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Unrubh effect in the general light-front frame
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We study the phenomenon of Unruh effect in a massless scalar field theory quantized on the light front
in the general light-front frame. We determine the uniformly accelerating coordinates in such a frame and
through a direct transformation show that the propagator of the theory has a thermal character in the
uniformly accelerating coordinate system with a temperature given by Tolman’s law. We also carry out a
systematic analysis of this phenomenon from the Hilbert space point of view and show that the vacuum of
this theory appears as a thermal vacuum to a Rindler observer with the same temperature as given by

Tolman’s law.
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L. INTRODUCTION

It has been observed in recent years that a statistical
description of theories quantized on the light front [1,2]
prefers a general coordinate frame [3-5]. Denoting the
Minkowski coordinates by x* = (t, x, y, z) and the coordi-
nates of the general light-front frame by x* = (, %, ¥, 2),
the relation between the two can be written as [6]

f=1t+z 7= At + Bz, X =x y=y

)

where A, B are arbitrary constants with the restriction that
|B| = |A| which arises if we require 7 to correspond to the
time variable. The metric in the general light-front frame
(GLF) has the form (We refer the reader to [6] for details on
notations as well as various other properties of GLF.)

_ (GLF) _ -
8 ur o o -1 o || @
L 0 0 0

so that the line element is given by

A+B 2
dr? = ——dP —dx* — dj* —
B—A B—-A

drdz.  (3)

For A= —B =1, Eq. (1) represents the conventional
light-front frame (CLF) while for A = 0, B = 1 we have
the oblique light-front frame (OLF) where most of the
discussions of statistical mechanics have been carried out
thus far [3-5,7,8]. In general, if a quantum field theory
quantized at equal time ¢ is at temperature Ty in the
Minkowski space, then by Tolman’s law [9], the corre-
sponding temperature for the theory quantized at equal 7 in
the generalized light-front frame is given by
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This shows that in the conventional light-front frame where
A=-B=1

Terp =0, (5)

for any finite T); so that any finite temperature in the
Minkowski frame is mapped to zero temperature in the
conventional light-front frame and a statistical description
is not possible. On the other hand, in the oblique light-front
frame where A =0, B = 1,

Torr = Tw, (6)

and the temperature coincides with that corresponding to
conventional quantization. As is clear from (4), statistical
mechanical description for a theory quantized on the light
front is possible as long as |B| # |A|. In the general light-
front frame, the temperature will be related to that in the
Minkowski frame simply through a scale factor.

It has also been understood for sometime now that equal
time quantum field theories exhibit Unruh effect [10] when
viewed from a uniformly accelerating coordinate frame.
More specifically, a uniformly accelerating observer sees
the vacuum of the equal time quantum theory to corre-
spond to a thermal vacuum with temperature given by (We
note that because of the isotropy of Minkowski space, the
direction of acceleration is not important.)

a
Tv = —, 7
M=o (7

where a represents the constant proper acceleration of the
observer. It is interesting to study the phenomenon of
Unruh effect within the context of quantum field theories
quantized on the light front (equal 7) in GLF [6] for the
following reasons. Since the statistical density matrix in
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light-front field theories does not correspond to a naive
generalization of the known density matrix [3—5], further
support for the structure of this density matrix in GLF can
be obtained from studying the thermal behavior of the
vacuum in an accelerated coordinate system. This, of
course, immediately raises this interesting issue, namely,
since the form of the line element in (3) shows that there
are now two distinct possibilities for acceleration (unlike
the Minkowski frame), it is not a priori clear whether this
would lead to two distinct temperatures for the Unruh
effect (corresponding to the two directions for accelera-
tion) and how this will be compatible with the unique
temperature of the GLF description following from
Tolman’s law in (4).

In this paper, we study these issues systematically. In
Sec. I , we work out the uniformly accelerating coordi-
nates for the two cases of acceleration along the X axis and
the z axis. In Sec. III, we show that even though the
uniformly accelerating coordinates are different for the
two cases, the zero temperature propagator of a massless
scalar field theory quantized on the light front in GLF
corresponds to a thermal propagator with the unique tem-
perature given by (4) when transformed to the accelerating
coordinates [11]. In Sec. IV we carry out the Hilbert space
analysis for this theory systematically and show that a
Rindler observer (uniformly accelerating along Z) per-
ceives the GLF vacuum of the theory as a thermal vacuum
with the same temperature as in (4). We present a brief
summary in Sec. V.

