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Flavor quark at high temperature from a holographic model
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Gauge theory with light flavor quark is studied by embedding a D7 brane in a deconfinement phase
background newly constructed. We find a phase transition by observing a jump of the vacuum expectation
value of the quark bilinear and also of the derivative of D7 energy at a critical temperature. For the model
considered here, we also study quark-antiquark potential to see some possible quark-bound states and
other physical quantities in the deconfinement phase.
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I. INTRODUCTION

It is still a challenging problem to make clear the gauge/
gravity correspondence from superstring theory [1]. In
particular, we expect that this correspondence is applicable
to QCD by deforming the anti-de Sitter space-time (AdS)
into an appropriate nonconformal form.

Recently, an idea to add light flavor quarks has been
proposed by Karch and Katz [2] for a D3-D7 brane system
in the AdS5 � S5 background. After that, several authors
have extended this idea to various 10D gravity back-
grounds corresponding to the various gauge duals, and
they have examined the meson spectra and chiral symme-
try breaking in the context of the holography [3–11]. There
would be many directions to extend this idea. An interest-
ing direction would be the analysis at finite temperature
which is given in Ref. [4] for the D4-D6 model. However,
many things are left to be examined for the case of finite
temperature.

Here we give such analyses in the background, which is
obtained as the extended solution to the finite temperature
of the one given in Ref. [9]. The background given here
corresponds to the Yang-Mills theory in the deconfining,
high-temperature phase. The D7 brane is embedded in this
background, and we could observe a gap of the vacuum
expectation value (vev) of quark bilinear and also of the
derivative of D7 energy with respect to the temperature.
This implies a phase transition in the gauge theory at some
temperature, and we discuss this point. The problem re-
lated to the chiral symmetry is also discussed.

Through the estimation of the Wilson-Polyakov loop,
we obtain a static quark-antiquark potential at finite tem-
perature, which is very similar to the one given by Rey,
Theisen, and Yee for the infinitely heavy quarks in the
AdS5 � S5 background [12]. We also estimate the dynami-
cal quark mass, and we discuss these results by comparing
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them with numerical results given in the recent lattice
gauge simulations.

Especially, the potential obtained here implies that some
meson states would remain until the temperature exceeds a
critical value [13,14], which is estimated here. A similar
phenomenon is also seen for D5 baryon state at finite
temperature. We discuss these points.

In Sec. II, we give the setting of our model, and a phase
transition is pointed out by embedding the D7 brane. In
Sec. III, the quark-antiquark potential and the dynamical
quark mass are studied through the Wilson-Polyakov loop
estimations. In Sec. IV, possible bound states for meson
and baryon are discussed, and we also estimate the screen-
ing mass. The summary is given in the final section.

II. BACKGROUND GEOMETRY

We solve the equations of motion for the 10D IIB model
under the Freund-Rubin ansatz for self-dual five form field
strength, F�1����5

� �
����
�

p
=2��1����5

[15,16], and the fol-
lowing solution is obtained. The solution is written in the
string frame and taking gs � 1, as follows:
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where M;N � 0–9, R4 � 4�N, and q is a constant which
represents the vev of the gauge field condensate [9]. 	 and
� denote the dilaton and the axion, respectively. Other field
configurations are set to be zero here. The temperature T is
related to the parameter rT as rT � �R2T.
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FIG. 1. Embedding solutions for q � 0. The solutions are
drawn for several temperatures, where mq � 0:91 and �R2 � 1.
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In the background given above, we study the dynamical
properties of flavor quarks which are introduced as the
strings connecting the stacked D3 branes and a newly
embedded D7 brane as a probe. The D7 brane is embedded
as follows. The six-dimensional part of the above metric is
rewritten as

1

f2�r�

R2

r2
dr2 	 R2d
2

5 �
R2

U2 �d�
2 	 �2d
2

3 	 �dX8�2

	 �dX9�2�; (4)

U�r� � exp

 Z dr

r
������������������������
1� �rT=r�

4
p

!
� r

������������������
1	 f�r�

2

s
: (5)

HereU is normalized asU � r for rT � 0, andU2 � �2 	
�X8�2 	 �X9�2. Then we obtain the induced metric for D7
brane,

ds28 � e	=2
�
r2

R2 ��f
2�r�dt2 	 �dxi�2� 	

R2

U2 ��1	 �@�w8�2

	 �@�w9�2�d�2 	 �2d
2
3�

�
; (6)

wherew8��� andw9��� are the scalars which determine the
position of the D7 brane. They are solved under the ansatz
that they depend on only �. Further, we can set w9 � 0 and
w8 � w��� without loss of generality due to the rotational
invariance in the X8 � X9 plane.

