, and that R-parity violating scenarios do not change the picture other than allowing
further mixing with another isosinglet. In order to recover standard model phenomenology, additional
assumptions in the form of discrete symmetries and/or new interactions are needed. We introduce and
investigate the discrete symmetry method and higher-dimensional operators as mechanisms for solving
the neutrino mass and mixing problems in these models.
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I. INTRODUCTION

Supersymmetric grand unified theories (GUTs) are
among the most attractive scenarios for physics beyond
the standard model (SM). They are well motivated by
superstring theories which may lead to a consistent theory
of all interactions. Of these, SU�5� models have been
studied extensively. The minimal SU�5� models predicted
too large a decay rate for the proton and had to be modified.
More recently, doubts have been raised about the validity
of even modified SU�5� models, due to the discovery of
solar [1] and atmospheric [2] neutrino oscillations. Small
neutrino masses can be explained most elegantly through
the seesaw mechanism, which requires the presence of a
right-handed neutrino, a particle not naturally present in
the spectrum of SU�5�. Though scenarios with an extended
neutrino sector exist in SU�5�, it is worthwhile investigat-
ing GUTs which naturally contain the right-handed neu-
trino. Experimental data from the Los Alamos Liquid
Scintillation Detector (LSND) require neutrino mass
square splittings [3] which are in serious disagreement
with other results unless one or more neutrinos are added
and are ‘‘sterile’’ [4]. Such scenarios have been studied
extensively [5–14]. Since the mixing of sterile and active
neutrinos affects the interpretation of results from solar and
atmospheric neutrino experiments, limits have been set on
such mixings.

Sterile neutrinos can occur naturally in supersymmetric
GUTs, which often predict the existence of exotic fermi-
ons. Of these, superstring-inspired E6 is one of the
most attractive choices. E6 is the next anomaly-free
choice group after SO�10�. It is based on an exceptional
Lie group with complex representations, where each
generation of fermions can be placed in the 27-plet
representation.
address: mfrank@vax2.concordia.ca
address: sher@physics.wm.edu
address: ituran@physics.concordia.ca

05=71(11)=113002(12)$23.00 113002
The E6 spectrum contains several neutral exotic fermi-
ons, some which could be interpreted as sterile neutrinos.
The precise details of mass generation and mixing with the
active neutrinos would depend on the particular subgroup
of E6 considered. There are many phenomenologically
acceptable low-energy models which arise from E6.
In this work we concentrate on rank-5 subgroups, which
always break to SU�3�c � SU�2�L �U�1�Y �U�1�

[15,16], and which contain an extra SU�2� symmetry in
addition to the minimal supersymmetric standard model
symmetry. These intermediate subgroups give rise to the
usual supersymmetric left-right model (LRSUSY) [17], the
alternative left-right supersymmetric model (ALR) [18],
and the supersymmetric inert model [19]. In a previous
work we have shown that, contrary to expectation, and
despite a rich exotic sector in the neutral fermionic sector
containing three extra states, the nonsupersymmetric ver-
sion of these models did not provide neutrino masses and
mixing consistent with neutrino experiments [20]. In this
paper we analyze masses and mixings of neutrinos in
supersymmetric E6-inspired models. Before we proceed,
we summarize our previous results.

In the nonsupersymmetric version of either the ALR or
the inert model (and the discussion is the same for the LR
model), the lightest state in the neutral fermion sector
contains only SU�2�L singlets, which do not interact with
SM particles. Additionally, the models predict two more
light neutrino states with masses of the order of the up-
quark mass. These are phenomenologically unacceptable.
In order to cure these problems, additional symmetries and/
or new interactions are needed. In the simplest such non-
minimal scenario, the discrete symmetry method requires
imposing one extra discrete symmetry only. The aim is to
eliminate the tree-level Dirac mass in the Lagrangian, thus
generating radiative masses only for neutrinos. This
method requires an extra SU�2�L Higgs doublet with a
vanishing vacuum expectation value (vev). It cures the
Dirac neutrino mass problem, but predicts large mixing
between active and sterile states.
-1  2005 The American Physical Society
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The second method, the higher-dimensional operators
(HDO) method, requires additional Higgs fields from the
27-plet of E6 and the existence of some intermediate scale.
Higher-dimensional (dimension-5) operators induce inter-
actions which are suppressed by one power of the com-
pactification scale. This method solves the neutrino mass
problems but does not predict any sterile component(s) in
the lightest neutrino state, which is now an admixture of �L
and NL, an exotic [SU�2�L doublet] particle. The effect of
this mixing is to lower the electron neutrino coupling to the
electron and the WL. There exist similar reductions for the
muon and tau couplings. Furthermore, when the reduction
is different for each generation, this will violate lepton
universality. See Ref. [20] for details.

The last method introduced is the additional neutral
fermion (ANF), which requires the existence of both new
particles and new discrete symmetries. The additional
interactions are of the type 27 � 27 � 1, which further re-
quire additional Higgs doublets from the 27� 27 repre-
sentation. In order not to alter existing couplings, the vev’s
of the new fields must be chosen suitably, and an additional
Z2 symmetry is needed. In these circumstances, we obtain
two light states with an active neutrino part of the form
predicted by the HDO method, but mixed with a sterile
flavor state. The mixing is completely arbitrary. Extended
to three generations, the model contains two structures,
2� 2 and 3� 1, or, if the above mixing is sizable only for
one generation, the 2� 2 structure arises naturally.
Otherwise, more realistically, including three generations
for each exotic neutral fermion, we obtain a 3� 3
structure.

This paper is organized as follows. We discuss super-
symmetrized versions of the alternative left-right and inert
models in Sec. II. In Sec. III we analyze neutrino masses
and mixings in the ALR and inert models within the
R-parity conserving scenario. Both of these models suffer
from predicting too large a Dirac mass for the active
neutrinos. The possible mixing between R � �1 and R �
�1 sectors through soft R-parity violating terms is dis-
cussed for each model separately in Sec. IV and in an
appendix. All possible hierarchies among the parameters
exhibit the feature that the physically relevant state still has
too large a mass and the lightest state is fully sterile. So, in
Sec. V, we suggest mechanisms for going beyond the
minimal content of the models in order to rectify this
problem. We conclude and summarize our results in
Sec. VI.
II. DESCRIPTION OF THE MODELS

The details of the models are given in our earlier work
[20]. Here we would like to summarize our previous results
and concentrate on the Higgs sectors of the SUSY models
where the difference occurs with respect to their non-
SUSY versions.
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Under the maximal subgroup SU�3�C � SU�3�L �
SU�3�H of E6, the 27 dimensional representation of E6

branches into

27 � �3c; 3; 1� � ��3c; 1; �3� � �1c; �3; 3� � q� �q� l;

(2.1)

where

q �

u
d
h

0
@

1
A
L

; �q � �ucdchc�L;

l �
Ec N �
Nc E e
ec �c Sc

0
@

1
A
L

:

(2.2)

Here SU�3�H operates horizontally. There are three differ-
ent ways to break SU�3�H into SU�2�H �U�1�YH . When
the first and the second columns form a SU�2�H doublet,
the so-called LR symmetric model is obtained. Its alter-
native version is when the first and the third columns form
a doublet, which is the ALR symmetric model. The last
combination is when the second and the third columns
combine to form a doublet and the inert model is obtained.
See Ref. [20] for more details.