II. UNIFORMLY ACCELERATING COORDINATES

Let us recall that the line element in the general light-
front frame has the form
A+ B
B —
In this case, the Lorentz contraction factor, in general, has
the form

dr? =

2 _
dt —dx? — dy? — dedz. 8
X Y m g ddz (8)

dr 1
=y= , 9

dr A+B _ 2 _ -2 _ 2 -
o4~ Ui T U5 g Uz

with appropriate restrictions on the velocity components.
Here the coordinate velocities are defined as

dx dy dz
-, p v = —. 10
dr ) ; vz (10)

From (8) we note that there is an obvious symmetry
between the coordinates X, y. Therefore, in studying accel-
eration in such a frame, there are two distinct cases to
consider.

U=

A. Motion along x

Let us first consider the case where a particle is moving
(and being uniformly accelerated) along the X axis [12].
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Therefore, neglecting the ¥ and Z coordinates, we can
define the four velocity of the particle as

IZ'U’ = ’)_/(1) ﬁfp O) O), (11)
where we have identified [see (9)]
1
Oy=0=10: Y=  (12)
’ AtB _ 52
B-A <
Defining the proper acceleration as
da*  df du* da*
ar —— = _ 5T (13)

we obtain after some algebra

A+ B do;
at = (v, ——,00|y* Ur,
B—A

It follows from this that

A+ B_,dv;\2
@t = gihara = —(|[FT 0 ) = et 09)

where « is known as the proper acceleration. In terms of
the proper acceleration «, we can write

du“ A+ B
Vs 7,0,0)a. (16
A+B7 B—A >a (16)

For constant «, we can now solve the dynamical equa-
tions

(14)

d2xm diu

—— =——=a", 17
dr? dr ¢ a7
to determine the trajectory
B—A A+ B
y(1) = e Bcoshm', vz(7) = Bo Atanhar,
1(7) ! sinh ©(7) ! cosh
T) = — sinhar, X(r) =— ar,
A+ Ba a

(18)
corresponding to the initial conditions vz(7 = 0) =0 =
H(r=0),x(r=0) = é It follows now that the trajectory
with a constant proper acceleration defines the hyperbola

32 = —(GLF)X;LXV

1
= & = (19)

2 ’

with (18) providing the uniformly accelerating coordinates
for the present case. These are quite similar to the case of
uniformly accelerating coordinates in the Minkowski
frame except for normalization factors.

B. Motion along Z

Let us consider next the case where the particle is
moving (and being uniformly accelerated) along the Z
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axis. In this case, setting x = y = 0, we can write

dx#
’Z B= = (F)_/r Oy Oy ’yﬁf)) (20)
dr
where, in the present case, [see (9)]
B—A
v.=0= v, y = |[— 21
Vs o Y avB-o2s @D
In this case, the acceleration
du*
aHt = —, 22
a dr (22)

can be shown, with a little bit of algebra to have the form

s
ar=(10,0A+B~5)y, (23)

which leads to
a*= g(GLF) rg?t = —<¥>2 = —a? (24)

with a representing the proper acceleration. In terms of
this, we can write
a*=(1,00(A+ B— v:)ya. (25)

For constant «, we can solve the dynamical equations

dz)_C’U“ du* —p,
=—_—=a" 26
dr? ar ¢ (26)
to obtain the trajectory
Y B—A aT
y(1) = W’A Be ,
+
Bx(r) = S22 (1 — e 72,
11 27
B —
t = aT’
i(r) = J 3¢
2 _ A2
Z(1) = sgn(B — A) coshar,

where, for simplicity, we have assumed the initial condi-

tions (1 =0) = 0,/(7 = 0) = /541 and z(r = 0) =

sgn(B — A) ¥&—=4- VBZ A . (We note here, for later use, that when

|B| > |A], it follows that sgn(B — A) = sgn(A + B).) It is

straightforward to check that the trajectory (27) with a

constant proper acceleration defines the hyperbola
—2 _ (GLF)—y—p 1

X2 = Quv XXV =——

5 (28)

and (27) defines the uniformly accelerating coordinates in
the present case.
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III. TRANSFORMATION OF THE GREEN’S
FUNCTION

Let us next consider a massless scalar field theory quan-
tized on the light front (at equal 7) in the general light-front
frame. In this case, the field expansion takes the form (we
refer the reader to [6] for details)

