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Neutrino masses in effective rank-5 subgroups of E6. I. Nonsupersymmetric case
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The neutral fermion sectors of E6-inspired low-energy models, in particular, the alternative left-right
and inert models, are considered in detail within the nonsupersymmetric scenario. We show that in their
simplest form, these models always predict, for each generation, the lightest neutrino to be a SU�2�L
singlet, as well as two extra neutrinos with masses of the order of the up-quark mass. In order to recover
standard model phenomenology, additional assumptions in the form of discrete symmetries and/or new
interactions are needed. These are classified as the discrete symmetry, higher-dimensional operators, and
additional neutral fermion methods. The discrete symmetry method can solve the problem, but requires
additional Higgs doublets that do not get vacuum expectation values. The higher-dimensional operators
method predicts no sterile neutrino, and that the active neutrinos mix with a heavy isodoublet neutrino,
thus slightly suppressing the couplings of active neutrinos, with interesting phenomenological implica-
tions. The additional neutral fermion method also predicts this suppression, and also naturally includes
one or more sterile neutrinos. This scenario allows the existence of sterile neutrino(s) in either a 3� 1 or
2� 2 structure at low energies, which are favored by the Los Alamos Liquid Scintillation Neutrino
Detector result.
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I. INTRODUCTION

The discovery of solar [1] and atmospheric [2] neutrino
oscillations has provided the first confirmed scenario of
physics beyond the standard model (SM). The combined
results from solar, atmospheric, and long baseline neutrino
experiments are well described by oscillations of three
active neutrinos �e, ��, and ��, with mass squared
splittings estimated to be 5:4� 10�5 < �m2

sol < 9:5�
10�5 eV2 and 1:2� 10�3 < �m2

atm < 4:8� 10�3 eV2

[3]. However, the Los Alamos Liquid Scintillation
Detector (LSND) requires 10> �m2 > 0:2 eV2 [4], a seri-
ous disagreement with the other results. The MiniBooNE
experiment at Fermilab [5] is in the process of checking the
validity of the LSND experiment. Taking at face value the
LSND results, a minimum of four neutrinos seems to be
required to explain all available neutrino data. Measure-
ments of the Z decay width at LEP and at Stanford Linear
Collider restrict the number of active neutrinos to three;
thus one or more of the neutrinos must be ‘‘sterile’’ [6].
Such scenarios have been studied extensively [7–16].
Mixing of sterile and active neutrinos affects directly the
present neutrino experiments and limits have been set on
such mixings. A valid question remains: how natural is it,
in a beyond the standard model scenario, to obtain physi-
cally acceptable mixings between sterile and active neu-
trinos, while maintaining the constraints from weak scale
phenomenology.
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Several extensions of the standard model predict the
existence of exotic fermions. Of these, superstring theories
represent the most promising scenario for a unified theory
of all fundamental interactions. One set of superstring
theories are anomaly-free ten dimensional theories based
on E8 � E8 heterotic strings coupled to N � 1 gravity
[17], with matter belonging to the 27 representation of
E6. Previous interest in the E6 grand unified theories dates
as far back as the 1970’s [18] when it was noted that E6 was
the next anomaly-free choice group after SO�10�, and that
each generation of fermions can be placed in the 27-plet
representation.

The E6 spectrum contains several neutral exotic fermi-
ons, some of which could be interpreted as sterile neutri-
nos. The precise details of mass generation and mixing
with the active neutrinos would depend on which subgroup
of E6 is considered. There are many phenomenologically
acceptable low-energy models which arise from E6. In
this work we concentrate on rank-5 subgroups, which
can always break to SU�3�C � SU�2�L �U�1�Y �U�1��
[19,20].

We analyze neutrino masses and mixings, as well as
active-sterile neutrino assignments and mixing in group
decompositions of E6 under the maximal subgroup
SU�3�C � SU�3�L � SU�3�H to the standard model.
These intermediate subgroups can include extra SU�2�
groups, which give rise to the usual left-right symmetric
model (LR) [21], the alternative left-right symmetric
model (ALR) [22], and the inert model [19,23]. Though
there are small differences among these groups with re-
gards to neutrino masses and mixing, we shall be able to
present a study applicable to all. We keep this discussion
-1  2005 The American Physical Society
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valid for the nonsupersymmetric case, leaving the details
for the supersymmetric scenario to another work [24].

Our paper is organized as follows. We discuss these
models in Sec. II. In Secs. III and IV we analyze neutrino
masses and mixings in the alternative left-right and inert
models, respectively. Both of these models suffer from
predicting too large a Dirac mass for the active neutrinos.
We suggest mechanisms to rectify this problem in Sec. V.
We discuss the implications of our results and conclude in
Sec. VI.
II. THE MODELS

The fundamental representation of E6, the 27-plet,
branches into

27 � �3c; 3; 1� � ��3c; 1; �3� � �1c; �3; 3� � q� �q� l

(2.1)

under the maximal subgroup, SU�3�C � SU�3�L � SU�3�H.
The particle content of the 27-plet for one family under this
decomposition can be written as

q �

u
d
h

0
@

1
A
L

; �q � �ucdchc�L;

l �
Ec N �
Nc E e
ec �c Sc

0
@

1
A
L

:

(2.2)

Here we have used the notation that SU�3�L�SU�3�H�
operates vertically (horizontally) and the minus signs in
front of the fields are suppressed.1 There are three ways to
embed a SU�2�H into the SU�3�H, just as I-spin, U-spin,
and V-spin can be embedded in the SU�3� flavor group.
The best-known breaking is when the first and the second
columns form a SU�2�H doublet; this corresponds to the
LR symmetric model (H � R). An alternative version is
when the first and the third columns form a SU�2�H dou-
blet; this corresponds to the ALR symmetric model (H �
R0). Finally, the second and the third columns can form a
SU�2�H doublet; this corresponds to the inert model
(H � I). In LR, �ucdc�L��ec�c�L�,

Ec N

Nc E

 !
L;

and hcL (and the third column of l) become SU�2�R dou-
blets, a bi-doublet, and singlets, respectively. For the ALR
1We write fields as left-chiral Dirac spinors and throughout the
rest of the paper we use fcL for a fermion field f as a shorthand
notation for �fc�L, as we know that the chiral projection and
conjugation do not commute. Thus, fcL 
 �fR�

c � C"0f�R where

C �
�# 0
0 #

� �
:

Here we adopt the chiral representation and # 
 i%2.
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case, �hcuc�L��ecSc�L�,

Ec �

Nc e

 !
L;

and dcL (and the particles in the second column of l) are the
corresponding ones under SU�2�R0 . Finally in the inert
model, �hcdc�L���cSc�L�,

N �

E e

 !
L;

and ucL (and the particles in the first column of l) are the
corresponding multiplets under SU�2�I.

