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Noncommutative field theory: Nonrelativistic fermionic field coupled to the Chern-Simons field in
2 + 1 dimensions
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We study a noncommutative nonrelativistic fermionic field theory in 2 + 1 dimensions coupled to the
Chern-Simons field. We perform a perturbative analysis of the model and show that up to one loop the
ultraviolet divergences are canceled and the infrared divergences are eliminated by the noncommutative

Pauli term.
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I. INTRODUCTION

The noncommutative Aharonov-Bohm (AB) effect for
scalar particles has been studied in the quantum mechani-
cal [1,2] and in the field theory contexts [3]. As in the
commutative case, in the latter case the effect was simu-
lated by a nonrelativistic field theory of spin zero particles
interacting through a Chern-Simons (CS) field. Differently
from its commutative counterpart, however, the model
turns out to be renormalizable even without a quartic
self-interaction of the scalar field (the quartic self-
interaction is however necessary if a smooth commutative
limit is required). It is known that, in the commutative
situation, the Pauli term plays for the spin 1/2 AB scatter-
ing [4] the same role as the quartic interaction plays for the
case of scalar particles [5]. One may then conjecture that a
noncommutative Pauli interaction is also not necessary at
least as a prerequisite for renormalizability. In this brief
note we will prove that this conjecture indeed holds, the
Pauli term being necessary to obtain a smooth result in the
commutative limit but not to fix the ultraviolet renormaliz-
ability of the model. Our analysis is based on the (2 + 1)
dimensional model described by the action
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where the Pauli term is the one explicitly involving the
magnetic field B = —F,, = 9,A> — 9,A! — ig[A!, A?],
with [A',A?], =A'% A% — A% A" and the one-
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component fermion field ¢. The fermion field, depending
on the sign of A, represents either a spin-up or a spin-down
particle.

In these expressions ¢ (x) * ¢,(x) denotes the Moyal
product of ¢(x) and ¢, (x):

¢1(X) * d’z(x) = li_r})lce(m)®W[a/(ay#)][a/(axy)]¢1 (Y)ff’z(x),
(1.2)

where the constant and antisymmetric matrix @, gives a
measure of the noncommutativity strength. To evade pos-
sible unitarity and/or causality problems [6], we will keep
time local by imposing &, = 0 (other noncommutative
aspects of nonrelativistic fermions interacting with the CS
field were considered in [7,8]). We set also 6%/ = A&/ with
&'/ being the two-dimensional Levi-Civita symbol, nor-
malized as !> =

Observe that a Coulomb-type gauge fixing and the cor-
responding Faddeev-Popov terms have already been in-
cluded in the action (1.1). The covariant derivatives in
Eq. (1.1) are given by

D=0 +igho*tp,  Dip = 9;h + igA; * ¢,

(1.3)

so that the above action is invariant under the small Becchi-
Rouet-Stora-Tyutin transformation,

S = igec* P, (1.4)
0A, = —eD,c = —€(d,c+iglA, cl. (1.6)
e =0 )
€ .
55 — _aiAl’ (18)
3

where € is a position-independent anticommuting parame-
ter. For convenience, we will work in a strict Coulomb
gauge obtained by letting £ — 0. As is well known, one
Moyal product (one asterisk) may be eliminated in each
term under the action integral; therefore, the quadratic

© 2005 The American Physical Society



BRIEF REPORTS

terms in the action and the corresponding propagators are
the same as in the commutative model.

We will use a graphical notation where the CS field, the
matter field, and the ghost field propagators are represented
by wavy, continuous, and dashed lines, respectively. The
graphical representation for the Feynman rules is given in
Fig. 1 and the corresponding analytical expressions are:

(i) (i) The matter field propagator:

i

S(p) = R (1.9)
Po — % + i€
(i1) (ii) The ghost field propagator:
i
G(p) = ——=. (1.10)
p

(iii) (iii) The gauge field propagator in the limit £ — 0
is

LA
SMW\k
xkk? ’

D, (k) = (1.11)
where i* = (0, k).
Because of the explicit appearance of the B field in
the Pauli term, it is convenient to have at hand the
mixed propagator
i
Ay p(p) = e (1.12)
obtained directly from Eq. (1.11).
(iv) (iv) The analytical expressions associated with the
vertices are

I(p, p') = —ige'r?7, (1.13)
i / ig Ni ,ipfp'
'(p, p') = 3= (p + p) e, (1.14)
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FIG. 1. Feynman rules for the action (1.1). The black blob on
the T'J vertex (which is associated with the noncommutative
Pauli term) is to distinguish it from the T'” vertex.
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Lot (P, P') = —2gp" sin(pop”),  (1.15)

TP (ky, ky) = 2igrel? A sin(k,0k,),  (1.16)

T (ky, ks, p, p') = 2igAsin(k, 0k,)e'P?? i,
1.17)

. 2
Tii(ky, ky, p, p') = — -2 cos(k, 0k,)eiP?? 81,
m
(1.18)

I'B(p, p') = irer??' (1.19)

In these expressions we have defined k;0k, =
16#7ky ks,

II. PARTICLE-PARTICLE SCATTERING

A. Tree level scattering

In the tree approximation and in the center-of-mass
frame, the two body scattering amplitude, depicted in
Fig. 2(a), is given by