0= [ |

where k| denotes the transverse components of the mo-
menta (namely, ki, k,) and we have identified (i = 1, 2)

dk s P
2—122 e *Tq(k) + e*Tat(k)),

(29)

u = (ko, sgn(A — B)k;, sgn(A — B)k3), (30)
with
i 2+ (B — AR
ko=o=- ( )3>Q (31)
2|A — Blk;

for k3 > 0. When quantized on the light front, the creation
and the annihilation operators satisfy the commutation
relation

[a(k), at(k")] = 2k 8°(k — k). (32)
The Feynman propagator in the momentum space has the
form

i
D(k) = lim = , 33
l()e%H+m (33)

while in the coordinate space it takes the form [13]

1 _ dk
B = — d2k 3 —lk (%1 —X%)
<¢(xl)¢(x2)> (277_)3 f 1 ] Zkg
1 1
= lim — , 34
EI—IEI) (27T)2 ()?1 - )_C2)2 — i€ ( )

where we are assuming that ¥ — 9 > 0.

In the rest frame of the heat bath, the propagator for this
theory at a temperature 7 can be obtained easily in the
momentum space both in the imaginary time formalism as
well as in the real time formalism. In the imaginary time
formalism [14,15], it has the form

1

D(TGLF) ]g = — _
() 2(A = B)kok; — k3

—, (35
_ ( BZ _ AZ) k% ( )
with ko = 2imnTgr where n represents an integer. In the
real time formalism [15], on the other hand, the ++
component of the propagator can be written as
idﬁ%@=n%é+zmmmm@% (36)
e
where n(|ky|) represents the Bose-Einstein distribution
function (the Boltzmann constant is assumed to be unity)
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— 1
”(|k0|) = TRl 37

eTolr — |

Here T r denotes the temperature in the general light-
front frame. We can take the Fourier transform of the finite
temperature propagator in either the imaginary time for-
malism or the real time formalism with respect to the time
variable to obtain the coordinate space representation of
the thermal propagator (which we have calculated).
Alternatively, we can simply evaluate this directly from
the field expansion given in (29). For a theory quantized on
the light front [see (32)], we note that

(at(k)a(k))r,,, = 2ksn(kp), (38)

(a(k)at (k)1 = 2k3(1 + n(ko)), (39)

where k is defined in (31). Recalling that we are in the rest
frame, we have

dZIEJ_ °°d]€3 — R
- = =2 (nky)eikolti =)
oo ﬁ S e
+ (14 n(ky))e™F0=0), (40)

(o(7, )d’(fz»TGLF =

where we are assuming that 7, — 7, > 0. The integral can
be easily done using standard tables [16] and recalling that
in the rest frame, the proper time is related to the coordi-
nate time as [see (8)]

_ _ B—A B— A
W —hLh= A-I—B(Tl — 7)) = mﬂ 41)

we obtain the coordinate representation of the thermal
propagator to be

G EDry, =~ s (7o 375

B—A
X COSCCh2<7TTGLF m’T) (42)

Let us next look at the zero temperature propagator (34)
in the accelerating coordinate system. As we have seen,
there are two cases to consider. When the motion is along
the X axis, we can set y; = ¥,, Z; = Z,. Furthermore, using
the accelerating coordinate system in (18), we can write

B—Al
— (sinha7; — sinha,),
A+ Ba (43)

W —hL=

1
X — X = E(cosharl — coshaT,),

where we are assuming that 7, — 7, = 7 > 0. It follows
now that the invariant length is given by
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_ _ _ _ A+B _ _ _ ~
(X = B)H(E — %), = 3 _A(tl —5)? — (X — %p)?
4 aT
= ?SlnhZT. (44)

As aresult, in the coordinate system (18) uniformly accel-
erating along X, the zero temperature propagator (34) takes
the form

(BE)9(0) = ~ s (5 eosean? T a9

- en?

Comparing with (42), we conclude that an observer in the
frame accelerating along the ¥ axis sees the propagator of
the light-front field theory as a thermal propagator with

temperature
a T B—A
—= — or
2 S\A+ B
A+ B « a
— — [ 5(GLF)
TgLp = 1/—— =4/ —. 46
GLF B—A27w &oo 2 (46)

The other case to consider is when the motion is along
the 7 axis. In this case, we can set X; = X,, ¥; = j,. In the
uniformly accelerating coordinates (27), we note that we
can write

lt _lT — B_Al(earl_earz)
2" Ya+8B ’
82 A2
71 — Zp = sgn(B — A) (cosha; — coshaT,),