To determine the U�1� quantum numbers, we need to
look at the electromagnetic charge operator. If we consider
the case where only SU�3�L is broken down to SU�2�L �
U�1�YL , the electromagnetic charge Qem � I3L � Y=2 for
all �q becomes zero. Therefore, SU�3�H ! SU�2�H �

U�1�YH is needed such that SU�2�H and/or U�1�YH can
contribute to Qem. When both SU�2�H and U�1�YH contrib-
ute to Qem, we end up with the LR 2 and ALR symmetric
models. The ‘‘inert’’ model is obtained when the SU�2�H
does not contribute to Qem. We will use the notation H �
R;R0; I;YH � YR;R0;I for the LR, ALR, and inert groups,
respectively. The gauge groups are at the level SU�3�C �
SU�2�L � SU�2�R �U�1�L �U�1�R, SU�3�C � SU�2�L �
SU�2�R0 �U�1�L �U�1�R0 , and SU�3�C � SU�2�L �
SU�2�I �U�1�Y �U�1�

0 for LR, ALR, and inert cases,
respectively [19,25]. It is further possible to break them
into some effective rank-5 forms by reducing U�1�L �
U�1�R�R0� ! U�1�V�L�R�R0� for the LR (ALR) case and
SU�2�I �U�1�

0 ! SU�2�I for the inert case. The quantum
numbers of the particles in ALR and inert models are given
in Table I.

The Higgs sector of the model is sometimes found by
assuming, in the spirit of SUSY models, that the allowed
representations also come from a 27-plet. However, since
we are not considering SUSY models, we do not assume
that all of the states in the 27-plet are present (so colored
scalars will not be introduced, for example). For the ALR
model, we can have HS, singlet under both SU�2� groups,
H1, doublet under SU�2�R0 and singlet under SU�2�L, H2,
doublet under SU�2�L and singlet under SU�2�R0 , and a bi-
doubletH3. The neutral components ofHS,H1,H2, andH3

are scalars with the same quantum numbers as �cL, ScL, NL,
and �Nc

L; �L� and they are from �16; 1�, �1; 1�, �10; �5�, and
��10; �5�; �16; �5�� representations under �SU�10�; SU�5��, re-
spectively. In the case of the inert model, however, the
representations are slightly different [23]. There is no
singlet scalar field �HS� under SU�2�I but an additional
neutral SU�2�I doublet HD is needed. This doublet corre-
sponds to the components �cL and ScL of the fermion dou-
2This is the rank-6 version of the familiar LR symmetric
model.
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TABLE I. The quantum numbers of fermions in 27 of E6 at
SU�3�C � SU�2�L � SU�2�R0 �U�1�V�YL�YR0 and SU�3�C �

SU�2�L � SU�2�I �U�1�Y levels.

State I3L I3R0 I3I V=2 Y=2 Qem

uL 1/2 0 0 1/6 1/6 2/3
ucL 0 �1=2 0 �1=6 �2=3 �2=3
dL �1=2 0 0 1/6 1/6 �1=3
dcL 0 0 �1=2 1/3 1/3 1/3
hL 0 0 0 �1=3 �1=3 �1=3
hcL 0 1/2 1/2 �1=6 1/3 1/3
eL �1=2 �1=2 �1=2 0 �1=2 �1
ecL 0 1/2 0 1/2 1 1
EL �1=2 0 1/2 �1=2 �1=2 �1
EcL 1/2 1/2 0 0 1/2 1
�L 1/2 �1=2 �1=2 0 �1=2 0
�cL 0 0 1/2 0 0 0
NL 1/2 0 1/2 �1=2 �1=2 0
Nc
L �1=2 1/2 0 0 1/2 0

ScL 0 �1=2 �1=2 1/2 0 0
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blet. We parametrize these Higgs doublets vacuum expec-
tation values (vev’s) as

hH1i � �0N1�; hH2i �
v1
0

� �
;

hH3i �
0 v2
v3 0

� �
; hHSi � N2

(2.3)

in the ALR model and

hHDi � �N2N1�; hH2i �
0
v3

� �
;

hH3i �
v1 v2
0 0

� � (2.4)

in the inert model. The quantum numbers and vev’s of the
color-singlet, neutral Higgs fields in 27 of E6 are given in
Table II. We assume that the SU�2�L doublets acquire vev’s
vi � 102 GeV, the symmetry breaking scale of the elec-
troweak gauge group, while the SU�2�L Higgs singlets get
TABLE II. The quantum numbers of fermions in 27 of E6 at
SU�3�C � SU�2�L � SU�2�R0 �U�1�V�YL�YR0 and SU�3�C �

SU�2�L � SU�2�I �U�1�Y levels.

vev I3L I3R0 I3I V=2 Y=2

v1 1/2 0 1/2 �1=2 �1=2
v2 1/2 �1=2 �1=2 0 �1=2
v3 �1=2 1/2 0 0 1/2
N1 0 �1=2 �1=2 1/2 0
N2 0 0 1/2 0 0
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vev’s Ni much larger than the scale of the electroweak
symmetry breaking (that is, Ni � vi). This hierarchy is
needed since no experimental signal for the exotic quarks
and leptons has been observed. The mass terms for the
fermions can be obtained from the dimension-4 Yukawa
interactions of the form LY � ' �27� �27�H�27�. Here
 �27� is the 27-plet of E6 involving leptons and quarks, and
H�27� is the one involving Higgs scalars. The coefficient '
represents the corresponding generation-dependent
Yukawa coupling, where generation indices are sup-
pressed. The explicit mass terms in the above Lagrangian
LY can be written using the fact that each term has total
hypercharge Y zero and is invariant under the gauge group
of the model under consideration (that is, terms invariant
under the SU�3�C � SU�2�L � SU�2�R0 �U�1�V gauge
group for the ALR model and under the SU�3�C �
SU�2�L � SU�2�I �U�1�Y gauge group for the inert
model). Therefore, all the allowed Yukawa terms can be
written with the use of Tables I and II. We consider the
neutral sector of the 27-plet ofE6 in the rest of the paper for
the ALR and inert models. Similar results can be obtained
for LR models.
III. NEUTRINOS IN THE ALR SYMMETRIC
MODEL

