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The study of new Bogomol’'nyi-Prasad-Sommerfield (BPS) objects in AdSs has led to a deeper
understanding of AdS/CFT. To help complete this picture, and to fully explore the consequences of the
supersymmetry algebra, it is also important to obtain new solutions with bulk fermions turned on. In this
paper we construct superpartners of the 1/2 BPS black hole in AdSs using a natural set of fermion zero
modes. We demonstrate that these superpartners, carrying fermionic hair, have conserved charges
differing from the original bosonic counterpart. To do so, we find the R-charge and dipole moment of
the new system, as well as the mass and angular momentum, defined through the boundary stress tensor.
The complete set of superpartners fits nicely into a chiral representation of AdSs supersymmetry, and the
spinning solutions have the expected gyromagnetic ratio, g = 1.
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L. INTRODUCTION

Since the recognition of their importance in connecting
weakly coupled to strongly coupled physics, Bogomol’nyi-
Prasad-Sommerfield (BPS) states have continued to play a
major role in fulfilling the promises of strong/weak cou-
pling duality. This is certainly evident today in the explo-
ration of AdS/CFT, where a weakly coupled gravity system
in five dimensions is dual to four-dimensional super-Yang
Mills theory at strong 't Hooft coupling. In general, very
few direct comparisons may be made between states at
weak coupling and strong coupling. After all, following a
state from weak to strong coupling involves the observa-
tion of more and more corrections, until finally the pertur-
bative description, valid at weak coupling, breaks down
altogether. In many cases, even the effective degrees of
freedom are expected to change, so that keeping track of
individual states would not make sense.

On the other hand, the reason BPS states are useful is
that, as shortened representations of the supersymmetry
algebra, they are protected against corrections by super-
symmetry. Thus, in contrast with arbitrary states, they may
be traced between strong and weak coupling. As such, they
provide a primary means for extracting information out of
systems which involve strong/weak coupling duality. For
example, there is currently much interest in the 1/2 BPS
excitations of AdSs X §° configurations. From the bulk
point of view, these states have interpretation as either
gravitational ripples or giant gravitons. These may be
investigated either as classical solutions of the supergravity
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equations or through the world-volume dynamics of
wrapped branes. Furthermore, through duality, such states
are also associated with chiral primaries in the dual field
theory. It is precisely the BPS nature of such excitations
that allow such a rich connection to be made between
seemingly different objects such as branes, classical grav-
ity backgrounds and chiral primary operators.

In a supergravity context, extremal black holes are an
obvious choice as BPS objects to explore. Such black holes
have zero temperature and have a natural correspondence
with pure states in a quantum theory. In this case, like all
states in a supersymmetric model, the extremal black holes
ought to form representations of the supersymmetry alge-
bra. In particular, the bosonic black hole solution itself
must also be related to superpartner black holes carrying
fermionic hair. In fact, such superpartners may be con-
structed by action of a finite supersymmetry transformation
6 on the original solution, represented schematically as

1
<I>—>e5®=<b+5<l>+§58<b+---. (1)

Here, ® woul -be the metric, graviphoton or any other field
in the supergravity theory. For Poincaré supergravity, a
typical example would be the extremal Reissner-
Nordstrom solution with mass = charge. Clearly this co-
incides with the corresponding BPS condition M = |Z|
where Z is a central charge in the supersymmetry algebra.
In this case, exactly half of the supersymmetries §® would
vanish, namely, those related to the Killing spinors of the
background. On the other hand, the remaining fermion
zero-mode spinors would generate nontrivial transforma-
tions, demonstrating that the black hole lies in a shortened
multiplet of supersymmetry.
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This construction of exact black hole superpartners was
first carried out in [1] in the context of ungauged N = 2
supergravity in four dimensions. The method was also used
in [2] to examine the dipole moments and gyromagnetic
ratios of 1/2 and 1/4 BPS black holes in ungauged D = 4,
N = 8 supergravity, in [3] to construct the fermionic
partners of the supergravity description of DO-branes in
ten dimensions, and in [4] to construct the M2-brane
multiplet in 11 dimensional supergravity. In general, for
such extremal objects in Poincaré supergravity, it may be
explicitly demonstrated that all superpartners have identi-
cal masses and charges as the original black hole itself. At
some level, this is simply a kinematical consequence of
satisfying the supersymmetry algebra. Nevertheless, it is
reassuring to see that semiclassical methods may be suc-
cessfully applied to the study of new backgrounds with
fermionic hair.