(47)

where we are again assuming that 7; — 7, =7>0. It
follows now that

A+ B _ _
(X = B)H(F — X)) = 3 _A(tl - 1,)?
2
_B_A(fl —0)(E — %)
4
= sinh? % 48)

so that in the uniformly accelerating coordinates, the zero
temperature propagator (34) takes the form

I /a2 , QT
W(E) cosech 7 (49)

(p(x) (%) = —
Comparing with (42), we conclude that an observer in the
frame accelerating along the 7 axis sees the propagator of
the light-front field theory as a thermal propagator with
temperature
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I T B—A
— = —— or
2 TSR A+ B
A+ B « _(GLF) o
T = — =4/ —. 50
GLE B — A2 &oo 2 (50)

In other words, even though there are two distinct possi-
bilities for acceleration in the GLF, both cases lead to a
thermal character for the Green’s function with the same
temperature. Furthermore, recalling that the Unruh effect
predicts Ty = 5 for a conventionally quantized scalar
field theory in Minkowski space (7), we recover (4) in
both the cases.

IV. HILBERT SPACE ANALYSIS

In the last section, we carried out a very simple analysis
where we transformed the propagator of a massless scalar
field quantized on the light front to a uniformly accelerat-
ing coordinate system and thereby showed that it behaves
like a thermal propagator with temperature Tgip =

A/ géﬁm 5~ independent of whether the acceleration is along
the X (¥) axis or along the 7 axis. This simple analysis,
however, does not bring out many important aspects of the
Hilbert space structure of the theory in the present case
which we will like to investigate systematically in this
section. We will do this only for the case where the
acceleration is along the 7 axis for simplicity. A parallel
analysis for the case where the acceleration is along the x
axis can be carried out exactly along the lines to be
discussed in this section and does not lead to any new
information. The Hilbert space analysis shows that a
Rindler observer would perceive the vacuum of the theory
to correspond to a thermal vacuum with temperature given
in (4). Such a result is much more powerful in showing that
any matrix element of the theory would appear as a thermal
amplitude to an observer in the accelerating frame.

Let us first define various relevant coordinate systems
associated with this problem. First, we note that if we
define new coordinates as (X = y = 0)

B—A

I= A+BX€T’ (51)
z = sgn(B — A)\/ﬂX coshT,
then, the line element (8) can be written as
d? = X272 — dX2 (52)

Here X, T define the Rindler coordinates [12] for the
present case and we have

2= -X2, (53)

so that for constant X, they define the hyperbola of constant

acceleration a = %
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The null geodesics for the theory defined on the general
light-front frame are given (in the present case) by
2
A+ B

which, in turn, allow us to define the null coordinates

f = constant, r

Z = constant, 54)

—F_ 2 B—AX _r
" A+B° A+B ¢
= — B _Ale—a(n—f) = — B _Ale—aU
A+ Ba A+ Ba ’
_ B—A
v=1it= XeT (55)
A+ B
_ [BAY e BT
A+ Ba A+Ba
where we have identified [17]
e
T =an, X=—,
“ (56)
U=n—-¢& V=n+¢

with a representing an arbitrary positive constant. The line
element (8) or (52) can now be written as

d7? = 2% (dn? — dé&?), (57)

which makes it clear that 7, ¢ define the conformal coor-
dinates for the system and that

— (conformal) __

(co _g(fcgnformal) _ 6205‘ (58)
Furthermore, in these coordinates, we have
e%é\2
2= —(—) , (59)
a

so that for a constant &, we have the hyperbola correspond-
ing to acceleration

a = age %, (60)

The Rindler wedges, in the present case, are defined by

R: 0=r= 2 _, L: 2

S VT T A¥ BT '

In the wedge labeled “R,” we have (as we have pointed out
earlier sgn(A + B) = sgn(B — A) when |B| > [A])

= B_Alea\/z B_Alea(fl‘*'f)’
A+ Ba A+ Ba

1
7 =sgn(A + B)VB? — A22—(e“v + e~al)
a
/BZ _
2

A2
(e4n*é) 4 gmaln=4),
a

z=7r=0. (61)

(62)

= sgn(A + B)

It follows from this that in this wedge, we can write
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U= — B_Ale*aU:_ B_Ale*a(nff)’
A+ Ba A+ Ba
(63)
B—Al B—Al
— — ,aV — — pa(nté)
v A+Ba® W4+Bae ’

so that we have

U L (_[AtB ol ([AtB
O L =
(64)