We now look at the allowed Yukawa couplings in the
ALR model. For convenience, we use the following nota-
tion:

Q �
u

d

 !
L

�3; 2; 1; 1=6�; Xc � �hcuc�L�3; 1; 2;�1=6�;

L0 �
N

E

 !
L

�1; 2; 1; 0�; F �
Ec �

Nc e

 !
L

�1; 2; 2; 0�;

Lc � �ecSc�L�1; 1; 2; 1=2�: (3.1)
Then, all possible Yukawa terms which are SU�3�C �
SU�2�L � SU�2�R0 �U�1� invariant can be written using
of the Higgs fields in Eq. (2.3). The Yukawa Lagrangian is

LY � �'1�LcFH2 � LcH3L0 �H1FL0�

�
'2
2
�FFHS � FH3�

c
L� � '3QH3X

c � '4d
c
LQH2

� '5hLX
cH1 � '6hLd

c
LHS; (3.2)
where we suppress all generation indices and use a short-
hand notation for each term. So, for example, LcFH2

should be read as �Lc�T#F#H2 with # � i%2. The part of
the Lagrangian relevant to our discussion here is (when the
Higgs fields get vev’s)
-3
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L 0
Y � '1�v1�eLe

c
L � Nc

LS
c
L� � v2e

c
LEL � v3NLS

c
L

� N1�ELEcL � NLNc
L�� � '2�v2�cLN

c
L � v3�L�cL

� N2��eLE
c
L � �LN

c
L�� � '3v3uLu

c
L;

(3.3)

where we have suppressed family indices and include
charged lepton terms and part of the '3 term for later
convenience.3 Here it should be understood that the eLecL
term, for example, stands for �ec�TLCeL 
 eReL.

From the above Yukawa interactions, the Majorana mass
matrix for the neutral fields in the ��L; NL; N

c
L; �

c
L; S

c
L�

basis becomes (for one generation)

M neutral �

0 0 '2N2 '2v3 0
0 0 �'1N1 0 �'1v3

'2N2 �'1N1 0 '2v2 �'1v1
'2v3 0 '2v2 0 0
0 �'1v3 �'1v1 0 0

0
BBBBB@

1
CCCCCA:

(3.4)

Furthermore, we define '1v1 
 meec , '1N1 
 mEEc , and
'2v3 
 m��c since it is clear from Eq. (3.3) that meec ,
mEEc , and m��c are the Dirac mass terms for the electron
eL, the exotic charged lepton EL, and the ordinary (active)
neutrino �L. Note that the SM (active) neutrino gets Dirac
mass from the same source as the up quark. Thus, at the
first stage, there appears to be a large Dirac mass problem
for the neutrinos unless there is a (unnatural) hierarchy
'2 � '3. Unlike the ‘‘conventional’’ seesaw model, we do
not have a large Majorana mass term for the right-handed
neutrino, so other techniques must be used to deal with this
large mass. This problem is also severe in both the inert and
the ordinary LR symmetric models where the active neu-
trinos and up quark (the electron for the LR case) get their
Dirac masses from the same source. We will discuss the
inert model case in the next section. For the ordinary LR
symmetric model, see [27,28] for further details.

The secular equation for the eigenvalues cannot be
solved exactly, and so we expand in powers of vi=Ni. In
this approximation [neglecting O�vi=Ni� terms], there are
two roots of the secular equation which correspond to
states with mass eigenvalue �m��c . The other three mass
eigenvalues can also be determined, again under the as-
sumption that '2v2 �m��c �meec � '2N2 �mEEc ,

R1 ’ �
2m��c�meecmEEc � '22v2N2�

m2
EEc � '2

2N
2
2

;

R2;3 ’ �
����������������������������
m2
EEc � '2

2N
2
2

q
;

(3.5)
3Since this paper is concentrating on neutrinos, we will not
discuss mixing between light and heavy fields in the charged
lepton or quark sectors. Such mixing can have a wide range of
interesting phenomenological effects; see Ref. [26] for a detailed
discussion and a list of references.
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where we neglect the terms of the order vi=Ni. The asso-
ciated eigenvectors with R2 and R3 form a Dirac spinor

with mass
����������������������������
m2
EEc � '2

2N
2
2

q
. R1 is the lightest mass eigen-

value ( � m��c) which represents the lightest mass eigen-
state. The corresponding eigenvectors can be found in a
straightforward manner under the same assumption that we
have used to get the eigenvalues, and the transformation
from the mass eigenstates to the flavor eigenstates becomes

j�Li

jNLi

jNc
Li

j�cLi

jScLi

0
BBBBBBBB@

1
CCCCCCCCA
�

0 '2N2

R � '2N2

R � mEEc

R � mEEc

R

0 mEEc

R � mEEc

R
'2N2

R
'2N2

R

0 1
2

1
2 0 0

'2N2

R 0 0 mEEc

R � mEEc

R

� mEEc

R 0 0 '2N2

R � '2N2

R

0
BBBBBBBBBB@

1
CCCCCCCCCCA

�

j�1i

j�2i

j�3i

j�4i

j�5i

0
BBBBBBBB@

1
CCCCCCCCA
; (3.6)

where R 

����������������������������������
2�m2

EEc � '22N
2
2�

q
.

At this stage there appears another potential problem
in that the lightest mass eigenstate is j�1i �

�1=�
����������������������������
m2
EEc � '2

2N
2
2

q
���'2N2j�cLi �mEEc jScLi�. Both �cL

and ScL transform as singlets under the weak interaction
gauge group SU�2�L. This presumed physical neutrino
state does not couple with the left-handed SM particles at
the low-energy scale where the neutrinos are relevant.4 The
mass is of the order of magnitude of m2

��c=mEEc , which is
the expected order of magnitude for neutrinos. We thus
have two problems: the active neutrinos have a mass of the
same order of magnitude as the up-quark mass, and the
lightest neutrino is composed of SU�2�L singlets. After
considering neutrinos in the inert model, we will address
the above issues and discuss the possible solutions.
IV. NEUTRINOS IN THE INERT MODEL