The brane action for the D7 probe is given as

SD7 � ��7
Z
d8�

�
e�	

����
G

q
	

1

8!
�i1���i8Ai1���i8

�
; (7)

where G � � det�Gi;j�, i; j � 0–7. Gij � @�iX
M@�j �

XNGMN and �7 represent the induced metric and the ten-
sion of the D7 brane, respectively. Here we consider the
case of zero U�1� gauge field on the brane, but we notice
that the eight form potential Ai1���i8 , which is Hodge dual to
the axion, couples to the D7 brane minimally. We obtain
the eight form potential A�8� as F�9� � dA�8� in terms of the
Hodge dual field strength F�9� [17]. By taking the canonical
gauge, we arrive at the following D7 brane action:

SD7 � ��7
Z
d8�

�����
�3

p
�3
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�
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(8)

C8 � �
q

U4 : (9)

Here we notice that C8 ! �q=r4�� 1� e	� for rT ! 0,
and this is consistent with the previous result at T � 0. We
solve the equation of motion for w���,
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and find a suitable embedding configuration used in the
analysis given here. Here we notice some points with
respect to the above action. First, we expect that the
solutions for w at rT � 0 would be smoothly connected
to the one of finite rT although the horizon appears in the
background for finite T. However, we find a phase tran-
sition when the end point w�0� of the solution jumps from
w�0� to w��0�, where �0 is a point on the horizon. We
discuss this point through the embedding solutions.

The solution w for large � has the asymptotic form

w��� �mq 	
c

�2 ; (11)

where mq and c are interpreted from the gauge/gravity
correspondence as the current quark mass and the chiral
condensate, respectively. We find that w��� � 0 (mq � 0
and c � 0) is always the solution of (10), and any other
solution of nonzero mq leads necessarily to nonzero and
negative c < 0. In other words, the chiral symmetry is
preserved only for the solution w��� � 0. We notice, how-
ever, that the sign of nonzero c is opposite to the case of
spontaneous chiral symmetry breaking. This is because of
the attractive force between D3 and D7 branes in the
present case.

The temperature dependence of the solution is shown in
Fig. 1 for q � 0. We notice that this result is equivalent to
the one given in Ref. [5] when T is replaced by mq. This is
because of the same form of equations for w and its
independence from the rescaling of all mass dimensional
parameters. Actually, it is possible to replace T bymq by an
appropriate normalization.

We find a jump of the solution near T � 1, and we
expect this as some kind of phase transition. We are already
considering in the deconfining phase, so we suppose that
there is no hadronic bound state in this phase. However,
there would be a possible region, as shown below, of the
temperature where some hadronic states are still remain-
ing. So we might expect that a transition from a phase with
-2
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FIG. 2. Embedding solutions for q=T4 � 0:1 and mq � 0:91.
The way of the embedding changes at T � 0:94–0:95 in units of
�R2 � 1.
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hadronic states to a phase without any hadronic state would
occur at some temperature. Namely, all the remaining
bound states in the high-temperature phase disappear
above this critical temperature. More on this point we
discuss below and in the following sections.

For q � 0, from Eq. (10) we find embedding solutions
which are shown in Fig. 2. As expected, the gauge-field
condensate q affects the critical temperature, and it moves
to a smaller value than that of the case of q � 0. This
implies that the critical temperature decreases in the pres-
ence of the gauge-field condensation. This is understood as
follows. For nonzero q, the force becomes small so it
would need lower temperature to make the quarks be free
than that of the case of q � 0.