In the LR and ALR models, both SU�2�H and U�1�YH
contribute to the electromagnetic charge Qem. In the inert
model, however, SU�2�H does not contribute toQem, which
leads to neutral gauge bosons and a very different phe-
nomenology [19]. We will use the notation H � R, R0,
I;YH � YR;R0;I for the LR, ALR, and inert groups,
respectively. We consider their rank-5 versions whose
gauge groups are SU�3�C � SU�2�L � SU�2�R �U�1�V ,
SU�3�C � SU�2�L � SU�2�R0 �U�1�V , and SU�3�C �
SU�2�L � SU�2�I �U�1�Y for the LR, ALR, and inert
cases, respectively. The quantum numbers of the particles
in the ALR and inert models are given in Table I.

The Higgs sector of E6 in the SUSY scenario differs
from the non-SUSY case. Since SUSY requires doubling
the number of particles, there exist many scalar fields,
some of which may be taken as the Higgs bosons required
for symmetry breaking. In fact, there are two ways to
proceed [15]. One could assign the Higgs fields to the
same 27 (or to a 27) as the usual fermions and then some
of the superpartners of the fermions can play the role of the
Higgs fields. Or, it is possible to assign them to different 27
representations than the fermions, and the Higgs fields are
introduced as additional scalars. The latter is less economi-
cal than the former and very similar to the non-SUSY case
which was discussed in the earlier paper [20]. So we
choose to work in the former framework. In fact, our
approach is to choose as many Higgs bosons as possible
among the superpartners of lepton fields and consider other
scalars from different 27’s only if necessary.

To analyze the Higgs sector further, we need to write the
most general R-parity conserving renormalizable super-
-2



TABLE I. The quantum numbers of fermions in 27 of E6 at
SU�3�C � SU�2�L � SU�2�R0 �U�1�V�YL�YR0 and SU�3�C �

SU�2�L � SU�2�I �U�1�Y levels.

State I3L I3R0 I3I V=2 Y=2 Qem

uL 1/2 0 0 1/6 1/6 2/3
ucL 0 �1=2 0 �1=6 �2=3 �2=3
dL �1=2 0 0 1/6 1/6 �1=3
dcL 0 0 �1=2 1/3 1/3 1/3
hL 0 0 0 �1=3 �1=3 �1=3
hcL 0 1/2 1/2 �1=6 1/3 1/3
eL �1=2 �1=2 �1=2 0 �1=2 �1
ecL 0 1/2 0 1/2 1 1
EL �1=2 0 1/2 �1=2 �1=2 �1
EcL 1/2 1/2 0 0 1/2 1
�L 1/2 �1=2 �1=2 0 �1=2 0
�cL 0 0 1/2 0 0 0
NL 1/2 0 1/2 �1=2 �1=2 0
Nc
L �1=2 1/2 0 0 1/2 0

ScL 0 �1=2 �1=2 1/2 0 0

1In fact, no direct constraint comes from the W1 term, but all
other considerations lead to a stable hL which is phenomeno-
logically problematic. See Ref. [15] for details.
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potential invariant under the standard model gauge group
[15],

W � W1 �W2 �W3 �W4;

W1 � �1QucLH
c � �2QdcLH � �3LecLH � �4HHcScL

� �5hLhcLS
c
L;

W2 � �6hLucLe
c
L � �7LQhcL � �8dcL�

c
LhL;

W3 � �9QQhL � �10hcLu
c
Ld

c
L; W4 � �11LHc�cL;

(2.3)

where the following notation is used:

Q �
u
d

� �
L
; L �

�
e

� �
L
; H �

N
E

� �
L
;

Hc �
Ec

Nc

� �
L
:

(2.4)

In each term in W, one of three fields corresponds to a
scalar field and thus each term represents three different
Yukawa interactions. We later discuss the ALR and inert
models by further imposing SU�2� symmetries on the
superpotential W, which reduces the number of indepen-
dent Yukawa couplings. Now, before choosing the Higgs
fields to be superpartners of the fermions, we first must
determine the baryon (B) and lepton (L) numbers (and R
parity) of the exotic fields (the ones in Table I other than the
standard model fields). To get consistent B and L assign-
ments, not all of the terms in W can exist simultaneously.
Possibilities can be classified with respect to the �B;L; R�
assignments of the fields hL and �cL. The existence of the
W2 term requires �B;L; R�hL � �1=3; 1;�1� (hL is a lepto-
quark), the W3 term requires �B;L; R�hL � ��2=3; 0;�1�
(hL is a di-quark). Clearly, both the W2 and W3 terms
cannot exist simultaneously without violating baryon and
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lepton numbers. If one wished to treat hL as an ordinary
quark,1 �B;L; R�hL � �1=3; 0;�1�, then both W2 and W3

would be eliminated. For the �cL field there are two
possibilities: �B;L; R��cL � �0; 1;�1� or �B;L; R��cL �
�0; 0;�1�. Unlike the former, the latter assignment allows
a nonzero vev for the superpartner of �cL, ~�cL, without
violating the lepton number. But this nonzero vev is needed
only for rank-6 models. In our discussion, we are free to
choose either way, and we follow the former since rank-5
models are considered. In addition, inducing a negative
mass for ~�cL via the renormalization group may not always
be possible due to the necessity of large Yukawa couplings
[15,21]. In the rest of our discussion we take hL as a
leptoquark (W3 � 0), for reasons to be discussed shortly,
and call for the usual assignment to �cL.

Now, the ALR and inert models are defined as follows:

(1) T
-3
he ALR model.—The SU�2� symmetry [the so-
called SU�2�R0], Hc , L, ucL , hcL, ecL , ScL im-
posed on the superpotential W gives rise to the
effective rank-5 version of the ALR model and
sets the following relations among �’s: �1 � �7,
�3 � �4, �5 � �6. Hence, by modifying the
Yukawa couplings accordingly, the superpotential
for the ALR model is written in a more compact
form,

WALR � ��1L
c
AFAH �

�2
2
FAFA�

c
L � �3QFAX

c
A

� �4dcLQH� �5hLXcAL
c
A � �6hLdcL�

c
L

� �1�eLecLNL � NLNc
LS

c
L � ELEcLS

c
L

� ecLEL�L� � �2��L�cLN
c
L � eLEcL�

c
L�

� �3�uLucLN
c
L � dLucLE

c
L � dLhcL�L

� uLhcLeL� � �4��dLdcLNL � dcLuLEL�

� �5��hLhcLS
c
L � hLucLe

c
L� � �6hLdcL�

c
L;

(2.5)

where the following definitions are used in the first
form of the above equation:

FA � �HcL�L �
EcL �L
Nc
L eL

 !
; LcA � �ecSc�L;

XcA � �hcuc�L: (2.6)

When the usual assignments of the standard model
fields are taken, the baryon and the lepton numbers
(with R parity) of the exotics are �B;L; R�H �
�0; 0;�1�, �B;L; R�ScL � �0; 0;�1�. As discussed
above, of the two possible assignments for �cL in
the ALR model, the choice �B;L; R��cL � �0;�1; 1�
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is adopted. We also choose hL as a leptoquark
�B;L; R�hL � �1=3; 1;�1�. It should be noted that
even though there are three possibilities for the
assignments of the hL quantum numbers (lepto-
quark, di-quark, or quark) at the E6 level, hL is
forced to be a leptoquark in both the ALR and inert
models. This is simply because of the fact that the
SU�2� symmetries which convert ecL , ScL and
�cL , ScL for the ALR and inert models, respec-
tively, would otherwise be broken.
Thus, the superpartners of NL, Nc

L, and ScL
( ~NL; ~N

c
L; ~S

c
L) are possible candidates which can

play the role of the neutral Higgs fields. So the
Higgs sector of the ALR model that we adopt is

H1 � �"�
1
~ScL�; H2 �

~NL
~EL

� �
;

H3 �
~EcL ~�L
~Nc
L ~eL

� �
; HS � "0

S:

(2.7)

Here the nonzero vev’s are h~ScLi � N1, h ~NLi � v1,
h ~Nc

Li � v3, h"0
Si � N2. In principle, one could have

a nonzero vev for ~�L, but this would violate lepton
number (the neutrino, �L, would get a large
Majorana mass, through ~ZL exchange, of order
h~�Li

2=M ~ZL
). We will assume that ~�L has no vev

for the moment, but will mention the effects of the
other possibility later. This other possibility could
be acceptable if, for example, the ~�L comes from a
different 27 than the standard model fermions. One
can choose "0

S to be a singlet or ~�cL. In the latter
case, either N2 needs to be zero or �B;L; R��cL �
�0; 0;�1� should be adopted. Here, we keep our
discussion general.
(2) T
2Since this paper is concentrating on neutrinos, we will not
discuss mixing between light and heavy fields in the charged
lepton or quark sectors. Such mixing can have a wide range of
interesting phenomenological effects; see Ref. [22] for a detailed
he inert model.—In this case, the SU�2� symmetry
[the so-called SU�2�I] H , L, dcL , hcL, �cL , ScL
imposed on the superpotential W of Eq. (2.3) leads
to the effective rank-5 version of the inert model.
Thus, the following relations among the Yukawa
couplings hold: �2 � �7, �4 � �11, �5 � �8.
Similar to the ALR model case, the superpotential
of the inert model is expressed as

Winert � �0
1L

c
IFIH

c �
�02
2
FIFIe

c
L � �03hLX

c
IL

c
I

� �04hLu
c
Le

c
L � �05Qu

cHc � �06QX
c
IFI

� �0
1��L�

c
LN

c
L � NLN

c
LS

c
L � ELE

c
LS

c
L

� eL�
c
LE

c
L� � �02�eLe

c
LNL � �L�

c
LN

c
L

� ecLEL�L� � �03�hLh
c
LS

c
L � hLd

c
L�

c
L�

� �04hLu
c
Le

c
L � �05�uLu

c
LN

c
L � dLu

c
LE

c
L�

� �06�dLd
c
LNL � dLhcL�L � uLdcLEL

� uLhcLeL�; (2.8)

discuss

113002-4
where the following definitions are used:

FI � �HL�L �
NL �L
EL eL

 !
; LcI � ��cSc�L;

XcI � �hcdc�L: (2.9)
The baryon and lepton number assignments for
exotics are similar to the ALR model. �B;L; R�H �
�0; 0;�1� and �B;L; R�ScL � �0; 0;�1� apply and hL
is also considered as a leptoquark as discussed
above. Unlike the ALR case, �cL is forced to have
assignments �B;L; R��cL � �0;�1; 1�. Thus, a vev
for ~�cL is not allowed unless lepton flavor violating
interactions are included. From these considerations
we choose the Higgs content of the model as fol-
lows:

HD � �"0
S
~ScL�; H2 �

~EcL
~Nc
L

� �
;

H3 �
~NL ~�L
~EL ~eL

� �
; HS � "�

1 ;

(2.10)

with the following vev’s, h~ScLi � N1, h ~NLi � v1,
h ~Nc

Li � v3, h"0
Si � N2. Here the SU�2�I doublet

HD is electrically neutral while "0
S is possibly taken

as ~�cL with zero vev. As before, we assume that
h~�Li � 0, but will consider the alternative possibil-
ity later.
III. NEUTRINOS IN THE ALR AND INERT
MODELS

In this section we analyze the neutral fermion sectors of
both the ALR and inert models2 by using the superpoten-
tials given in Eqs. (2.5) and (2.8). The superpotentials only
describe �27�3 type interactions. Without considering any
more particles or new interactions, there exists a 5� 5
‘‘neutrino’’ mass matrix for each generation. From
R-parity considerations this 5� 5 matrix splits into 2�
2 and 3� 3 submatrices. From Eqs. (2.5) and (2.8), the
R � �1 neutral fermion sector spanned by ��L; �cL� be-
comes

M R��1 �
0 m��c

m��c 0

� �
; (3.1)

where m��c � �2h ~N
c
Li � �2v3 in the ALR and m0

��c �
�01v3 in the inert model. Clearly, the ordinary neutrinos
have a Dirac mass m��c which is of the order of the up-
quark mass in both models and the physical state is formed
by the maximal mixing of �L and �cL. Either an unnatural
fine-tuning for the Yukawa couplings is needed, or we must
ion and a list of references.
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introduce a large Majorana mass for �cL which renders a
small Majorana mass for �L through the canonical seesaw
mechanism [23]. Another possibility is to generate a small
Dirac one-loop mass by eliminating the tree-level mass
term. The possibilities will be discussed shortly.