In this paper, we show that the same techniques for
generating black hole superpartners in ungauged super-
gravities may also be applied to the case of gauged (or
anti-de Sitter) supergravities. However, it is important to
note that the AdS superalgebra is different from the
Poincaré one. In particular, masses (actually energies)
and charges of the superpartners are no longer identical,
but are related according to the AdS superalgebra. Below,
we construct explicit superpartners for black holes in
gauged D = 5, N = 2 supergravity and go on to calculate
the masses and charges of the superpartners. We verify that
the mass and charge shifts indeed follow the pattern re-
quired by supersymmetry in AdS spaces.

The main purpose behind this construction of black hole
superpartners is to demonstrate that the fermion zero
modes carry additional information about BPS background
in supergravity. Although we work explicitly with black
holes, the techniques we use are applicable to any back-
ground with partially broken supersymmetry, even those
without horizons. By fully studying the BPS states and
their partners, we may also hope to obtain new methods for
exploring the lowest non-BPS excitations as well. While
the zero-mode construction fails for non-BPS black holes
(since the would-be zero modes are non-normalizable at
the horizon), this obstacle may potentially be overcome in
geometries without horizons.

It is worth noting that obtaining a meaningful definition
of mass and angular momentum in AdS spaces involves
some care. While various definitions have been provided,
we use the holographic renormalization method [5-7],
which is natural in an AdS/CFT context. Properties of
the five-dimensional black holes which we are interested
in have recently been examined in [8,9]. There it was
demonstrated that a proper set of boundary counterterms
was necessary to ensure the validity of the BPS algebra on
the boundary.

We begin in section II with a brief overview of N = 2
supergravity and very special geometry as well as the
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familiar 1/2 BPS black hole solutions themselves. In
section III we identify convenient zero-mode spinors and
use these to modify the bosonic background of section II.
In section IV we calculate the conserved charges of the
new system, defining the mass and angular momentum
through the boundary stress tensor. We conclude in
section V by showing that these black holes fall into
shortened chiral representations of AdSs supersymmetry
and find the gyromagnetic ratio of the spinning superpart-
nerstobe g = 1.

II. BPS BLACK HOLES IN FIVE DIMENSIONS

We are interested in 1/2 BPS black hole solutions of
gauged N = 2 supergravity in five dimensions coupled to
n vector multiplets. The bosonic fields in this model consist
of the metric g,,, n + 1 vectors AL, and n scalars ¢~
while the fermionic fields are the gravitino ¢, and n
gauginos A,. The gauging of a U(1) subgroup of the
SU(2) R-symmetry group is achieved by introducing a
linear combination of the n + 1 vectors, A, = V,AL
where the V; are a set of constants. Since A, is what
couples to R-charge, it will play a prominent role in the
supersymmetry analysis of section V.

This theory was constructed in [10,11], where particular
attention was paid to the notion of very special geometry.
We follow the conventions of [12,13] and write the bosonic
action as

1 1 1
€_1£ = ER - ZG”FI{U,F”'V'] - ngy(d))ay,(ﬁxalu(ﬁy
-1
e
= V(@) + o 7P CuFlu, Fp oA, )

where we use a signature (—, +, +, +, +). The gauging of
the U(1) subgroup introduces a potential V(¢) which may
be obtained from a superpotential W(¢) through the rela-
tion