The neutral fermion mass matrix has similarities with
that of the ALR model. The Yukawa interactions are
invariant under the SU�2�I group which transforms
�NLEL� , ��LeL�, dcL , hcL, and �cL , ScL. By following
the same procedure as for the ALR symmetric model, one
can obtain the Yukawa Lagrangian for the inert group and
the relevant part of it reads
4Even though ScL is a part of the SU�2�R0 doublet and it is
possible to consider its interaction with left-handed SM leptons
through the Higgs bi-doublet at the scales where the ALR gauge
group is not broken.
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L00
Y � '01�v1N

c
LS

c
L � v2�

c
LN

c
L � v3��L�

c
L � NLS

c
L�

� N1�NLN
c
L � ELE

c
L� � N2��LN

c
L � eLE

c
L��

� '0
2�v1eLe

c
L � v2e

c
LEL� � '03v3uLu

c
L; (4.1)

where the '0
3 term is especially included to show that, as in

the ALR case, the �L neutrinos get Dirac masses from the
same Higgs scalar as the up quark. Without fine tuning
between '01 and '03, the inert model has the same Dirac
mass problem for active neutrinos as the ALR. The mass
matrix for one generation in the basis ��L; NL; Nc

L; �
c
L; S

c
L�

is

M 0
neutral �

0 0 '01N2 '01v3 0
0 0 '01N1 0 '01v3

'0
1N2 '0

1N1 0 '01v2 '01v1
'01v3 0 '01v2 0 0
0 '01v3 '01v1 0 0

0
BBBBB@

1
CCCCCA:

(4.2)

Here we recall '0
1v1 
 m0

eec , '
0
1N1 
 m0

EEc , and '01v3 

m0
��c . The secular equation becomes

�R0 �m0
��c��R

0 �m0
��c��R

03 � R0�m02
EEc

� '021 �N
2
2 � v21 � v22� �m02

��c�

� 2m0
��c�'

02
1 v2N2 � '01v1m

0
EEc�� � 0; (4.3)

where there are two eigenvalues �m��c which are exact
(unlike the ALR model). Diagonalization of the mass
matrix gives the following eigenvalues, under the assump-
tion vi � Ni,

R0
1 ’ �

2m0
��c�'

0v1m
0
EEc � '02

1 v2N2�

m2
EEc � '021 N

2
2

;

R0
2;3 ’ �

�����������������������������
m2
EEc � '021 N

2
2

q
; R0

4;5 � �m0
��c :

(4.4)

It is clear from the ALR symmetric model results that there
will be two very heavy neutrinos, one very light neutrino,
and two neutrinos with masses of the scale of
up-quark mass. The lightest neutrino is j�01i �

�1=�
�����������������������������
m02
EEc � '021 N

2
2

q
���'01N2j�

c
Li �m0

EEc jS
c
Li� and suffers

from the same problem that the ALR symmetric model
neutrino does. We will discuss possible remedies for these
problems for both models in the next section.
V. SOLUTIONS TO THE NEUTRINO MASS
PROBLEM

As shown in the last two sections, both ALR and inert
models (as well as the conventional LR symmetric model)
have a Dirac neutrino mass problem at the first stage. This
seems to be a general feature of string-inspired low-energy
E6 models. Both models under consideration predict that
the lightest neutrino state, while having a reasonable mass,
is composed of SU�2�L singlets. Furthermore, in their
113001
neutral fermion spectrum, there are neutrino eigenstates
having masses of the order of the up-quark mass (or the
electron mass for the conventional LR model). There are
three methods discussed in the literature to rectify this
latter neutrino mass problem. The smallness of the neutrino
masses can be achieved by introducing a discrete symme-
try (the DS method) [29–34], or by including nonrenor-
malizable higher-order dimensional operators (the HDO
method) [28,35–37], or using light E6 singlet fields [the
additional neutral fermion (ANF) method] [38–40]. We
discuss the features of the models under consideration for
each of these three methods. As we will see, the predictions
are quite different. The DS method is the most attractive
method among them as it does not require any further
particles or the existence of some intermediate scale.
However, it does not help in non-SUSY framework (at
least for the simplest discrete symmetry) without introduc-
ing many additional particles. The HDO method will offer
a partial solution but does not predict any light sterile
neutrino(s) and requires new Higgs fields from 27 repre-
sentation of E6, and the existence of some intermediate
scale, which further breaks the gauge groups of the model.
The ANF method works well for predicting the lightest
state with sterile neutrino(s) mixing and can explain the
LSND result. However, the method requires a discrete
symmetry as well as new neutral E6 fermion fields, and a
pair of 27� 27 split Higgs multiplets whose vev’s do not
require hierarchical separation.

A. The discrete symmetry method

Following the above discussion, the DS method is the
most economical. The symmetry transformation which is
introduced should restrict the existence of the Dirac mass
term v3�L�cL at tree level in the Lagrangian [Eqs. (3.3) and
(4.1)] while allowing couplings so that one-loop radiative
corrections can be used to generate naturally small Dirac
masses for neutrinos (although it may be necessary to put
some upper limits for products of some Yukawa cou-
plings). The symmetry should also avoid rapid proton
decay.

In the supersymmetric versions of both the ALR sym-
metric and the inert model, there exist leptoquark cou-
plings mediated by hL and hcL particles and these
couplings are needed to induce nonzero one-loop neutrino
mass. Since we do not consider the existence of the Higgs
fields carrying SU�3� color, there is no direct analogy in
non-SUSY scenarios coming from the supersymmetrized
versions of the models. It should be noted that the rapid
proton decay is not an issue.

An example of such a symmetry, which was considered
within the SUSY framework of the general E6 model
[29,30], is Z2 � Z3. The Z2 in that case was related to
SUSY, and in this non-SUSY framework a simple Z3 will
suffice. It is not difficult to see that such symmetries must
be able to differentiate between generations as long as a
-5



FIG. 1. The one-loop Dirac masses for ��-�L �c�j�L where - runs
over only the second and the third generations.
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nonzero one-loop Dirac neutrino mass is generated while
at the same time eliminating the tree-level mass term (see
[33,34] for details).