The R � �1 sector is composed of 3 neutral leptons,
NL, Nc

L, ScL, and 3 neutral gauge fermions corresponding to
two of the SU�2�’s and one U�1� group. For simplicity, we
assume that the gauge fermions get large Majorana mass
terms from soft-supersymmetry breaking and decouple.
The 3� 3 Majorana mass matrices in the �NL;N

c
L; S

c
L�

basis become
M R��1
ALR �

0 �mEEc ��1v3
�mEEc 0 �meec

��1v3 �meec 0

0
@

1
A;

MR��1
I �

0 m0
EEc m0

��c

m0
EEc 0 m0

eec

m0
��c m0

eec 0

0
BB@

1
CCA;

(3.2)
where mEEc � �1N1, meec � �1v1, m0
EEc � �0

1N2, m0
eec �

�0
1v1. Here MALR�MI� is the R � �1 mass matrix in the

ALR (inert) model. Diagonalization of the above matrix
for the ALR case leads to the states and masses
j�1;2iALR ’
1���
2

p �jNLi � jNc
Li�; MH

1;2 ’ �mEEc;

j�3iALR ’ jScLi; ML
3 ’ 2�1v3meec=mEEc;

(3.3)
3The third entry will be represented by ScL since the lightest
state is mainly described by ScL.
under the assumption meec � �1v3 � MEEc . Here the
superscripts H and L stand for the heavy and light states,
and �1 can further be expressed as mEEc=N1. Similar
results apply to the inert model, where the states are
the same with masses M0H

1;2 � �m0
EEc and M0L

3 �

�2m0
��cm

0
eec=m

0
EEc , respectively. Clearly, there are two

heavy (j�1;2iALR�I�) states and one light (j�3iALR�I�) state.
The light (mainly sterile) state does not however mix with
active neutrinos unless R parity is broken. In the non-
SUSY framework [20], without introducing further sym-
metries or interactions the lightest state is formed by �cL
and ScL. In the SUSY scenario, it is still possible to mix R �
�1 and R � �1 sectors by including soft-symmetry-
breaking terms [24]. This will be discussed in the next
section.

At this stage, one can take �~�L~eL� with nonzero vev for
~�L without changing the above results. However, for the
case "0

S � ~�cL with zero vev, the results are modified for
the inert model but remain unchanged for ALR. Then, the
R � �1 sector of the inert model has the following states
113002
and masses:

j�01;2iI !
h~�cLi�0 1���

2
p

�
m0
��c

M0H
1

jNLi �
m0
eec

M0H
1

jNc
Li � jScLi

�
;

M0H
1;2 !

h~�cLi�0
�

��������������������������
m02
��c �m02

eec

q
;

j�03iI !
h~�cLi�0 1

M0H
1

��m0
eec jNLi �m0

��c jN
c
Li�; M0L

3 !
h~�cLi�0

0:

(3.4)

For the case "0
S � ~�cL with nonzero vev [that is, when

�B;L; R��cL � �0; 0;�1� is adopted], the R � �1 sector of
the ALR model would be a 4� 4 matrix. This possibility is
solely available for the ALR model, since R-parity conser-
vation requires �01 in Eq. (2.8) to vanish. In ALR, �2 should
be eliminated by imposing some discrete symmetries in
order not to break R-parity conservation. However, this
also decouples �cL from the 4� 4 matrix and makes it
massless. So, no change occurs in the 3� 3 submatrix
and both �L and �cL become massless. Note that in this
framework �cL is no longer a Dirac conjugate pair state of
the active �L neutrino but it is a sterile neutrino with zero
lepton number. In the next section, we discuss possible
mechanisms to generate small Majorana masses for active
neutrinos and possible mixing between opposite R-parity
sectors.
IV. GIVING MASS THROUGH R-PARITY
BREAKING

The fact that the R-parity might be broken by soft terms
[24] has been discussed by Ma in the context of the ALR
model [25]. The idea is as follows. A soft term which
describes a mixing between �L and Nc

L can be realized
by, for example, giving a vev to ~�cL in the FAFA�cL term of
Eq. (2.5). It can be defined as &A��LNc

L � eLEcL�. The
presence of such mixing then induces a mixing between
�L and the lightest state �3 through a small Nc

L component
of �3. Then, the active neutrino mass matrix is enlarged
from 2� 2 to 3� 3 and is given by, in the basis
��L; �cL; S

c
L�,

3

M R��1
ALR �

0 m��c mS

m��c 0 0
mS 0 ML

3

0
@

1
A; (4.1)

where mS � m��c&A=mEEc and ML
3 ’ 2�1v3meec=mEEc .

The corresponding matrix for the inert model is
MR��1

I � MR��1
ALR �m��c�ML

3 � ! m0
��c�M

0L
3 �; mS ! m0

S �
m0
��c&I=m0

EEc�. Here M0L
3 is defined as M0L

3 �
�2m0

��cm
0
eec=m

0
EEc . We envisage two limiting cases, one

for &A very small compared with mEEc : mS � jML
3 j �

m��c [case (i)]; and one for &A large compared with mEEc :
-5



TABLE II. The eigenstates and masses through R6 parity for different hierarchies among mS, ML
3 , andm��c . Here ' and � are defined

as mS=m��c and
ML

3

6m��c
�2� '2�2���������

1�'2
p �, respectively.

Cases States Masses

mS � jML
3 j � m��c Light j�3i ’ jScLi ML

3 ’ 2�1v3meec

mEEc

Heavy j�1;2i ’
1��
2

p �j�Li � j�cLi� MH
1;2 ’ �m��c

jML
3 j � mS � m��c Light j�3i ’ jScLi � 'j�cLi ML

3 ’ 2�1v3meec

mEEc

�
1� 2

3'
2

�
Heavy j�1;2i ’

�j�Li�j�cLi�'jS
c
Li���

2
p MH

1;2 ’ �m��c �1�
1
2 '

2�

jML
3 j � mS �m��c Light j�3i ’

�'j�cLi�jScLi���������
1�'2

p ML
3 ’ 2�1v3meec

3mEEc

�
1� 2�'2���������

1�'2
p

�

Heavy j�1;2i ’
�
���������
1�'2

p
j�Li�j�cLi�'jS

c
Li��������������

2�1�'2�
p MH

1;2 ’ m��c
��������������
1� '2

p
��1���
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jML
3 j � mS � m��c [case (ii)]. A third case is possible

when &A is comparable with mEEc : jML
3 j � mS �m��c

[case (iii)]. In the case in which all three, jML
3 j, mS, and

m��c , are comparable with each other, it is not possible to
draw any valuable conclusion from analytic calculations.
In order to get sizable mixing between active and sterile
neutrinos while they are lying in the correct mass range, it
is required to have comparable but small Dirac and
Majorana masses [26]. The main results of the above cases
and each of the corresponding spectra are summarized in
Table II in the Appendix.

Summarizing the results from the Appendix, one finds
that the spectrum has two heavy and one light states. The
common feature of all cases is that the lightest state is
always purely sterile, mainly composed of either ScL or ScL
and �cL. It has a seesaw type mass as given in the Appendix.
The heavy states have maximal mixing between �L and �cL
with a small component of ScL. For case (i) (mS � jML

3 j �
m��c), the heavy states consist of only �L and �cL. They are
too heavy to be considered the physical neutrino state as
m��c is at the scale of the up-quark mass.

Thus, so far no satisfactory pattern for neutrino masses
and mixings has been established. We are still required to
go beyond the minimal picture, as we will discuss in the
next section.