1 oW ow 2,

V(d’):zg 9" 94 gW, (3)

where
W(p) = 3gV,X". 4

For very special geometry, the n-dimensional scalar
manifold is obtained by introducing n + 1 scalar coordi-
nates X!(¢) along with the restriction V(X’) = 1 where
"V is a homogeneous cubic polynomial

1
V= c CrxX' XXX, (5)

In this case, we have

/o a
Gy =22 2wy
Y 2<6X’ ox7 " >|V—1 (©6)

gxy = GIJGXXI(?yXJ,
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where 9, = 9/0¢*. We also find it convenient to introduce
X; =+ Cpx XXX, so that X'X; =1 as well as X;dX' =
X'dX, = 0, so long as we restrict ourselves to V = 1.

In addition to the bosonic sector, given by (2), we will
also need the supersymmetry variations

: I
oy, = (@M F X7~ 45LT0)F, + EWF#>E,

3 i i @)
5)lx = (g BXXIF’“’F,{“, - ngyrp’a#(ﬁy + EBXW>€,
for the fermions, and
5g,u.v = Re(ér(,u'wbv));
8A! =R L X'T A —ix!
« = Re 56(8x “ iX'y,) ) 8)

5X; = ReG agf,@)ﬁ),

for the bosons. Here, D, =V, —3igV,Al is the U(1)
covariant derivative. Our notation here is that all spinors

are five-dimensional Dirac spinors, and the Dirac matrices
satisfy the Clifford algebra {I'#, I’} = 2g+7.

A. BPS black holes

The 1/2 BPS black hole solutions to gauged N = 2
supergravity were obtained in [12], and have the form

ds* = —e U F2dr + 2V (f2dr* + r2d03),

f2 =1+ ngZeéU’ Al — e*ZUX’dt, (9)
1
X, =-e *H,
I 33 I
where
H =3V, +4 (10)
r

are a set of “harmonic‘ functions with constant electric
charges ¢;. Note that the function U(r) is determined
implicitly through the very special geometry constraint
V =1 where V is given in (5).

The solution in (9) is a 1/2 BPS solution, and was
constructed by solving the Killing spinor equations o¢r,, =
0 and 6 A, = 0 arising from (7). For the above background,
these equations take on the form

S, =[0,—ig+ (—2ie3VfUT,

+gf(1+rUH)P, e,
1
oY, = [ar +U' -2U'P, . +§ge3Uf_l(1 +3rUNI }6’
oo = (Vo 5Tul) ~r0+ P e

SN =—id,¢*e UfT|P, . (11)

where primes denote derivatives with respect to r, and
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numerical indices 0, 1 denote frame indices with the ob-
vious vielbeins

e = e 2Ufdt, el =eVfldr. (12)

Angular coordinates on S3 are given by a, 3, ..., and the
carets appearing in 8¢, denote objects defined on the unit
sphere. Here we have also introduced a family of projec-
tion operators

P =

nn = 51+ £ (il + qgre’T] - (13)

N —

where 7 and 7 are independently *1 (which we denote =
in shorthand notation). Although only P shows up ex-
plicitly in (11), we will make use of the other signs of P, 5
in future sections.

The Killing spinors corresponding to (11) were con-
structed in [12], and have the form

€,y = eigte—Ue—l/2T(leﬁel/2F23¢e—i/ZFoml//( [f+1

—f = 1) = ilp)e, (14)

where €, is an arbitrary constant spinor. By construction,
€.+ satisfies the projection P, €, = 0. Here we have
used an explicit parameterization of the unit S* given by

dQ3 = d6* + sin’0d¢p? + cos’0dy?, (15)
and have used 2, 3, 4 to denote frame indices on S3, with
e2=do, &3 = sinfd e, é* = cosfdy. (16)

It is apparent from (14) that the Killing spinors split into
two parts: one related to the 7-r directions and the other
corresponding to Killing spinors on S°. This feature may be
made explicit by choosing a Dirac decomposition

I‘Ozio'le, F1:0'|><1, Fa=0'3><0'a
a7

along with the split € = & X 7. Here it is important to
realize that € may be taken to be Majorana (real) in the 1 +
1 dimensional space spanned by ¢ and r.