In both models considered here, tree-level masses of
both the neutrinos and the up quark are obtained from
the Higgs field with vev v3. As we shall show shortly,
eliminating the v3 term will cause difficulty. Let us con-
sider the ALR model. The inert model has very similar
features. For a one-loop Dirac neutrino mass, as depicted in
Fig. 1 for a specific choice, the H0

1 SU�2�L Higgs singlet,
H2, and H3 SU�2�L Higgs doublets must all participate.
Restating their particle content from Eq. (2.3),

H1 � �H�
1 H

0
1�; H2 �

H0
2

H�
2

� �
; H3;1 �

H�
3

H0
3

� �
;

(5.1)

where hH0
2i � v1, hH0

3i � v3, and hH0
1i � N1. Here H3;1

represents the first column of the H3 bi-doublet. Then the
relevant terms in the Yukawa Lagrangian Eq. (3.3), includ-
ing the charged Higgs fields interactions, are

�LALR � '1�H
0
2eLe

c
L �H�

2 �Le
c
L �H�

1 EL�L

�H0
1ELE

c
L� � '2�H

0
3�L�

c
L �H�

3 �
c
LeL

�H�
2 E

c
L�

c
L�: (5.2)

We also need the trilinear Higgs interactions to compute
the diagram given in Fig. 1. The allowed interactions are

�LH � �'HH
T
2 #H3H

0
1 � 'HH

�
2 H

�
3 H

0
1 � 'HH

0
2H

0
3H

0
1 ;

(5.3)

where 'H is a dimensionful constant.
Without specifying the charges of the fields under the

discrete symmetry, let us consider the one-loop mass dia-
gram. One can assign suitable charges to both Higgs and
113001
fermion fields such that the H0
3�L�

c
L term, a tree-level

Dirac mass term for �L, is transformed to itself with a
nonzero phase factor and one is then required to set '2 to
zero for all 3 generations. If the SM charged leptons and
H�

2 and H�
3 fields are circulating in the loop, the H�

3 �
c
LeL

interaction is also proportional to '2, thus this diagram
vanishes. For the case when EL; EcL are circulating in the
loop instead of the SM charged leptons, it is still necessary
to have a nonzero '2 [clear from Eq. (5.2)] to get a one-
loop Dirac mass for �L. Therefore, eliminating H0

3�L�
c
L by

the Z3 symmetry also prevents one-loop mass generation.
This fact remains true for higher-order loops. The same
conclusion applies for the inert model as well.

One could consider the possibility that v3 could be zero.
Then '2 does not need to be zero and one-loop Dirac
neutrino mass generation is possible. In that case, however,
all the up quarks (u; c; t) become massless at tree level and
generating the top-quark mass from a loop diagram is very
unlikely, within the context of perturbation theory.

It still is possible to generate a one-loop Dirac neutrino
mass if many additional fields are introduced. For example,
if one allows for ‘‘generations’’ of Higgs fields, then the '
parameters above are all third rank tensors. In such a case,
one can arrange the potential so that some of the H3 vev’s
vanish. Then the discrete symmetry can couple �L�cL to
fields that do not get vev’s, thus allowing a one-loop Dirac
mass to be generated. To do that, let us assign the following
charges for the matter fields under Z3:

Z3: �Q;dcL; hL; h
c
L;L;�

c
L�

�i� ! ��Q;dcL; hL; h
c
L;L;�

c
L�

�i�;

F�1�
1 ! ��1F�1�

1 ; F�2�
1 ! F�2�

1 ; F�3�
1 ! �F�3�

1 ;

H�1� ! ��1H�1�; H�2� ! �H�2�; H�3� !H�3�;

Sc�1�L ! ��1Sc�1�L ; Sc�2�L ! �Sc�2�L ; Sc�3�L ! Sc�3�L ;

(5.4)

where F1 is the first column of the bi-doublet F, and
similarly the Higgs fields as

Z3: H
�1�
3;1 ! ��1H�1�

3;1; H�2�
3;1 ! H�2�

3;1; H�3�
3;1 ! �H�3�

3;1;

H�1�
2 ! ��1H�1�

2 ; H�2�
2 ! �H�2�

2 ; H�3�
2 ! H�3�

2 ;

H0�1�
1 ! ��1H0�1�

1 ; H0�2�
1 ! �H0�2�

1 ;

H0�3�
1 ! H0�3�

1 ; H�i�
3;2 ! �H�i�

3;2; H�i�
S ! �H�i�

S ;

(5.5)

where the rest of the fields are assumed to be invariant
under Z3 and �3 � 1. In this particular choice we take the
vev ofH3;1, v

�3�
3 as zero. Then, the Lagrangian for the ALR

symmetric model, given in Eq. (3.2) reduces to
-6
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LY � �'1-/1 �H�1�
2 L

�-�ec�/�L �H�1�H�-�
3;2 e

c�/�
L �H�1�L�-�H��/�

1 �H�1�
2 F

�-�
1 Sc�/�L �H�1�H�-�

3;1S
c�/�
L �H�1�F�-�

1 H0�/�
1 �

� '3ij2 �H�3�
3;1L

�i��c�j�L � F�3�
1 H

�i�
3;2�

c�j�
L � F�3�

1 L
�i�H�j�

S � � '1ij3 �H�1�
3;1u

c�i�
L Q�j� �H�1�

3;2h
c�i�
L Q�j�� � '2ij

4 H
�2�
2 Q

�i�dc�j�L

� '2ij5 H�2�
1 h

�i�
L h

c�j�
L � 'ijk6 h

�i�
L d

c�j�
L H�k�

S ; (5.6)
where - and / run only over the second and third gen-
erations. Now, the only tree-level Dirac mass term for �L,
'3ij
2 H�3�

3;1L
�i��c�j�L , vanishes if all the particles are neutral due

to zero vev v�3�3 . Note that writing the Lagrangian for the
inert model can be done easily by applying the following
substitutions to Eq. (5.6): F1 , L0, ucL , dcL, ec , �c,
H3;1 , H2, H1 ! HD, HS ! 0. The grouping of the terms
in the inert case will be slightly different. We will stick to
the ALR case in the rest of the subsection.

Because of the radiative corrections based on the re-
maining interactions given in Eq. (5.6), ��i�L �

c�j�
L Dirac

masses are induced through one-loop diagram shown in
Fig. 1. If we assume that the product 'HN1 is of the same
order as the charged Higgs masses, which are further
assumed degenerate and much heavier than any fermion
in the loop, the magnitudes of the Dirac masses are roughly
estimated as

M-j
��c �

m��c

1622 '
1-3
1 '33j2 : (5.7)
6It is safe to neglect them since they are suppressed by some
quadratic, cubic, or higher powers of the compactification scale,

18
In order for such radiative masses to be of the order of
10�1 eV, the product of the relevant Yukawa couplings
'1-3
1 '33j

2 should be less than O�10�8�. It is further possible
to generate very light Majorana masses for both ScL and �cL
through one loop.5 Majorana masses for ScL are obtained by
replacing the tau lepton in Fig. 1 with the E lepton, but are
very suppressed ( � '21m

2
H�=mEEc) and similarly for �cL. If

we include these Majorana masses, this opens up the
possibility of having so-called pseudo-Dirac neutrinos
when MScSc ;M�c�c � M��c is satisfied [41].