Now we would like to investigate the chiral condensate c
and the energy of the D7 brane for the embedding solution.
The shape of the solution at high temperature would be
determined mainly by the factor f�r� and the effect from
finite q would be minor. So we study the high-temperature
solution ofw at q � 0 for simplicity. The chiral condensate
depends only on temperature whenmq and R are fixed. The
absolute value of c is large at high temperature where the
internal coordinates have an end point on the horizon. At
low temperature, its value becomes small. This behavior is
shown in Fig. 3. From this figure, it is seen that a phase
transition occurs at T � 1 formq � 0:91. This is consistent
with the phase transition which was found by changing the
value of mq with fixed T [5].

We turn to temperature dependence of the D7-brane
energy. By substituting the background (1)–(3) into the
D7-brane action (8), the D7-brane energy for q � 0 is
written as

ED7 �
Z 1

�min

d��3

�
1�

r8T
16U8

� ��������������������
1	 �w0�2

q
; (12)

which is scaled by �7
�����
�3

p
. The lower bound �min is either

zero or a point on the horizon which the brane meets. The
integral (12) diverges. We regularize it by subtracting the
D7-brane energy for mq � 0 similar to the analysis given
for D4 and D6 branes in Ref. [3].1 The regularized energy
1Note that the chiral condensate and the regularized energy in
Ref. [3] are rescaled by the temperature.
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is
Ereg � ED7�mq� � ED7�0�

�
Z �match
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r8T
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� ��������������������
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�2
match
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where �H � rT=
���
2

p
and �match is the point where we match

numerically w to the asymptotic solution (11). The last
term is corrections from the integration for � > �match up
to O���4

match�. The regularized energy increases monotoni-
cally with temperature. For fixed mq, the slope dEreg=dT
has a discontinuous jump at T � Tfund. Figure 4 shows the
temperature dependence of the regularized energy. It is
clear that the lowest D7-brane energy is obtained for the
case where the current quark mass is zero. For mq � 0, the
energy depends on whether the end point of w is on the
horizon or not. At the high-temperature side, T > Tfund, the
energy of the solution which meets the horizon becomes
lower than the one of the other type of solution.

As we will show, the solution attached to the horizon
leads to vanishing of the dynamical quark mass and then of
q

Tfund. The right figure shows the neighborhood of the transition
point. The dashed lines stand for the slopes at the transition
point.
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the quark-antiquark potential. Then the change of phase at
T � Tfund will be regarded as the phase transition from the
phase with surviving hadronic states to the free-quark
phase. This point will be discussed more in the following.
0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.01

0.02

0.03

0.04

q = 0

q = 1000

q = 2000
D4-D6

T

FIG. 5. ~mq are shown for R � 1=
����
�

p
�GeV�1�, rmax �

10 �GeV�1�, and ,0 � 103 �GeV�2�. The three solid curves
are corresponding to the case of q � 0, 103, and 2�
103 �GeV�4�, respectively. The dashed curve represents the
result for the D4-D6 model (33) with R � 10�3=4��2=3, rmax �
200, and ,0 � 103. The points represent the lattice data [18].

2We convert the data by use of Tc � 0:173 GeV and Tc=
����
-

p
�

0:425, where - is a string tension.
III. QUARK-ANTIQUARK POTENTIAL

We study a gravity description of quark-antiquark po-
tentials in detail. Before performing concrete calculations,
we review how quark-antiquark potentials are described in
the context of the gauge/gravity correspondence. The point
relevant to the present purpose is in the following.

We consider the Wilson-Polyakov loop in SU�N� gauge
theory:

W �
1

N
TrPei

R
A0dt: (14)

The quark-antiquark potential Vq %q is derived from the
expectation value of a parallel Wilson-Polyakov loop:

hWi � e�Vq %q
R
dt: (15)

On the other hand, the dual gravity suggests that the
expectation value is represented as

hWi � e�S; (16)

in terms of the Nambu-Goto action

S � �
1

2�,0

Z
d�d-

�������������������
� dethab

p
; (17)

with the induced metric

hab � G�1@aX
�@bX

1; (18)

where the string coordinate is X���; -� and the string
world sheet is parametrized by -, �. From Eqs. (15) and
(16), the quark-antiquark potential can be calculated by
setting various configurations of string coordinates and
background geometries. In the following analysis, we in-
vestigate quark-antiquark potentials by considering static
string configurations.