We now note that Killing spinors on S* corresponding to
solutions of

(@a r%(}(,)ni -0 (18)

may be written explicitly as

N = eii/Zalﬁei/203(¢1¢)_ (19)
In this case, the projection (13) becomes
1 _ -
Ppy =501+ f H=noy + Hgre’loy)],  (20)

while the Killing spinors (14) have the form

€4 = eigleiU(\/f +1=f = 1o)( + oy)eg X 1.
2D
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When working with supersymmetry, we will make use of
both representations (14) and (21) interchangeably, when-
ever convenient.

ITII. FERMION ZERO MODES AND BLACK HOLE
SUPERPARTNERS

Before proceeding to analyze the fermion zero modes,
we find it useful to familiarize ourselves with the form of
Killing spinors in AdSs. Thus we first analyze the complete
set of Killing spinors on the maximally supersymmetric
AdS space, and then demonstrate that half of the original
AdS Killing spinors naturally map into Killing spinors in
the presence of the black holes, while the other half be-
come fermion zero modes.

In general, of course, any spinor that does not solve the
Killing spinor equations o, = 0, §A, = 0 may be con-
sidered to be zero modes. However, one has to be careful in
identifying physically distinct configurations, as opposed
to pure supergauge degrees of freedom. The importance
here is the recognition of the global part of the supersym-
metry algebra as the representation generating part. In this
sense, we demand that the fermion zero modes are explic-
itly constructed to solve an alternate projection P_ ., dis-
tinct from P, . of the Killing spinors. Note, however, that
P_. is not the complement of P ,; that is reserved for
P__ satisfying P,, + P__ = 1. It instead defines or-
thogonality with respect to the Dirac inner product,
Py i€ 1Py;€, = 0. This is because € = ety and so
the 7 term changes sign when permuted past I';. Because
of the background AdS curvature, this situation is some-
what different from that used in [1], where in addition to
satisfying a supergauge choice y*8¢,, = 0 the fermion
zero modes also satisfied the complementary projection P_
instead of P, .

A. Supersymmetry in AdSs

To highlight the above issues, we now consider super-
symmetry in the AdSs vacuum. This is readily obtained by
taking U = 0 and g; = 0 (so that X; = V; are constants) in
the black hole ansatz of (9). In this case, the gaugino
variation trivially vanishes, and (11) reduces to the set

3 1
51//, = [az - (E -+ E)ig + ngOPiJr}f,
5, = [ar + %gf‘lrl}e, 22)

O, = |:©a = %FOIfa - frlf‘api+:|€-

Unlike (11), here we have made use of the identity P, , =
P_, + if T, to write the Killing spinor equations using
both types of projections. One may solve these equations
by starting with the solution €, of the last section with
U = 0. To generate the solution to the —+ equation,
simply note that to change P, into P_, one needs to
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permute through a I'|. This also leaves the ¢, equation
unchanged. This implies that a spinor of the form
exp(igh)T' €., solves the —+ equations. Pushing the I’
through until it is next to €, and then replacing I'j ey — €,
(since T'j€y is just as arbitrary as €;) gives the other
solution. The AdSs Killing spinors may then be written as

€, = eiB/2F1/ gt o Fi/M026 o1/ b

X eii/2rm4l//(\/]T — FF])(I + i) €,

(23)

where € is again an arbitrary constant spinor. The sign of
i’y is directly connected to the projection appearing next to
€, giving that we can replace the + sign in the exponential
with an +iI’. This results in the usual form for the AdSs
Killing spinors except for the extra factor of exp(3ig?).
This extra factor is a direct result of the gauge choice for
Al but is otherwise physically insignificant.