Such models have far too many parameters to be pre-
dictive and are very contrived. We thus turn to the HDO
and ANF schemes, which are much more predictive.

B. The HDO method in the ALR and the inert models

This method has been discussed in the framework of the
rank-6 version of the LR symmetric model [28] where it
has been shown that the higher-dimensional operators,
specifically dimension-5 operators, give sizable contribu-
tions to the neutral sector of the fermion mass matrix. The
5Neither NL nor Nc
L can get such one-loop Majorana masses in

this framework.
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method requires the existence of an intermediate scale at
which the group is broken to the SM gauge group. Two of
the Higgs fields (for our discussion,H1 and HS in the ALR
case, and HD in the inert case) will acquire vev’s of the
order of the intermediate scale ( � 1011 GeV).

The leading HDO Yukawa interactions are the
dimension-5 operators. If we neglect the contributions
coming from operators with dim>5,6 the nonrenormaliz-
able dimension-5 operator is

L �5�
Y �

f
Mc

 T�27�#H�27�CHT�27�# �27�; (5.8)

where the Higgs fields H are from the 27 representation of
E6 and their quantum numbers are taken as the opposite of
the ones listed in Table II. Here,Mc is the compactification
scale, or 1018 GeV. The inclusion of the above dimension-
5 interactions will modify all entries in the fermion sector
(both the charged and the neutral fields). However, from
Table I, it is possible to show that except the �cL � ScL
submatrix in the neutral sector all entries get contributions
which are negligible compared with their dimension-4
entries.7

The �cL � ScL submatrix, a null 2� 2 matrix at the
dimension-4 level, becomes, in the ALR model,

M �c�Sc �
K1 K12

K12 K2

� �
; (5.9)

where K12 
 2f��N1N2�=Mc� and Ki 
 f�N2
i =Mc�.

Obviously, Ki � K12 ’ 104 GeV for an intermediate scale
1011 GeV and the coupling constant f is of order of unity.
The nonzero 2� 2 submatrix with large entries gives a
new ‘‘seesaw-like’’ structure to the 5� 5 matrix. The
submatrix in the ��cL; S

c
L� basis will induce small but non-

zero entries in the upper-left 2� 2 submatrix spanned by
��L; NL�. The mass eigenvalues for the matrix in Eq. (3.4)
with the above modification become
Mc ( � 10 GeV).

7Negligible contributions are either 0, or fvivj=Mc, or
fviNj=Mc form to the appropriate entries, but not fNiNj=Mc.
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R1 ’
�'1'2v3

������
K1

p
N2 �m��cMEEc

������
K2

p
�2 � '1'2v3N2m��cmEEcK12

�m2
EEc � '22N

2
2��K

2
12 � K1K2�

; R2;3 ’ �
����������������������������
m2
EEc � '22N

2
2

q
;

R4;5 ’
1

2
�K1 � K2 �

����������������������������������������
�K1 � K2�

2 � 4K2
12

q
�;

(5.10)

where we use the assumptions vi � Ki � K12 � mEEc � '2N2 and neglect all the m2
i terms. The first apparent

modification from the mass eigenvalues is that the states with masses R4;5, which previously had masses of the order of
the up-quark mass, now get modified at the scale K1;2;12 � 104 GeV. After the diagonalization, the transformation matrix
(analogous to the dimension-4 case [Eq. (3.6)] in the dimension-5 level) is

j�Li
jNLi
jNc

Li

j�cLi
jScLi

0
BBBBB@

1
CCCCCA �

a1mEEc 0 0 a1'2N2��
2

p a1'2N2��
2

p

�a1'2N2 0 0 a1mEEc��
2

p a1mEEc��
2

p

0 0 0 1��
2

p � 1��
2

p

0 a2K12 a3K12 0 0
0 a2�R4 � K1� a3�R5 � K1� 0 0

0
BBBBBB@

1
CCCCCCA

j�1i
j�2i
j�3i
j�4i
j�5i

0
BBBBB@

1
CCCCCA; (5.11)

����������������������������q

where a1 
 1= m2

EEc � '2N
2
2 , a2 


1=
�������������������������������������
K2

12 � �R4 � K1�
2

q
, a3 
 1=

�������������������������������������
K2

12 � �R5 � K1�
2

q
. The

above matrix elements are derived in the same limit as
we used before to get the mass eigenvalues. Now, the
spectrum consists of one light state, �1, and four heavy
states, �2;3;4;5. Moreover, the light state is formed by the
flavor states �L and NL of the form

�1 ’
1����������������������������

m2
EEc � '2

2N
2
2

q �mEEc j�Li � '2N2jNLi�; (5.12)

which is an acceptable physical state as both �L and NL are
members of two different SU�2�L doublets. Therefore our
physical neutrino state can now couple with the electron
and the other SM particles in a desired way. The mass of
the state is still as light as m2

��c=K1;2;12 [or �'1v3�2=K1;2;12]
�0:02 eV when we take the m��c around the mass of the
up quark.

One can repeat the same calculation for the inert model.
The features are very similar. Except for the �cL � ScL
submatrix, all other entries get negligible contributions
from Eq. (5.8) and in the submatrix, the corresponding
SU�2�I Higgs doublet HD from the 27-plet of E6 is in-
volved and the submatrix will be the same as the one in
Eq. (5.9). The eigenvalues are slightly different from the
ones given in Eq. (5.10),

R0
1 ’

m02
��c�'

02
1 N2K1 �m02

EEcK2 � 2'0
1N2m

0
EEcK12�

�m02
EEc � '022 N

2
2��K

2
12 � K1K2�

;

R0
2;3 ’ �

�����������������������������
m02
EEc � '022 N

2
2

q
;

R4;5 ’
1

2


K1 � K2 �

����������������������������������������
�K1 � K2�

2 � 4K2
12

q �
;

(5.13)

under the same assumptions as previously stated. Then the
transformation matrix can be formed by finding the corre-
sponding mass eigenstates and it has the same form as the
one in the ALR model given in Eq. (5.11). Note that the
113001
results differ from each other when we, for example, keep
terms in the O�vi=Ni; vi=K1;2;12� order. The lightest state
�01 is composed of �L and NL of the form

�01 ’
1�����������������������������

m02
EEc � '021 N

2
2

q �m0
EEc j�Li � '0

1N2jNLi�; (5.14)

where the flavor states �L and NL mix, like in the ALR
model. From these results we see that the HDO method
solves the problems in both models, under the assumption
that there exists an intermediate scale at the order of
1011 GeV and both N1 and N2 get vev’s at that scale.