A. Gauge-field condensate model

We examine quark-antiquark potentials in the back-
ground presented here. To study possible static string
configurations of a pair of quark and antiquark, we choose
X0 � t � � and decompose the other nine string coordi-
nates into components parallel and perpendicular to the D3
branes:

X � �Xk; r; r
5�: (19)

The Nambu-Goto Lagrangian in the background (1) be-
comes
106002
LNG � �
1

2�,0

�
Z
d-e	=2

���������������������������������������������������������������������
r02 	 r2f�r�2
02

5 	

�
r
R

�
4
f�r�2X02

k

s
;

(20)

where the prime denotes a derivative with respect to-. The
test string has two possible configurations: (i) a pair of
parallel strings, which connect horizon and the D7 brane,
and (ii) a U-shaped string whose two end points are on the
D7 brane.

We first consider the configuration (i) of two parallel
strings, which have no correlation to each other. The total
energy is then 2 times that of one dynamical quark mass,
~mq. As mentioned above, it is given by a string configura-
tion which stretches between the horizon rT and the maxi-
mum rmax, so we can take

r � -; Xk � constant; 
5 � constant: (21)

Then ~mq is obtained by substituting (21) into (20) as
follows:

E �
1

�,0

Z rmax

rT
dre	=2 � 2 ~mq: (22)

The temperature dependence of the dynamical mass ~mq

is shown in Fig. 5.
Generally, rmax depends on temperature. However, when

temperature is low, its change is very small. Therefore, we
set approximately constant rmax. The points are quoted
from the lattice data of Fig. 5 in Ref. [18]: We regard the
asymptotic values of the heavy quark free energy as the
sum of two dynamical quark masses.2 The behavior of our
-4
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result resembles the lattice behavior because of the con-
cave shape. Especially, putting R � 1=

����
�

p
�GeV�1�, q �

103 �GeV�4�, rmax � 10 �GeV�1�, and ,0 � 103 �GeV�2�,
the dynamical mass (22) corresponds to the lattice results
at least for the region 0:2 & T & 0:3 �GeV�. Although ,0

has to become small, we can fit the result of the model to
the lattice data only at a large value, i.e., ,0 �
103 �GeV�2�. This situation is an open problem here.

For q � 0, temperature dependence of ~mq is not seen,
but it is largely affected by T for q � 0. At any point of T,
~mq increases with q. We should notice that ~mq disappears
when the temperature exceeds Tfund; the D3 brane is in-
cluded in the D7 brane.

We now turn to the U-shaped configuration,

X k � �-; 0; 0�; 
5 � constant: (23)

The equation of motion derived from the Lagrangian (20)
with the configuration (23) are solved by

e	=2
1��������������������������������������������������

�r=R�4f�r�2 	 �dr=d-�2
p �

r
R

�
4
f�r�2 � constant:

(24)

The midpoint r0 of the string is determined by
dr=d-jr�r0 � 0. Then the distance and the total energy
of the quark and antiquark are given by

L� 2R2
Z rmax

r0
dr

1

r2f�r�
�������������������������������������������������������������������
e	�r�r4f�r�2=�e	�r0�r40f�r0�

2�� 1
q ;

(25)

E �
2

�,0

Z rmax

r0

e	�r�=2�������������������������������������������������������������������
1� e	�r0�r40f�r0�

2=�e	�r�r4f�r�2�
q : (26)

Figure 6 shows the dependence of the energy E on the
distance L at some selected temperatures T and q. The
results at q � 0 [Fig. 6(a)] are consistent with the one
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FIG. 6. Plots of E vs L at q � 0 and q � 103 �GeV�4� for R � 1
solid and dashed curves represent the case of T � 0 and T � 2:5 �Ge
energy of two parallel straight strings.
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given in Ref. [12], where infinitely heavy quarks are con-
sidered. However, we consider the quark with a light mass,
not the heavy quark; we then need not consider the energy
difference between the U-shaped string and a pair of
strings as in Ref. [12].