It ought to be apparent that, taken together, the complete
set of Killing spinors, €, and €_., guarantee the maxi-
mal supersymmetry of the AdSs background. As seen from
the 64, equation of (22), the AdS;s Killing spinors have a
natural realization in terms of both types of Killing spinors
on S?, namely 7, and n_ of (19). using the standard Dirac
decomposition (17), the above Killing spinors take on the
form

€x+ = ei(3/2:1/2)gt(\/f+ I=f—la)(1x0y)eg X 7-.
(24)

By construction, the above spinors €. ; satisfy the projec-
tions

Piiery =0. (25)

The P, case gives pure AdSs spinors which, when multi-
plied by e~V and with appropriate modification to f(r),
correspond to the preserved black hole supersymmetries
identified in the last section. We should also note that the
pure AdS5 ++ spinors match the black hole ++ spinors
when r — oo (so that U — 0) because the space becomes
asymptotically AdSs.

The —+ solutions for pure AdSs, on the other hand, are
broken supersymmetries when generalized to the black
hole solution; they correspond to fermion zero modes in
this background. Although any spinor not satisfying the
P, . projection would be sufficient to realize the fermion
zero-mode algebra, the e_, are particularly convenient
because they reduce to standard Killing spinors in an
asymptotically AdSs spacetime and hence represent genu-
ine fermion zero modes related to the black hole geometry
(as opposed to supergauge transformations of pure AdSs).
For convenience, we will drop the label —+ from zero
mode spinors in future sections. Thus
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— o281 paU i/2Wo120 y1/2T2365

X ei/2F014¢(\/fT1— V1) A+iTy)e
=2t e?U(Jf+1—\[f—1o)(1—0oy)eg X n_.

(26)

Here « is an arbitrary constant related to choice of super-
gauge condition; it will drop out in all physical quantities
below. These properly identified fermion zero-mode spin-
ors will be the starting point for the generation of the
superpartners of the black hole solution of [12].

€E=€_,

B. Zero mode identities

The black hole superpartners will be obtained via (1) up
to second order in the supersymmetry transformation . As
a result, we are often faced with the task of simplifying
bilinear expressions in fermion zero-mode spinors of the
form (el'...€), where € is given by (26). Using the projec-
tion properties (25) for the zero-mode spinors, as well as
Dirac conjugation, € = €T, one may obtain several use-
ful identities:

(el e)=0, (elye) = —if(€e),

(eTg €)=igre’V(ge), (el I, e)=0, 27
N e A i e

(el e)= W(Eraf), (el 'y e)= _W(fraf)

We will make use of these identities below.

C. Black hole superpartners

To generate black hole superpartners, we will consider
fermion zero-mode transformations up to second order in €
starting from the bosonic background (9) constructed in
[12]. The first order variations using the zero modes will
generate a fermionic (gravitino and gaugino) background.
Rewriting (11) with the substitution P,, =P_, +
if 'Ty, and noting from (25) that P_ € = 0 for a fermion
zero mode €, we obtain

S, =—U'[2e 3Ty, +igrle,
S, =U'Ta+1-2if 'Tyle,
S, =—irU'Ty I e

N =—e"Y9,¢T e

(28)

Note that fa are Dirac matrices on the unit sphere, and are
related to the full five-dimensional matrices by I', =
reUfa.

‘We now turn to the terms second order in the supersym-
metry variation, where the bosonic fields receive correc-
tions. To obtain the second order variations 6 (boson), we
may simply take their first variations in (8), and replace the
fermions with their first variations given above in (28). All
other contributions would be set to zero when evaluated for
a bosonic background. Using the identities (27) we find
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that the nonzero variations of the metric are
66g,, = —grU'f?e *U Re(ée)
= 8grU'e* @t WVg (&,g0)N,
688, = %(gr)*'U’e*f’U Re(iel,€)
= —12rU"e¥* "V (5,g0)K ,,
88g,, = —2grU'f 2e*V Re(€e)
= —16grU'e** Vg (&,g0)N,

(29)

86845 = grU'e*V g,z Re(€e)
= 8grU'e®@*W¢ 5(8pe()N.