If the ~�cL comes from a different 27, and thus can get a
nonzero vev, then these results are unaffected. Choosing
"0
S � ~�cL with zero vev, however, makes R-parity violation

disappear and the ScL again decouples.
V. BEYOND THE MINIMAL CONTENT

As we have seen in the previous sections, the absence of
the terms in W3, which guarantees proton stability, could
be a consequence of a discrete symmetry. Note that con-
ventional R parity is not sufficient to explain the elimina-
tion of some Yukawa couplings. For this purpose, an odd
Z2 charge to all standard model quarks and hL and an even
Z2 charge to the rest of the fields can be assigned. Clearly,
invariance under this Z2 symmetry would require �9 and
�10 to be zero. Elimination of other Yukawa couplings can
113002
be achieved by imposing further symmetries. Depending
on whether the neutrinos are Dirac or Majorana particles,
we can proceed in two ways.

If one assumes that the neutrino is a Dirac particle, then
the Dirac neutrino mass predicted directly from the super-
potential should be much smaller for both models. A
solution to effectively fine-tune the coupling has been
proposed by Branco and Geng [27,28]. They make the
model invariant under a Z3 symmetry in addition to the
Z2 symmetry considered above [this is what we have called
the discrete symmetry (DS) method in our earlier paper
[20]]. Here the Z3 symmetry distinguishes between gen-
erations. The symmetry eliminates the tree-level Dirac
mass term from the superpotential and induces a smaller
one-loop mass. In Ref. [27], the discussion has been carried
out at E6 level without reference to any of its subgroups.
Assuming the invariance of E6 itself under Z3 symmetry,
the breaking of E6 to the SU�2�R0 or SU�2�I symmetries
leads to breaking of the Z3 symmetries. Since the ALR and
inert models are treated as different subgroups of E6, one
can introduce Z3 invariance after the E6 gauge symmetry is
broken.

If neutrinos are considered to be Majorana particles,
then a generation of small Majorana masses for left-handed
(active) neutrinos could be achieved by including HDO
[29]. One can show that the next available interactions in
the standard model are dimension-5, which can be sizable
if one introduces an intermediate scale around 1011 GeV
and Higgs fields from a 27 representation of E6. Through
the canonical seesaw mechanism, in the R � �1 sectors of
the models, the small Majorana mass of the left-handed
active neutrino is generated by having a large Majorana
mass for �cL. In the R � �1 sector, ScL will also get a large
Majorana mass which modifies the results discussed in
Sec. III. If one further includes the soft terms which break
R parity, a large coupling could occur between �cL and ScL.
So, this framework can give us a picture involving sterile
neutrinos, which is promising.

As an alternative to the above methods, one can extend
the minimal content of E6 together with its Higgs sector by
further considering E6-neutral fermion and Higgs fields
-6
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from the split multiplet 27� 27. This ANF method was
first proposed by Mohapatra and Valle [30–32]. This way,
it is possible to produce either the Dirac or Majorana
neutrinos with small mass.

Among these methods, the DS is the simplest and the
most attractive one as it does not require the existence of an
intermediate scale or inclusion of new particles (and inter-
actions). The ANF method is the most complex, as it
requires not only the presence of some discrete symmetries
but also the presence of new interactions. As indicated
earlier, the occurrence of sterile neutrino components in
the physical states can only be possible through soft-
breaking terms. We now analyze these methods in the
following subsections.

A. The discrete symmetry method

As discussed above, a Z2 symmetry which assigns odd
charges to Q, ucL, dcL, hL, hcL fields and even charges to the
rest may be required to explain the absence of W3 terms.
The DS method, as we will show, also imposes a Z3

symmetry which eliminates the tree-level m��c and makes
it appear at one loop. It is thus much smaller. Unlike the
inert case, in the ALR model ML

3 does not depend on m��c .
So, one-loop Dirac mass generation for neutrinos does not
affect ML

3 and it becomes comparable to or even bigger
than the m��c generated at one loop (say m1-loop

��c ) in ALR.
The cases for ALR should thus be reconsidered under the
circumstance mS � m1-loop

��c �ML
3 . As a result case (ii) is

irrelevant and in case (iii) the hierarchy among jML
3 j,m��c ,

and mS disappears. So, three of the parameters become
comparable with each other and no conclusion can be
extracted in this case.
(1) O
ν

(a)
ne-loop masses in ALR.—In addition to the Z2

symmetry, a Z3 symmetry is needed to set �2 to
zero. It should of course leave the Yukawa couplings
�3 and �6 in Eq. (2.5) unaffected to generate one-
loop neutrino mass, and �1, �4, and �5 to generate
masses for standard model quarks and charged lep-
tons and exotics. This should be the case for at least
some components of these couplings in flavor space.
⊗

⊗

(i)
L ν

c(j)
Ld

(3)
L d

c(3)
L

h̃
c(3)
L h̃

(3)
L

〈Ñ (2)
L 〉=v

(2)
1

〈S̃c(3)
L 〉=N

(3)
1

λi33
3 λ33j

6−λ332
4

Ah

(b

FIG. 1. The one-loop Dirac mas
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We know that the Z3 symmetry should distinguish
between generations [27]. One of such allowed
symmetry charge assignments could be as follows:

3: �Q;dcL;hL;h
c
L;L;�

c
L�

�i� !
�Q;dcL;hL;h
c
L;L;�

c
L�

�i�;

uc�i�L !
�1uc�i�L ; Hc�1� !
�1Hc�1�;

Hc�2� !Hc�2�; Hc�3� !Hc�3�;

H�1� !
�1H�1�; H�2� !
H�2�;

H�3� !H�3�; Sc�1�L !
�1Sc�1�L ;

Sc�2�L !Sc�2�L ; Sc�3�L !
Sc�3�L ; (5.1)

where 
3 � 1 and the numbers inside the parenthe-
ses represent generations. The masses for quarks,
charged leptons, and exotics are given as

mu � �ij33 h ~Nc�3�i; md � �ij24 h ~N�3�i;

me � �ij11 h ~N�1�i; mh � �ij35 h~Sc�3�i;

mE � �ij11 h~Sc�1�i; mN � �ij11 h~Sc�1�i:

(5.2)

There are two one-loop diagrams as shown in Fig. 1
which contribute to the Dirac mass generation for
�L. A trilinear scalar vertex is involved in the
one-loop diagrams. We take Ah and Ad as the tri-
linear soft-supersymmetry-breaking coefficients for
~hL ~h

c
L
~ScL and ~dL ~d

c
L
~NL, respectively. Only �3, �4, �5,

and �6 are involved in the one-loop diagrams. If we
take the mass of hL as the typical SUSY breaking
scale m1=2, then the one-loop neutrino mass is ob-
tained by adding the two diagrams in Fig. 1,

m1-loop
��c � m1-loop�a�

��c �m1-loop�b�
��c ’

Ah�
i33
3 �33j6 mb

32+2

(5.3)

where we have assumed the soft-supersymmetry-
breaking squark masses participating in the one-
loop diagrams are given as [21] m~d �m~h ’ 3m1=2
and Ah � Ad. In order to obtain neutrino masses less
⊗