For the case of finite q [Fig. 6(b)], we can see the linear
rising potential for T � 0, and it shows the confinement of
quark and antiquark. On the other hand, for finite tempera-
ture T � 2:5, the qualitative behavior coincides with the
one of q � 0. Namely, E increases with L along the curve
of T � 0 but the potential disappears at L � Lmax, which
depends on the temperature. The more important fact is
that E exceeds the energy of the two straight strings
configuration at L � L� < Lmax. When L � L�, the
straight strings configuration has a lower energy than the
U-shaped string configuration. As the two straight strings
have no interaction energy, this shows that the quark-
antiquark potential vanishes for L � L�. So there will be
no physical meaning for the potential obtained in the
region of L� <L< Lmax. This characteristic behavior is
qualitatively in agreement with the suggestions given by
lattice simulations [18].

B. D4-D6 model

Next, we calculate the quark-antiquark potential by us-
ing the D4-D6 model [4]. The type IIA supergravity back-
ground dual to Nc D4 branes compactified in a circle with
antiperiodic boundary conditions for the fermions at high
temperatures takes the form

ds2 �
�
r
R

�
3=2
 
�~f�r�dt2 	

X3
i�1

dxidxi 	 d�2
�

	

 
R
r

�
3=2 dr2

~f�r�
	 R3=2r1=2d
2

4; (27)

e	 �

�
r
R

�
3=4
; ~f�r� � 1�

r3T
r3
; (28)
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V�, respectively. The vertical solid and dashed lines represent the
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at high temperature. The coordinates �t; x1; x2; x3� parame-
trize the four directions along the D4 branes and time
coordinate t is compactified with the period 1=T. The
coordinate � parametrizes the circular 4th direction on
which the branes are compactified. d
2

4 is the
SO�5�-invariant line element. r has dimensions of length
and is regarded as a radial coordinate in the 56789 direc-
tions transverse to the D4 branes. Since we wish to avoid
conical singularities at r � rT , the boundary condition
fixes the metric parameter as

rT �

�
4�T
3

�
2
R3: (29)

We take X0 � t and decompose the nine spatial embedding
coordinates as follows:

X � �Xk; T; r; r
4�: (30)

In this case, the Nambu-Goto Lagrangian in a static con-
figuration becomes

LNG � �
1

2�,0

�
Z
d-

���������������������������������������������������������������������������������
r02 	 ~f�r�r2
02

4 	

�
r
R

�
3
~f�r��X02 	 T02�

s
:

(31)

As in the previous section, we set the embedding coor-
dinates for a pair of straight strings which are stretched
between D4 branes and D6 branes as follows:

r � -; Xk � constant;

T � constant; 
4 � constant;
(32)

so that we obtain the total energy of the quark-antiquark
pair

E �
1

�,0
�rmax � rT� � 2 ~mq: (33)

Because the position of the horizon rT is proportional to the
square of temperature, the temperature dependence of the
dynamical quark mass ~mq has a convex form (see Fig. 5).
This form is considerably different from the tendency of
the lattice result and also from the result of our gauge-field
condensate model. Also, the dynamical mass becomes zero
before the horizon approaches the D6 brane and this ten-
dency is different from the gauge-field condensate model.

For the U-shaped string configuration, we set the em-
bedding coordinates as follows:

X k � �-; 0; 0�; T � constant; 
4 � constant:

(34)

From the equation of motion for the coordinates Xk, we
obtain the distance between quark and antiquark
106002
L �
2R3=2

��������������������
r3min � r3T

q
r1=2T

Z rmax

rmin

dr�����������������������������������������
�r3 � r3T��r

3 � r3min�
q ; (35)

and, from the Hamiltonian, we obtain the total energy of
the U-shaped string of interquark separation L

E �
1

�,0

Z rmax

rmin

dr

�������������������
r3 � r3T
r3 � r3min

vuut : (36)

Figure 7 shows the dependence of the energy E on the
distance L at temperatures T � 0 and T � 0. In this case,
both behaviors are equivalent to our gauge condensate
model.
IV. POSSIBLE HADRON SPECTRUM
AT HIGH TEMPERATURE