Since there is only one light state (per generation, of
course), there is no sterile neutrino in the model. The NL
only couples to the E, which is very heavy, and the net
effect of the mixing (in either the ALR or inert model) will
be to lower the coupling of the electron neutrino to the
electron and WL boson. For the ALR case (the inert case is
basically the same), the coupling is reduced by a factor of

'1N1=
�����������������������������
'21N

2
1 � '22N

2
2

q
. Since the mixing must be small,

'2N2 � '1N1, and this factor then becomes 1�
'22N

2
2=2'

2
1N

2
1 .

This reduction would give a very clear signature for the
model. The electron neutrino would not oscillate into a
sterile neutrino (ignoring intergenerational mixing), and
yet its coupling is reduced relative to the standard model.
Similar reductions would occur for the muon and tau
neutrino interactions. The phenomenological implications
of this reduction will be discussed in the next section.

C. The additional neutral fermion method

In some E6-based superstring-based models, such as
those with Calabi-Yau compactification, in addition to
the 27 and 27 representations of E6 for the matter multip-
lets, there typically exist split multiplets, parts of the 27�
27 representations, as well as some E6 singlets 1 [42–44].
We have already considered the existence of such Higgs
-8
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multiplets by considering 27 components of the above
27� 27 representation inducing dimension-5 terms (of
the form discussed in the previous subsection). In addition
to the �27�3 and the higher-dimensional �27 � 27�2 types of
interactions, we may have the 27 � 27 � 1 type of interac-
tions as well. The ANF method follows this approach. The
existence of E6 singlets (and thus the 27 � 27 � 1 interac-
tions) has been discussed in different context of the super-
string models [38–40] to tackle the rapid proton decay
problem, the large neutrino mass problem, and others. In
order to give light neutrino masses consistent with present
experimental observations, the additional Higgs fields are
required to have vev’s chosen in a strong hierarchical way,
which seems unnatural. Such an odd pattern, however, is
not necessary in the non-SUSY versions of the models
discussed here. We discuss the method in the ALR sym-
metric model and later point out the difference with the
inert model.

In the ALR model, we consider one additional E6 neu-
tral fermion singlet8 6, and one pair of 27� 27 Higgs
8For simplicity, we assume one additional field 6 even when we
section.

9In principle, one can add such new fields and the corresponding in
as the number of new parameters are concerned.
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multiplets H �H (the Betti-Hodge number b1;1 � 1). We
do not include a corresponding 27� 27 chiral fermion
multiplet relevant for supersymmetrized versions of the
models considered in future studies.9 Let us assume that
both H and H have �c-like and Sc-like components
H�c;Sc ; H�c;Sc . Since we do not want to alter the interactions
in the �27�3 sector discussed earlier, we assume that only
H�c;Sc get nonzero vev’s and further, that there is a Z2

discrete symmetry under which all fields except 6;H�c;Sc

and H�c;Sc have even charges. Therefore, two additional
gauge invariant interactions for one generation survive of
the form

�L6
ALR � 'SScLHSc6� '��cLH�c6: (5.15)

Then, the mass matrix in the neutral fermion sector in the
(�L; NL; Nc

L; �
c
L; S

c
L; 6) basis can be obtained directly by

adding a column and a row for the 6 field to the one given
in Eq. (3.4),
M neutral �

0 0 '2N2 '2v3 0 0
0 0 �'1N1 0 �'1v3 0

'2N2 �'1N1 0 '2v2 �'1v1 0
'2v3 0 '2v2 0 0 '�V
0 �'1v3 �'1v1 0 0 'S�
0 0 0 '�V 'S� 0

0
BBBBBBBB@

1
CCCCCCCCA
; (5.16)

where we define hHSci 
 � and hH�ci 
 V.
The eigenvalues can be found by following the same methodology as before and under the assumption vi; meec ; m��c �

N1; N2; �; V (we assume Ni ��;V) giving

R1;2 ’ �
m��cmeec�'2N2��'S���'�V�

�'2
2N

2
2 �m2

EEc��'
2
S�

2 � '2
�V2�

; R3;4 ’ �
�����������������������������
'2
S�

2 � '2�V
2

q
; R5;6 ’ �

����������������������������
'22N

2
2 �m2

EEc

q
: (5.17)

Now, we have two light eigenvalues R1;2. The masses of these states can be approximated as �m��cmeec�=mEEc and could
possibly be in the experimentally favored region while obeying the experimental bounds on �L � NL mixing. It is
straightforward to get the mass eigenstates corresponding to the above eigenvalues. The transformation matrix equation
from mass to flavor eigenstates is given by

j�Li
jNLi
jNc

Li

j�cLi
jScLi
j6i

0
BBBBBBBB@

1
CCCCCCCCA
�

mEEc cos8
R5

mEEc sin8
R5

0 0 1��
2

p '2N2

R5

1��
2

p '2N2

R5
�'2N2 cos8

R5

�'2N2 sin8
R5

0 0 1��
2

p mEEc

R5

1��
2

p mEEc

R5

0 0 0 0 1��
2

p �1��
2

p

�'S� sin8
R3

'S� cos8
R3

1��
2

p '�V
R3

1��
2

p '�V
R3

0 0
'�V sin8
R3

�'�V cos8
R3

1��
2

p 'S�
R3

1��
2

p 'S�
R3

0 0

0 0 1��
2

p �1��
2

p 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

j�1i
j�2i
j�3i
j�4i
j�5i
j�6i

0
BBBBBBBB@

1
CCCCCCCCA
; (5.18)
extend our discussion to the three-generation case later in this

teractions. We would like to be as conservative as possible as far
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where R3 and R5 are given in Eq. (5.17). The parameter 8 is
arbitrary in the model, but it would be fixed both by the
requirement that the coupling of WL to neutrinos and
leptons must be in agreement with the experimental data
and by the required mixing angle between active and sterile
neutrinos. The mass eigenstates j�3i, j�4i, j�5i, and j�6i
corresponding to eigenvalues R3;4;5;6, respectively, are
heavy and irrelevant to our discussion at low energies.
There are two light mass eigenstates of the form

j�1i � cos8
�
mEEc

R5
j�Li �

'2N2

R5
jNLi

�

� sin8
�
'�V
R3

jScLi �
'S�
R3

j�cLi
�
;

j�2i � sin8
�
mEEc

R5
j�Li �

'2N2

R5
jNLi

�

� cos8
�
'�V
R3

jScLi �
'S�
R3

j�cLi
�
: (5.19)

The above results apply to the inert group, with an addi-
tional constraint coming from SU�2�I symmetry. Since �L
and ScL form a SU�2�I doublet, the couplings '� and 'S are
required to be equal.