On the other hand, in the other wedge labeled “L,” we
have

i BAl v BAL e
A+ Ba A+ Ba

1
7= —sgn(A + B)VB? — A22—(e“v + e~aV) (65)
a
/BZ _ A2
= —Sgnb44-B)———§————(eﬂn+f>+.efwnfal
a

so that we can write

y—= [B=AL o BZALl g
A+ Ba A+ Ba ’
(66)
v BZAL ow_ _ BZALl ieg
A+ Ba A+ Ba

In the “L” wedge, therefore, we have

1 A+ B 1 A+ B
U=——1In au |, V=—1Inl— av |.
a B—A a B—A
(67)
Let us next consider the quantization of a massless scalar

field on the light front (equal ) in the general light-front
frame. The field decomposition can be written as

- 1 odk, .- o }
d’(t’ Z) = Eﬁ) ﬂ(efzktal(k) + e*lk(t*[Z/(AJrB)]z)az(k)

+ Hermitian conjugate)

1 odk . - .
= \/T_Wﬁ) 2_k(e*lkval(k) + e*zkan(k)

+ Hermitian conjugate), (68)

where a,(k), a,(k) can be thought of as the annihilation
operators for the null modes of the field components. The
field (7, 7) can easily be checked to satisfy light-front
quantization conditions provided

[a1(K), af (K)] = 2k8(k — K) = [as(k), af (k)] (69)
and the vacuum of the theory satisfies

a;(k)[0)gLr = 0 = ay(k)|0)gLE- (70)
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On the other hand, we can also quantize the theory in the
two Rindler wedges. Here, using the conformal coordi-
nates, we can write the field expansion as

d(n, &) = [O " dK(g®(U)b,(K) + g® (V)b (—K)

+ g (V)by(K) + g (U)by(—K)

+ Hermitian conjugate), (71)

where we have defined the basis functions g®), g in the
two wedges as

ggg)(U) = { Samk  vamk D R,
0 in L
—iK(n+é) __ ,—iKV .
g(lg)(v) = e\/z—qrzk - jz—wzl( n R,
0 in L
0 R (72)
0 =Yoo o MR
mk ok M
0 in R
(L) N )
g (V) =1 gz _ eV . X
K mz_arzk \/;_7721( in L

We can think of b,(K), b;(—K) as the annihilation opera-
tors for the two modes in the wedge ‘“R” while
b,(K), b,(—K) correspond to the annihilation operators
in the wedge “L.” It is easy to check that with the com-
mutation relations

[b,(K), bT(K")] = 2K8(K — K') = [b,(—K), b} (—K")]

[b2(K), bY(K")] = 2K8(K — K') = [b,(—K), bi(—K")],
(73)

the fields satisfy the conventional commutation relation for
a theory quantized on the light front. The Rindler vacuum,
which will be the product of the vacua for the theories on
the L and the R wedges satisfies

bl (K) |O>Rindler = bl (_K) |0>Rindler =0,

(74)
by (K)|O)rindier = b2(=K)O)gingier = O.

From the definition of the basis functions g®, g™ in
(72), we see that they are not analytic and, therefore, we
cannot compare the Rindler vacuum to the GLF vacuum
directly. In fact, we note that while the annihilation opera-
tors in (68) are the coefficients of positive frequency
eigenfunctions of the P, operator (Hamiltonian), those in
(71) correspond to coefficients of positive frequency ei-
genfunctions of the boost operator K5 along zZ [We note that
9, = a(to; + (A + B)T — 2)d;) is proportional to the
boost operator along the 7 axis]. In order to compare the
two vacua, let us define a new set of basis functions (for the
expansion in the Rindler wedges) that are analytic,
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Fx(U) = coshHKg(R)(U) + sthKg(L)*(U),
F(V) = coshfgg® (V) + sinhf g*(V),

PHYSICAL REVIEW D 71, 105018 (2005)
with

tanhfy = e~ 7K/a, (76)

Gy(U) = coshHKg(L)(U) + s1nh0Kg(R)*(U), (73)
wL R)+ It is easy to check that this new basis functions are analytic.
Gk(V) = coshfx gy (V) + sinhbg gy (V), For example, we note that
. ho —iKU — (_ ALBau iK/a in R
Fr(U) = cosh (g™ (U) + tanhd gL (U)) = 5/05_21’;{ (=y=sa) , (77)

and so on, where u in the wedge L is assumed to lie slightly
above the principal branch of the logarithm.