A. Screening mass

One of the basic characteristics of a plasma is the screen-
ing of color electric fields. In Ref. [12], the asymptotic
behavior of the heavy quark potential at large distance L is
given as follows:

VBN�L; T� � �CM
e�mscL

L
	 � � � ; (37)

where msc / T is a screening mass. In this section, we
investigate the temperature dependence of the screening
mass in both the gauge-field condensate model and the D4-
D6 model by comparing the quark-antiquark potential to
Eq. (37). The quark-antiquark potential in the gauge-field
condensate model is given by

Vq %q�L; T� � E�L; T� � 2 ~mq: (38)

Comparing the two potentials (37) and (38) at distance L�,
we obtain the temperature dependence of the screening
-6
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mass as Fig. 83: In the gauge-field condensate model, the
screening mass is almost proportional to the temperature.
This result coincides with the result given in Ref. [19],
while in the D4-D6 model, the screening mass almost
becomes zero in T � 0:19. It is considered that the reason
of this result is because quark and antiquark do not com-
pletely confine even at T � 0. As the temperature in-
creases, the screening mass is almost proportional to the
temperature until T � 0:27 and sharply increases when the
temperature exceeds 0:27. This result is different from the
one given in Ref. [19].

B. Meson

In this section, we consider about the meson spectra. As
mentioned in the end of Sec. III A, when L � L� the
energy of the U-shaped string becomes lower than the
energy of the pair strings, while when L � L� the result
reverses. This result shows that, when the distance between
quark and antiquark is close, these quarks are confined;
when the distance becomes wide and moreover exceeds L�,
deconfinement occurs and the energy becomes two quark
masses. Therefore, we can obtain effective potential like
Fig. 9. According to Fig. 9, as temperature increases, the
possibility of the existence of meson spectra, which shall
exist certainly at T � 0, becomes lower and lower, because
the height of the potential becomes shallower; namely, the
region in which mesons can exist becomes more narrow.
Especially when the temperature exceeds Tfund, the poten-
tial identically becomes zero. This leads to the
deconfinement.

We investigate this fact by a simple manner: we solve
the 3-dimensional Schrödinger equation with this effective
potential and investigate the bound states [13,14]. As a
result, we could show that the bound states, i.e., the meson
spectra, exist for T � 0:043 in the gauge-field condensate
model.

Also, for comparison, utilizing the lattice data quoted
from Fig. 3 in Ref. [18], we can investigate the bound
states: the heavy quark free energy converges finite value
for a long distance between quarks. Therefore, we may
regard the value as the mass of a pair of effective quark and
antiquark, which are not confining. Deforming the free
energy so that we can regard the asymptotic value as
zero and using it as the potential of the Schrödinger equa-
tion, we show a result that the bound states exist for less
than the critical temperature Tfund.

C. Baryon

It has been shown that baryons correspond to D5 branes
wrapped around the compact manifold M5 [20,21]. As a
typical case, here we take S5 and investigate the qualitative
property. The brane action of such a D5 probe is
3We do not treat the high-temperature region because L�

becomes too small to use the results in (37).
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SD5 � ��5
Z
d6�e�	

����
G

q
; (39)

where ��i� � �X0; X5–X9�, �5 represents the tension of the
D5 brane, and G � � det�Gi;j� for the induced metric
Gij � @�iX

M@�jX
NGMN . The mass of the wrapped D5

brane is then

MD5�r� � �5e�	
����
G

q
� �5�3R4rf�r�e�	=2: (40)

The massMD5 thus defined depends on the position r of the
D5 brane. As for T � 0, MD5 has a simple form

MD5�r� � �5�
3R4r

��������������
1	

q

r4

r
: (41)

The MD5�r� diverges at both r � 0 and r � 1, and it has a
global minimum MD5�rmin� � �5�3R4�4q�1=4 at r �
rmin � q1=4; see the dashed curve in Fig. 10. The minimum
max

,0 � 103 �GeV�2�. The dashed curve represents the result for
T � 0 and the solid curves represent the results for T � 2:5, 3:5,
and 5, respectively.
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value can be regarded as the baryon mass from the action
principle. In the AdS limit, namely, q! 0, the baryon
mass vanishes. Thus, the baryon mass is induced by finite
q, i.e., by finite gauge-field condensate, in this model.