Thus, we have two interesting features of the model. The
slight suppression of the coupling of the active neutrino
discussed in the last subsection is present. However, now
we also have a sterile neutrino with an arbitrary mixing
angle with the active neutrino. This model could then
easily accommodate the LSND result (if confirmed by
MiniBooNE).

With the addition of only one singlet, for simplicity,
there are three active neutrinos. In this case, 'S and '�
have generation indices. Each active neutrino has a light
mass, and will mix with an arbitrary mixing angle with the
sterile neutrino. Note that in the single-generation case, the
two light mass eigenstates are, to leading order, identical.
Thus, if the mixing angle is small for two of the three
generations, we will have a 2� 2 structure, whereas if it is
sizable for all three generations, there will be a 3� 1
structure. Of course, one could introduce several singlet
fields, giving more complicated structures.

VI. DISCUSSION OF THE RESULTS

If the LSND result is confirmed by MiniBooNE, the
existence of sterile neutrino(s) at low energies might be
unavoidable. Thus it is important to analyze extensions of
the standard model which predict the existence of extra
neutral fermions, and verify that they have the desired
experimental features. Though we have explicitly con-
sidered here the E6 subgroups, SU�3�C � SU�2�L �
SU�2�R0 �U�1�V (ALR) and SU�3�C � SU�2�L �
SU�2�I �U�1�Y (inert), and concentrated on the neutrino
spectrum in non-SUSY framework, our work is valid for
the SU�3�C � SU�2�L � SU�2�R �U�1�V (LR) group as
well.
113001
These models predict several exotic neutral fermions.
We have shown that both the ALR and inert models gen-
erally predict neutrino sectors inconsistent with current
observations. The lightest state turns out to contain only
SU�2�L singlets (�cL and ScL) which do not interact with SM
particles. Additionally, in contradiction with present ex-
perimental observations, two more light neutrino states
with masses around the up-quark mass exist. The main
reason for such a spectrum is the existence of a tree-level
Dirac mass term in the Lagrangian. We have discussed
three possible remedies to this problem.

The most attractive one is the DS method which only
requires imposing an extra symmetry. The aim is to elimi-
nate the tree-level Dirac mass term by assigning suitable
charges to the fields under some discrete symmetries, and
generate Dirac neutrino masses through radiative correc-
tions. The discrete symmetry needs to distinguish gener-
ations. As discussed earlier, there is no way to induce a
nonzero one-loop Dirac mass while eliminating the tree-
level term. The only way out is to have a SU�2�L Higgs
doublet (a part of the bi-doublet) with vanishing vev. For
this, we considered the simplest symmetry, Z3. It leads to
Dirac masses from one-loop diagrams which are estimated
around 10�1 eV, by imposing an upper bound to the prod-
uct of the Yukawa couplings of the order of 10�8. It is also
possible to generate very light Majorana masses for ScL and
�cL. Since these masses are much smaller than the Dirac
mass term for �L, a spectrum with pseudo-Dirac neutrinos
is obtained.

The HDO, the second method, requires additional Higgs
fields from 27-plet of E6 and the existence of some inter-
mediate scale. We introduce interactions which are sup-
pressed by one power of the compactification scale,
through dimension-5 operators. The method solves the
mass problems but does not predict any sterile neutrino
component(s) in the lightest neutrino state, which is an
admixture of �L and NL. The effect of the mixing will be
to lower the electron neutrino coupling to the electron and
the WL boson by a factor of 1� 1

2 �
2
e, where �e �

'2N2='1N1. The reduction for the muon and tau neutrino
interactions will be given by the same expression, with �e
being replaced by �� and �� (which depend on different
'i and Ni). The phenomenological implications are inter-
esting. If the �i are different, then e��� � universality
will be violated in neutrino interactions. By comparing the
muon decay rate and the rate for leptonic tau decays, one
finds [45,46] that the reductions of 1� 1

2 �
2
i cannot differ

by more than 0.005. Even if the �i are all the same,
however, one would still find a discrepancy in, for example,
�! 2�� vs �! �����, which would depend on ��,
with a similar dependence on the electronic decay.
Comparing all of these bounds, we find that none of the
reductions can exceed 0.005, leading to a bound, for each
generation, of '2N2='1N1 < 0:1, which is not particularly
fine tuned. A more detailed study comparing many had-
-10
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ronic decays with the leptonic decays of the � could lead to
a somewhat more precise bound (or, better yet, an indica-
tion of a discrepancy).

The last method we have discussed is the ANF, which
requires the existence of both new particles and discrete
symmetries. If one considers an E6 singlet field, the addi-
tional interactions will be of the type 27 � 27 � 1, which
further require additional Higgs doublets from the 27� 27
representation. In order not to alter already existing cou-
plings, the vev’s of the new fields need to be chosen
suitably, together with an additional Z2 symmetry. Under
these circumstances we obtain two light states given in
Eq. (5.19). The neutrino states have an active neutrino part
of exactly the form predicted by the HDO method, but this
time they mix with a sterile flavor state (formed by �cL and
ScL). The mixing is completely arbitrary. If we extend the
picture to three generations, the model contains two struc-
tures, 2� 2 and 3� 1, which have been discussed exten-
sively in the literature [47]. When the above mixing is
113001
sizable only for one generation, only the 2� 2 structure
arises naturally, since the states in Eq. (5.19) are degenerate
in the leading order. Otherwise, 3� 1 is possible. More
realistically, when we include three generations of �cL and
ScL, we obtain a 3� 3 structure.

Recent analyses show that neither 2� 2 nor 3� 1 pro-
vide a good description of the combined atmospheric,
solar, reactor, and accelerator data even though it appears
that 3� 1 works better. However, there is no consensus
about whether the scenarios with four neutrinos are ruled
out or not [15,47]. From our considerations, the ANF
method allows both 3� 2 or 3� 3 structures, which en-
hance the effects in favor of LSND data [15].
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