The field expansion in the two wedges in (71) can now
be expressed in terms of this basis function as

$(n, &) = ﬁ) " AK(F(U)e,(K) + F(V)ey(=K)
+ Gg(V)ea(K) + G(U)ey(—K)
+ Hermitian conjugate), (78)

where we have defined new field operators resulting from
the unitary change in the basis as

¢1(K) = coshfgb,(K) — sinhfxbi(—K),
¢1(—K) = coshfgb,(—K) — sinhfx bl (K),
¢»,(K) = coshfOgb,(K) — sinhHKb}L(—K),
¢>(—K) = coshfgb,(—K) — sinh@xbT(K).

(79)

We note that the new creation and annihilation operators
can be easily seen to be related to the old ones through a
Bogoliubov transformation. Defining the formally unitary
operator [15,18,19]

U(f) = 100, (80)

where
G(9) = —i ﬁ dK—((b (K)by(—K) — bl (—K)b! (K))

bY(K)bT (—K))),

it is easy to check using the commutation relations (73) that
we can write

+ (b1 (—K)b,y(K) — (81)

e1(K) = UO)by (K)U ™1 (0),
e1(—K) = UO)b,(~K) U~ (0),

e>(K) = U()by(K)U~(6), (82)
e(—K) = U(B)by(~K)U 1 (0).

We note that the basis functions Fg, Gg are positive
frequency with respect to GLF coordinates and hence the
expansion in (78) can be directly compared with the field

—iK(U—im/a) _( /A+ au)lK/a in L

[
expansion in (68). In particular, we note that the GLF
vacuum satisfying (70) can also be written as

c1(K)0)gLr = ¢1(=K)|0)grr = 0
c2(K)|0)gLr = ¢2(—=K)|0)grr = 0.

On the other hand, using (82) as well as (74), it follows now
that we can relate the GLF vacuum with the Rindler
vacuum as

(83)

10)cLr = U(O)|0)rindier-

Furthermore, from (79) we note, for example, that

(84)

CI(K)|O>GLF = COSheK(bl(K) - e_ﬂ-K/abg(_K))lO)GLF = 0,
(85)

which implies that

bl(K)|0>GLF = e_WK/ab;(_KNO)GLF- (86)

This shows [15,18,19] that the Rindler observer perceives
the GLF vacuum as a thermal vacuum at a temperature

_a
The=5—

o (87)

The corresponding temperature in the GLF frame can then
be obtained from Tolman’s law to be

ToLr
/_(GLF)
| -(conformal)
(33)
T A+ Ba A+ B «
GLF ~\B—A 277 B—A27m

where we have used (60). This shows through a systematic
analysis from the Hilbert space point of view that a uni-
formly accelerating observer would perceive the GLF vac-
uum to correspond to a thermal vacuum with a temperature
(in the GLF frame) given by (4). This is, of course, con-
sistent with the results of the earlier section, but as men-
tioned earlier is useful in showing that any matrix element
of the theory would appear as a thermal amplitude to the
accelerating observer.
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V. SUMMARY

In this paper, we have investigated the phenomenon of
Unruh effect for a massless scalar field theory quantized on
the light front in the general light-front frame. In this case,
there are two possible directions for acceleration (as op-
posed to the Minkowski frame which is isotropic) and we
have determined the uniformly accelerating coordinates
for both the possible accelerations. By transforming the
Green’s function for the massless scalar field quantized on
the light-front to the uniformly accelerating coordinate
systems, we have shown that it has a thermal character
corresponding to a unique temperature given by Tolman’s
law (4) (independent of the direction of acceleration). We
have also carried out a systematic analysis of this phe-
nomenon from the point of view of the Hilbert space and
have shown that a Rindler observer finds the vacuum of the
theory to correspond to a thermal vacuum with the tem-
perature given by Tolman’s law, which in turn shows that
any amplitude of the theory would appear to be a thermal
amplitude to such an observer.

Finally, we note from the results obtained from our
analysis that it is an interesting question to determine
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whether the vacuum of a quantum field theory quantized
on equal time surface is equivalent (through some
Bogoliubov transformation or otherwise) to that of the
theory quantized on the light front. A priori there is no
reason for such an equivalence, but the fact that physical
amplitudes in perturbation theory in the two theories agree
on a case by case basis, both at zero as well as finite
temperature, (there is no proof that this should happen in
general and the agreement at zero temperature depends
crucially on the regularizations used since the power count-
ing arguments in the two theories are quite distinct) makes
it a worthwhile topic of study. Any direct relation between
the two vacua will lead to a better understanding of many
aspects of both (equal time and light front) the theories.
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