To obtain the final expressions on each line, we have
decomposed the fermion zero-mode spinors according to
(26) and taken o,g, = —g to satisfy the projection (1 —
0,) in (26) for the zero-mode spinors. We have also defined
N=(ntn)),  K,=Mmlé,m ).  (30)
Here, K, is a Killing vector on the unit S, and the
decomposition (26) yields the relation (i€l €)=
—8gr2eX@*2U(5,e,)K . In addition, the nontrivial double
supersymmetry variations of the matter fields are

3
- EgrU’X’ Re(€e)

= —12grU'e**VX!(g,g,)N,

SSA!

(3D

88AL = —(gn) " (U'X" + 9,X")e *U Re(iél 4 ¢€)

N =

= —4r(U'X" + 0,X")e*V(8yeo)K .

for the gauge fields, and

1
88X, = Eng,X,er Re(ée)

= —4gra,X;e* VU (gyg,)N, (32)

for the scalars.

While the exponential factor exp(aU) in (26) appears in
the above expressions, this factor goes to unity asymptoti-
cally as r — oo. Since « enters nowhere else, the actual
value of « is unphysical. For convenience, we take a =
—1 and furthermore define the spinor bilinear

A= 4(5080). (33)

Using the expression (1) for a finite supersymmetry trans-
formation, we now observe that, up to second order in the
supersymmetry variation (i.e. to lowest order in A), the
bosonic fields may be expressed as
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sty = —e V(1 +grUu'AN)dr?
+ e2U[f72(1 = 2grU’ AN)dr?
+7r2(1 + grU'AN)dQ3] - 3rU’e *V AdIK,
3 34)
Al =e*2UX’<1 —EgrU’)tN>dt (
1 .
—Er(U’X’ +0,X)e 2V K,
X —x,—Lera x,an
I I 287 rA ALV,

Here, K=K .d0% is the 1-form associated with the
Killing vector K%(9/96%). where the « index is raised
and lowered using the metric on the unit sphere, (15). In
the following section, we will examine the superpartner
solutions (34), and, in particular, extract the superpartner
shifts to the energy (mass), angular momentum and
R-charge of the original black hole.

IV. PROPERTIES OF THE BLACK HOLE
SUPERPARTNERS

Having constructed a set of black hole superpartners,
(34), in the N° = 2 theory, we now set out to explore their
properties. We start by observing from (34) that angular
momentum (spin) is generated for the superpartners be-
cause of the off-diagonal metric component proportional to
dtK. This is of course expected, as from a semiclassical
point of view we expect the superpartners of the spinless
black hole to carry precisely spin-1/2. We also see that the
effective Newtonian potential in g, is shifted by a multi-
plicative factor (1 + grU’AN). It is this shift that indicates
that the superpartner energies no longer coincide with that
of the original solution. This is a feature of supersymmetry
in AdS spacetimes, and the energy shift clearly vanishes in
the Minkowski limit g — 0.

A. Energy and angular momentum

In order to make these observations on energy and
angular momentum more precise, we make use of holo-
graphic renormalization in AdS and, in particular, the
boundary stress tensor method for defining asymptotically
conserved quantities [5—7]. Given a gravitational action
I[g ], the boundary stress tensor is simply [14]

2 61 1
—h Shab 87TG5
where h,;, is the boundary metric, h,, = g,, — n,n,,

with n,, a unit normal to the boundary. In addition, (CRU
is the extrinsic curvature tensor, which may be expressed as

Tah —

(@ — @), (35)

1
@ab - E(vanb + vbna - nancvcnb - nbncvcna)'

(36)
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Note that the covariant derivatives are with respect to the 5-
dimensional metric. We have also used a, b, c, . .. to denote
indices on the boundary. The expression (35), while diver-
gent, may be regulated via the addition of boundary coun-
terterms. For this particular situation, the appropriate
counterterms were determined using the Hamilton-Jacobi
method in [9]. The resulting renormalized stress tensor is
given by

87GsTy, = — (O, — Ohyy,)

+ (w<¢>hab - %(zﬂ(mab - :R(h)haw).
(37)

Here W(¢) is the superpotential given in (4) and R, is the
Ricci curvature on the boundary. We note that although
there are fermions present in the superpartner configura-
tion, (34), their behavior in the stress tensor is dominated at
large r by a factor of (U’)?, and so the fermions fall off too
fast at the boundary to contribute to (37).