⊗

ν
(i)
L ν

c(j)
Lh

c(3)
L h

(3)
L

d̃
(3)
L d̃

c(3)
L

〈S̃c(3)
L 〉=N

(3)
1

〈Ñ (2)
L 〉=v

(2)
1

λi33
3 λ33j

6−λ333
5

Ad

)

ses for ��i�L �
c�j�
L .
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than 0.1 eV, a bound �i333 �33j6 � 7� 10�9 must be
imposed for all i; j when Ah is taken of order 1. This
is not substantially smaller than typical Yukawa
couplings.
As discussed above, having a Dirac mass for neu-
trinos less than an eV requires reconsideration of the
case (i) of Sec. IV under the new hierarchy mS �
m1-loop
��c �ML

3 and makes the other cases irrelevant
or inconclusive. It is not possible to give some useful
analytic expressions for the masses and states unless
a specific relation betweenML

3 andm1-loop
��c is set. For

illustrative purposes, if ML
3 � 3m1-loop

��c is chosen,
the physical states under the assumption mS �
ML

3 � 3m1-loop
��c become

j�1i ’
1���
2

p

�
j�Li � j�cLi �

'
2
jScLi

�
; M1 ’m

1-loop
��c ;

j�2i ’
1���
2

p

�
j�Li � j�cLi �

'
4
jScLi

�
; M2 ’ �m1-loop

��c ;

j�3i ’
3'
8
j�Li �

'
8
j�cLi � jScLi; M3 ’ 3m1-loop

��c ;

(5.4)

where now ' � mS=m
1-loop
��c is implied. We still have

two states �1;2 showing a bi-maximal mixing be-
tween the active �L neutrino and �cL whereas the
sterile state ScL appears as separate. Since the masses
lie in the acceptable range, it would be possible to
obtain 3� 2 structural models.
(2) O
ne-loop masses in inert.—There are some differ-
ences between the two models in terms of the re-
quired Z3 charge assignments. First, since both m0

S
and M0L

3 depend on m0
��c linearly in the inert case,

the DS method does not change the hierarchy among
them. So, there are only the three cases as discussed
in Sec. IV after the discrete symmetry is imposed.
Second, an even Z3 charge can be assigned to ucL for
three generations since the �6 term of Eq. (2.3) is
invariant under SU�2�I and it can be eliminated by
Z3 invariance without leading to any problems.
⊗

⊗

(i)
ν

c(j)
Ld

(3)
L d

c(3)
L

h̃
c(α)
L h̃

(3)
L

〈Ñ (β)
L 〉=v

(β)
1

〈S̃c(3)
L 〉=N

(3)
1

λ′i3α
6 λ′3j3

3λ′33β
6

Ah

(b

FIG. 2. The one-loop Dirac masses for ��i�L �
c�j�
L . The indice
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Lastly and most importantly, unlike the ALR case,
the �11 term of Eq. (2.3) is not invariant under
SU�2�I symmetry and is combined with the �4
term [we relabeled both as �01 in Eq. (2.8)]. Thus,
it is not possible to eliminate the tree-level Dirac
mass term (�11) for active neutrinos unless some
further assumptions are made, since eliminating the
�11 term would also eliminate the mass terms forNL
and EL.
The assumption needed could be to take the vev’s of
~Hc zero for the first two generations and to give
mass to the up quarks from ~Hc�3� whose vev is
assumed nonzero. Then the following charges could
be assigned to the fields:

3: �Q;dcL;hL;h
c
L;L;�

c
L�

�i� !
�Q;dcL;hL;h
c
L;L;�

c
L�

�i�;

Hc�1� !
Hc�1�; Hc�2� !
Hc�2�;

Hc�3� !
�1Hc�3�; H�1� !
H�1�;

H�2� !
H�2�; H�3� !
�1H�3�;

Sc�1�L !
�1Sc�1�L ; Sc�2�L !Sc�2�L ;

Sc�3�L !
Sc�3�L ; (5.5)

where

mu � �0ij35 h ~Nc�3�i; md � �0ij,
6 h ~N�,�i;

me � �0ij32 h ~N�3�i; mh � �0ij33 h~Sc�3�i;

mE,;N, � �0ij3
1 h~Sc�3�i; mE3;N3 � �0ij11 h~Sc�1�i:

(5.6)

Here , runs over the first and the second genera-
tions. Then, one-loop diagrams giving nonzero
Dirac neutrino masses are shown in Fig. 2. Under
the same assumptions as in the ALR case for the
calculation of the one-loop integrals, we get

m01-loop
��c � m01-loop�a�

��c �m01-loop�b�
��c ’

Ah�
03j3
3 �0i3,6 mb

32+2

(5.7)
⊗

⊗

ν
(i)
L ν

c(j)
Lh

c(α)
L h

(3)
L

d̃
(3)
L d̃

c(3)
L

〈S̃c(3)
L 〉=N

(3)
1

〈Ñ (β)
L 〉=v

(β)
1

λ′i3α
6 λ′3j3

3λ′3α3
3

Ad

)

s , and - run over first two generations.
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where , � 1; 2. To get a Dirac mass m01-loop
��c <

0:1 eV we need to impose the bound �03j33 �0i3,6 <
7� 10�9 for, � 1; 2. Here, unlike the ALR case, it
is possible to set separate bounds on �03,33 and �033-

6
using the fact that they give masses to the hL and
bottom quark, respectively. These bounds, however,
become weaker. Having Dirac mass in the eV range
makes the mostly sterile state j�3i in all three cases
too light to be detected. The other two states in each
case have the large mixing problem. As in the non-
SUSY case, the DS method is only able to explain
the smallness of the Dirac neutrino mass and not the
mixing.
B. The higher-dimensional operators method

This method adds higher-dimensional interactions to the
Lagrangian, which can substantially modify some of the
fermion mixings. Because of the compactification scale
suppression factor ( � 1019 GeV), it is sufficient to con-
sider only dimension-5 interactions. The method also re-
quires the existence of intermediate scales set by some
SU�2�L singlet Higgs fields from the 27 representation of
E6. So, there will be ~ScL-like and "0

S-like scalars (H1 and
HS) for the ALR model and an HD-like Higgs doublet for
the inert model.4 The vev’s of these fields are written as

h~S
c
Li � !1 and h"Si � !2. Here "S could be replaced

with ~�cL. The dimension-5 interactions can be written as

L �5�
Y �

f
Mc

 T�27�2H�27�CHT�27�2 �27�; (5.8)

where Mc is the compactification scale ( � 1019 GeV) and

the Higgs field H�27� stands for both ~S
c
L and "S. Here C is

the charge conjugation matrix defined as

C �
�2 0
0 2

� �

and we adopt the chiral representation and 2 � i32, where
32 is the Pauli matrix.

The new interactions do not sizably modify any interac-
tion terms in the fermion mass matrices with the exception
of the �cL � ScL submatrix. The matrix in the ��L; �cL; S

c
L�

basis then becomes

M 5 �

0 m��c mS

m��c K1 K12

mS K12 K2

0
@

1
A; (5.9)
will assume that all Higgs fields of 27 whose vev’s are at
ctroweak scale have corresponding 27 Higgs fields with
t the same scale. All Higgs fields from the 27 representa-
ill have opposite quantum numbers with respect to the
n the 27.