2 0( )= - 2ig2(p1 A p3) ei(P10p3+p20ps)
¥ mk (p1 — p3)?

e {(P10p3tp20ps)
:| (2.1)

ey

where p;, p, and ps, p4 are, respectively, the incoming and
outgoing momenta. Since ¢;; = ¢;;, the phase is p,;6p; +
p20ps, = 6(p, Ap;) = Op’sing = Osing, where we
have defined 6 = p> and ¢ is the scattering angle.
Therefore, Eq. (2.1) can be rewritten as

) i0 sing —ifsing
AVp) =8| ¢ S sing.  (2.2)
mk|1l—cose 1+ cose
For the graph in Fig. 2(b), we have
4gA = .
Alp) = — % cos(f sing). (2.3)

Thus, the full tree level amplitude is

P1 P3 P1 § pP3
P2 P4 P2 P4
e
a b

FIG. 2. Tree level scattering. Another contributing diagram
similar to (b) but with the ends of the A,  exchanged was not
drawn.
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Ag) = ~ L [eot(p/2)e™ — tan(g/2)e™751¢]
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4gA -
_ 184 cos(f sinep), (2.4)
K
furnishing up to first order in the parameter 6,
0 2ig” 32
A p) = ——(cotep + if) — —— + 06%). (2.5
mK

Notice that the noncommutative contribution is isotropic
although energy dependent.

B. One-loop scattering

The one-loop contribution to the scattering amplitude is
depicted in Fig. 3. Two other diagrams, corresponding to
graphs 3(b) and 3(c) with the upper and bottom fermionic
lines exchanged, are not explicitly shown. All other pos-
sible one-loop graphs vanish. The expressions for the con-
tributions of the box, triangle, and trigluon graphs, shown
in Figs. 3(a)—3(c), are the same as in the scalar case [3] so
that we just quote the results:

[In(2sing) + i7]

g

Adle) =~ 2mmi?
%Y 4 .

_g"sing [m(zﬂ +O@), (6

TMK

for the total contribution of the box graph,

¢t ¢
A (@) = ) [ln(0/2) + ] + ln(2 sing)
9
% Inftan(¢/2)] + O(F2) 2.7)
2mrmk?
and
P1 P3 )41 P3
P2 P4 )22 Pa
a b
D1 D3 D1 D3

P2 P4 P § P
c d
FIG. 3. Typical one-loop scattering diagrams.
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for the nonplanar and planar parts of the triangle graph,

A (p) = g[mwm+]+3f In(2sing)
© 1@ 2mmik? Y 2mmi? ¢
§ HOSOgT an(e/2)] + 2g _+ 0@
2armk?
2.9)
and
4 )
Al(p) = & [cos(@ smgo)[ln(A ) + 1}
4armi? p
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—1n|2 cos(¢/2)|ei95in¢>} (2.10)

for the nonplanar and planar parts of the trigluon graph,
where A is an ultraviolet cutoff and +y is the Euler-
Mascheroni constant.

The graphs containing the noncommutative Pauli vertex
are depicted in Figs. 3(d), 4(a), and 4(b).

The contribution of the graph in Fig. 3(d), which is
purely nonplanar, is given by

A (g) = 4mg*\? LK T eliabk 4 p2iq'0k e
K? 2m)? [(kz —p? - ie)} '

This integral can be evaluated by using the result [9]

d'k eikar® M"/z_)‘

= i(—=1)
Q)" [kK* — M*] i=1) 221221 A]
n/ (\/ M? 2)
(2 ;2)n/2 = (12)
and yields
a : b

FIG. 4. Typical contributions from the noncommutative Pauli
term.
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Z)\2 2img*A

2
ot 0@, (2.13)

for small 8. As can be easily verified, the contributions from the other two graphs, shown in Figs. 4(a) and 4(b) cancel

among themselves.

Summing all the contributions, we get the total one-loop amplitude:

le one-loop(QD) = ‘/,Zlgne-loop(go) + ./’lefe_loop(QO) + ‘Aa(QD)
2ig? 4gr  20g>  9g* _ igt  2img?A* ¢ 3g'  2mg?A%\ o
= —"2 cotp — 22—+ + - + - In[2
K cote p K drmie  2mil 2 (277sz . ) Il[ smqD]
é 4 4 2 2 _ -
e ltan(e/20)+ S (5 = 2 n(@/2) + 9] + O 2.14)
MK mK™ \2m

For A = = Lm, the limit # — 0 is analytical and confor-
mally invariant. This result also shows that, up to one-loop
order, the scattering amplitude does not present ultraviolet
divergences and that, by conveniently adjusting the non-
commutative Pauli term, the would-be infrared logarithmi-
cally divergences may be eliminated.

In this work we have studied the two body scattering
amplitude when the colliding particles both have either
spin-up or spin-down. If the particles in colliding beams

|
have opposite spins, the contributions of the noncommu-

tative Pauli terms cancel. In this case, designating by ¢ and
¢ the fermionic fields associated with the particles in the
beams, to get a smooth commutative limit it will be neces-
sary to include a quartic term ¢t * ¢ = ¢t % . In fact, in
the commutative situation one such term is induced if one
starts from the relativistic theory [10] and integrates over
the high energy modes to get an effective nonrelativistic
field theory.
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