As for T > 0, MD5�r� has a form

MD5�r� � �5�3R4r

����������������������������������������������������������������������������
1	

q

r4T
log

�
1

1� �rT=r�
4

���
1�

r4T
r4

�s
:

(42)

The MD5�r� is real only for r � rT . In the region, MD5�r� is
zero at r � rT and positive for r > rT . Thus, even if a
minimum exists at r > rT , it is only a local minimum; see
the solid curves in Fig. 10. One could regard the local
minimum as a baryon, but the baryon is metastable when
T is finite.

Figure 10 shows the r dependence of MD5�r� for four
values of T. When T � 0, there exists a minimum at r �
q1=4 � 1, as mentioned above. The minimum becomes a
local minimum for T < 0:26, and eventually it disappears
for T > 0:26. Thus, a baryon can survive as a metastable
state for small T. Furthermore, we can see from Fig. 10 that
the mass of the metastable baryon is almost independent of
T.
V. SUMMARY

A gauge theory with light flavor quarks is studied in a
dual supergravity of the AdS background deformed by
dilaton, which induces the gauge-field condensate in the
dual gauge theory. The high-temperature-phase back-
ground is constructed by making the AdS-Schwarzshild
compactification. This background, at zero temperature
limit, corresponds to a dual of the N � 1 supersymmetric
gauge theory with the quark confinement [9].
106002
Introducing the flavor quark by embedding the D7 probe
brane in this high-temperature background, we found no
spontaneous chiral symmetry breaking in this case.
Furthermore, through the analysis of the Wilson-
Polyakov loop, we found that the dynamical quark mass
is not divergent and the quark-antiquark potential has a
finite range. Thus, these properties are consistent with the
one of high-temperature QCD phase.

It might be a new point that, in this deconfinement phase,
there exists still a phase transition at a temperature Tfund. It
is observed through the temperature dependence of the D7
brane energy and the vev of a quark bilinear. In the gravity
side, this transition is seen through the form of the em-
bedded D7 brane when its end point meets with the hori-
zon. This transition takes place for both cases with and
without gauge-field condensate, and the similar transition
is also seen in other models [4,5]. Hence, this transition
would be universal.

In the higher temperature phase (T > Tfund), both the
dynamical quark mass and the potential between quark and
antiquark vanish. This implies that the phase is in a quark-
gluon plasma. Meanwhile, in the lower temperature phase
(T < Tfund), the dynamical quark mass is finite and a short
ranged interaction between quark and antiquark still re-
mains. In consequence, quark-bound states are possible.
The bound states would be atomlike in the sense that each
constituent can be separated, and these bound states dis-
appear above the critical temperature Tfund. A similar
property can be seen for a baryon, which is studied here
by a D5 brane embedded in the high-temperature
background.

As for the dynamical quark mass, its temperature de-
pendence is compared with the numerical results of full
lattice QCD, and we found that our result is qualitatively
consistent with the lattice data. The temperature depen-
dence of the screening mass is also investigated. We find
that the screening mass increases linearly with temperature
in our present model [19]. This is also consistent with the
analysis given in real QCD. The present analysis is valid in
the large Nc limit and the D7 brane is treated as a probe. In
this sense, our analysis is akin to the quenched approxi-
mation; namely, the quark-antiquark creation is not in-
cluded in our analysis. However, this would not affect the
qualitative property of our results, since the qualitative
property of the analyses is not changed so much between
full lattice QCD and quenched lattice QCD [22].

Thus, we could say that there are good correspondences
between the deconfinement phase of the present back-
ground and that of real QCD. Finally, we should comment
on the unwanted modes which are not seen in the real
QCD. Here we start from IIB superstring theory, and the
action for the D7 brane includes fermionic fields as the
superpartner. These fermionic modes do not correspond to
any baryonic state in real QCD. So we expect that the
masses of these states would be large and decouple to
-8
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our low energy theory. But this point is open at the present
stage.
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