113002
where Ki � f�!2
i =Mc�, i � 1; 2, and K12 � 2

������������
K1K2

p
. We

keep the discussion in this section general and applicable to
both the ALR and inert models unless otherwise stated.
Furthermore we note that the ML

3 term in (3,3) entry of the
above matrix is negligible with respect to K2. We now
consider three cases: (a) the case in which there is only
one intermediate scale of the order of 1012 GeV (i.e.
!1 � !2), (b) the case in which !1 is much smaller than
!2 and is of the order of 1 TeV, and (c) the case in
which !2 is much smaller than !1 and is of the order of
1 TeV.

Case (a) with !1 � !2 � 1012 GeV makes K1 and K2

(and thus K12) much bigger than the other entries of the
matrix and of the order of 105 GeV. Here we are assuming
the coupling constant f is of the order of unity. With
big Majorana masses for �cL and ScL, these states decouple.
One light and two heavy physical states are expected.
Under the assumption mS � m��c � K1 � K2 the states
are

j�1;2i ’
1���
2

p �j�cLi � jScLi�;

MH
1;2�K1 � K2� ’ 3K1;�K1;

j�3i ’ j�Li �
5
3
j�cLi �

25
3
jScLi;

ML
3 �K1 � K2� ’

1

3
52K1;

(5.10)

where 5 � m��c=K1 and is of order 10�8, and the ortho-
normality of the states is guaranteed up to O�5� since 52

and higher terms are not included. The �cL and ScL compo-
nents of �3 are shown because their mixing with �L is order
of 5 � 10�8, which is too small to be relevant. We get a
seesawlike small Majorana mass ML

3 �K1 � K2� ’
1
3 5

2K1

for �L, which is around 3� 10�3 eV. Thus, consideration
of case (a) with !1 � !2 � 1012 GeV gives rise to a single
state having acceptable eV range mass with negligible
active-sterile mixing. Furthermore, ScL and �cL appear as
two distinct flavor states in �3.

The above results show that, in order to have two light
states with significant active-sterile mixing, there should be
a substantial hierarchy between K1 and K2 in order that
only one of the states j�1;2i decouples, which leaves two
light states. We now consider case (b) in which !1 is much
smaller than !2. This also leads to a large �L Majorana
mass sincem��c is fixed by the model to be of order 1 MeV.
Thus this case is not realistic. However, one can consider
the opposite case, case (c), where !2 is much smaller
than !1 so that K2 will be much smaller than both K1

and m��c .
5 In this case the approximate states and masses

become
5K2 may be comparable with mS but still big enough to neglect
the ML

3 term in (3,3) entry of the mass matrix in Eq. (5.9).
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j�1i ’ j�cLi; MH
1 �K2 � K1� ’ K1;

j�2i ’
1��������������������

52 � 4A2
p �5j�Li � 2AjScLi�;

ML
2 �K2 � K1� ’ �52K1;

j�3i ’
1��������������������

52 � 4A2
p ��2Aj�Li � 5jScLi�;

ML
3 �K2 � K1� ’ �A2K1

(5.11)

where A � K2=K1 is used. From above one can define the
mixing angle between active and sterile neutrinos as
tan6 � 2A

5 .
Let us consider !1 � 1011 GeV, !2 � 1 TeV, and

mS � 0:01 eV (which does not affect the masses and the
mixing angle much unlessmS is of the order m��c). Then 5
and A are of the order of 10�7 and 10�8, respectively. From
Eq. (5.11), with the set of values taken for the parameters
above, we have MH

1 � 104 GeV, and �1 and �cL decouple
from the others. The masses for �2 and �3 are approxi-
mately 0.1 eV and 2� 10�3 eV, respectively, with tan6 ’
0:19 (6 ’ 10:6o, which is big enough to produce the active-
sterile mixing required by the LSND data). Indeed, unlike
the masses, the mixing angle is very sensitive to the exact
value of K2. The above values are for K2 � 2� 10�3 eV.
Taking 10�3 eV instead would render the angle half as
large. However, the mass for �3 becomes 2� 10�3 eV
while leaving ML

2 �K2 � K1� unchanged. The main point
is that it is possible to have two light states having both
active and sterile components with small mixing compat-
ible with the solar, atmospheric, and LSND neutrino
experiments.

We comment on the case with !2 � 0 as a limiting case
of the above discussion. The important feature is that the
coupling between �cL and ScL disappears. This renders the
above �3 state even lighter6 and leaves the other states
unchanged. However, the �2 and �3 states of Eq. (5.11) will
be completely different. �3 will be almost a pure ScL state
and decouples whenmS is considered negligible (and taken
to be zero). The �2 and �1 states have a very small mixing,
of the order of 5 � 10�7, between �L and �cL. For the case
where mS is not negligible, we should take into account
jML

3 j, which is 2�1v3meec=mEEc in the ALR model and
2m0

��cm
0
eec=m

0
EEc in the inert case. The only modification

will be in �2 and �3 states and, in order to have masses
smaller than 1 eV, ML

3 is allowed to be at most 1 order
of magnitude bigger.7 However, in this case the mixing
between active-sterile flavor states would be too small
( � 3o) while the masses are �0:1 eV. Let us consider
6As a matter of fact, it is massless unless the ML
3 term is

included. So, negligible ML
3 with respect to mS is considered

below.
7mS is assumed to be around 0.01 eV. As before, masses

around 1 eV give physical masses also close to 1 eV and very
large mixing.

113002
the case whereML
3 is at least 2 orders of magnitude smaller

than mS.8 For !1 � 1011 GeV, the masses of �2 and �3 are
0.1 eV and 10�3 eV, respectively, with tan6 ’ 0:1 (6�
5:7o). So, this case also yields a framework with two light
states with an almost fixed active-sterile mixing angle
regardless of how small the Majorana mass of ScL is.
However, the case with nonzero but small !2 compared
to !1 yields a mixing very sensitive to the value of K2

mainly due to the existence of K12 coupling in the matrix.
The possibility of having !2 � 0 (or, in general, one of
vanishing scale) has an advantage over the other cases
discussed above as it may not always be possible to have
two intermediate scale vev’s for both of the singlet fields
whose masses could be nonzero.

The discussion in this section can be generalized to three
generations in a straightforward manner. However, one
must be concerned about dangerous flavor-changing neu-
tral current interactions. Since the Higgs sectors of the
models include three sets of Higgs bosons, one for each
generation, the Glashow-Weinberg theorem [34] will be
violated leading to tree-level flavor-changing neutral cur-
rents mediated by neutral Higgs bosons. In addition, lepton
universality will be broken due to mixing between leptons
and the SU�2�R�R0� gaugino. One can, of course, fine-tune
the relevant couplings or make the relevant Higgs fields
very heavy, but these solutions are unnatural. There are
alternatives discussed in the literature [35,36]. If one choo-
ses a basis such that only one neutral Higgs field, say the
third generation field, gets a vev, and one also considers a
discrete symmetry which distinguishes between genera-
tions, then there will be no mediation of flavor-changing
neutral currents between the first two generations. This can
be achieved by assigning even parity for the third family
Higgs fields and odd parity for those of the first two
families. A classification of such generational symmetries
has been done [36]. Unlike the quark sector, it is not
possible to remove all flavor-changing neutral interactions
from the lepton sector within the above framework.
Bounds on such interactions involving the tau sector are
much weaker than those involving muon-electron interac-
tions, and such models may be phenomenologically
acceptable.

We note that the discussion in this study can also be
carried out within the context of the ANF method. This
would have results similar to the HDO method. However,
our main point is to show that, in the neutral lepton sectors
of the ALR and inert models, it is possible to have a
framework in which sterile neutrinos exist naturally having
small mixings with the active neutrinos, consistent with the
LSND result. As shown above, the HDO method allows us
to realize such a framework and so it is unnecessary to
8Indeed, it does not matter how small ML
3 is. The mixing angle

is not sensitive to the ML
3 parameter and is very stable. ML

3 does
not affect much the masses of �2 and �3 either. So ScL can be
safely considered a pseudo-Dirac particle [33].
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extend the discussion to the more complicated ANF
method as well.
VI. CONCLUSIONS

It is possible that ongoing neutrino experiments, such as
MiniBooNe, will make the necessity of one or more sterile
neutrinos unavoidable. A feature of E6 models is that the
fundamental representation of the group contains a number
of isosinglets that would be natural candidates for such
neutrinos. It is important to analyze these models to see if
the various neutral fermions can give rise to an acceptable
phenomenology. In an earlier paper [20], we considered E6

subgroups which contain an extra SU�2� group, concen-
trating on the ALR and inert models, and we examined the
neutrino spectrum in a nonsupersymmetric framework.

In that paper [20], it was shown that both the ALR and
inert models predict neutrino sectors which are phenom-
enologically unacceptable. The lightest state always con-
tained only isosinglets, and each generation contained
isodoublet neutrino states with masses of the order of the
Q � 2=3 quark mass. Three methods that alleviated these
problems were discussed. The first was the DS method, in
which a discrete symmetry is imposed to eliminate the
tree-level Dirac mass. Dirac neutrino masses can only be
generated at one loop, and the parameters can easily be
adjusted to give masses in the correct mass range. How-
ever, there were still very light isosinglet masses, and no
mixing with the isodoublets. The second method, the HDO
method, required additional Higgs fields and an intermedi-
ate scale. This method used dimension-5 operators to re-
move the very light isosinglets and thus the lightest
neutrino states were isodoublets in the correct mass range.
An interesting feature of this model was that the coupling
of the isodoublet neutrinos to the W boson was somewhat
suppressed. Finally, the ANF method required the exis-
tence of new particles as well as discrete symmetries and
was able to accommodate mixing between the light iso-
doublet neutrinos and the sterile neutrinos.

In this paper, we have considered the supersymmetric
version of the ALR and inert models. An attractive feature
of the supersymmetrization of the models is that the Higgs
fields can be taken to be supersymmetric partners of some
of the exotic neutral fermions in the 27-plet. The ALR and
inert model symmetries then constrain the allowed terms in
the superpotential. If one assumes that R parity is con-
served, then one finds the mass matrix divides into two
sectors. In the R � �1 sector, the active neutrino gets a
large mass, of the order of the Q � 2=3 quark mass, and
mixes maximally with the isosinglet �cL. In the R � �1
sector, one finds two heavy states and one very light iso-
singlet state. Thus one has the same problems as in the
nonsupersymmetric case. However, there is an interesting
alternative. It is possible to mix the two sectors through
soft R-parity violating terms. Several cases were analyzed,
and it was found that the mass and mixing problems still
113002
exist. The only change is that there can now be a small
mixing between the active neutrino and one of the isosing-
let neutrinos.

Thus, it was necessary to go beyond the minimal content
of these models. In the discrete symmetry method, a dis-
crete symmetry, which is generation dependent, was used
to eliminate the Dirac neutrino mass at tree level. As in the
nonsupersymmetric picture, one-loop corrections can give
a mass in the right mass range. Mixing with the isosinglet
�cL, however, remains maximal, and there is no substantial
mixing with other isosinglet neutrinos. We next considered
the higher-dimensional operators method, in which an
intermediate scale is introduced, as well as some isosinglet
Higgs fields from a 27 representation of E6. Various cases
were considered, and it was shown that a fully acceptable
model, with masses and mixing angles in the phenomeno-
logically preferred region, can be obtained. We also briefly
discussed the generation of tree-level flavor-changing neu-
tral currents due to the proliferation of Higgs doublets in
the models, and noted that the currents can be eliminated in
the quark and �e�&� sectors, but not entirely in the 8
sector.
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APPENDIX

In this Appendix, we give the masses and the corre-
sponding states for the case in which R6 parity is included in
the ALR model. We give the description for ALR but
the results apply for inert as well. The results are summa-
rized in Table II. We would like to comment on the
assumptions used to get these results. Recall that ML

3 �
2�1v3meec=mEEc .

For the case (i), mS � jML
3 j � m��c , we keep only

O�ML
3 =m��c� and O�mS=ML

3 � terms but not terms
O�mS=m��c� and O�mS=ML

3 �. The next order correction
to the masses and the states listed in Table II are of the
order O��mS=ML

3 �
2� and O�mS=m��c� which are presumed

very small and negligible. Because of the absence of
O�mS=ML

3 � terms in mass eigenvalues, �1;2 does not have
a ScL component.

For the case (ii), jML
3 j � mS � m��c , onlyO�mS=m��c�

and O�ML
3 =mS� terms are kept, such that the orthogonality

of j�1i and j�2i is satisfied up to the order of �mS=m��c�
2. If

m��c is allowed to have values less than eV, the physical
neutrino states �1;2 in the second row of Table II would
give a 3� 1 structure. This requires extreme fine-tuning.
Furthermore, we should note that the sterile state j�cLi �
�mS=m��c�jScLi mixes maximally with j�Li, which would
be inconsistent with the constraints from the LSND result.
In this case ScL has a small mixing with �cL. The lightest
-11
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state �3 could have the desired light mass, but it is totally
sterile and has no chance to be detected.

Finally, the case (iii), jML
3 j � mS �m��c , which is

possible when we consider fairly large soft-term couplings
&A, is obviously a modification of the case (ii) when m��c

and mS are comparable. To get the results given in the
third row of Table II, we neglected terms of orders
113002
O�jML
3 j=m��c� and O�jML

3 j=mS�. The sterile state is now
composed of �cL and ScL mixing almost maximally and the
almost purely sterile state indeed has an active component
whose mixing is proportional to O�jML

3 j=m��c�. Their
masses are also modified accordingly.
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