To explore the boundary stress tensor, we take the black
hole solution of (34) and expand near the boundary at r —
0. Using r as the natural radial direction, the unit normal
vector n, has as its only nonvanishing component n, =
eVf1(1 — grU'AN), where we are only concerned with
the lowest order in A. Corresponding to this normal direc-
tion, the four-dimensional constant r surfaces are given by

dsﬁ = h,,dxdx" = —e U f2(1 + grU'AN)dr*
+e2Yr2(1 4 grU’'AN)

3 ,
X gaﬂ<d.9a +5r! U’e‘GU)\K”‘dt>

3 .
X <d05 +5r! U’e*6U)\K[”dt>, (38)

where we have only worked to linear order in A. Note that
we have further chosen an Arnowitt-Deser-Misner (ADM)-
like foliation of the boundary metric, with shift vectors
related to angular momentum. Furthermore, given the unit
normal, it is straightforward to compute the extrinsic cur-
vature tensor from the four-dimensional metric:

1 1
®ub = _i(vunb + vhnu) = _Enrarhah

1
= _567Uf(1 + grU'AN)d,hy,. (39)

To compute the counterterm contributions in (37), we
also need the superpotential and the Ricci curvature of the
boundary metric (38). Since r may be taken as constant
with respect to the four-dimensional metric, its intrinsic
curvature has a simple form, with only the S° being curved.
In other words, we have

Ry=0, Ria =0,

(40)
Rop =2r 2 2U(1 — grU'AN)h .
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In addition, using (4) and the form of X!

the superpotential has the form

given in (34),

1
W =3gV,X' = 3g<1 - Egr/\Nar>(V1X’)
1
= 3g<1 - Egr/\Nar>[e2U(l + rU")]. 41

To proceed, we now need to specify the functional form
of U(r). Although in some cases (such as the STU model) a
closed form expression may be given for U, here it is
sufficient for us to assume that U has an expansion in
inverse powers of 7 of the form

_o o

U= ) + oy

In this case, ©,,, R,, and W given in (39)—(41) may be

expanded for large r and inserted into (37). We find, to
lowest nontrivial order

<6a]<1 + 1gAN> + 3)
8/ w3

- P(6a1)t[€a)

SIS (42)

87TG5Tn =
87TG5TZQ =

Note that there is also a contribution to 7, g, which we have
not computed (since it has no role to play in extracting
conserved charges).

We must now extract the energy and angular momentum
from the above expressions for the boundary stress tensor.
To obtain the charge Q, associated with a Killing vector ¢,
we take

0c = ~lim [0 FwT, ),

where u defines the unit normal time direction, and 7 is the
induced metric for a constant time slice. For the metric
(38), this expression takes the form

0)37‘2

Q¢ = (T1a &), (45

where w; = 27% is the volume of the unit 3- sphere. In
particular, conjugate to the Killing vector ¢ = <, we ob-
tain the energy

2722 1 3
E=—-limZ™ 1, =" <6a1(1+ g)uv> 2).
roe g 4Gs 8g

8[’

(46)

To obtain the angular momentum, we must consider
some properties of Killing vectors on the unit 3-sphere.
In general, the unit S* admits a set of SO(4) Killing vectors,
which we may denote Ky R (i) , where ij is an antisymmetric
SO(4) index pair. These K1111ng vectors may be normalized
according to

PHYSICAL REVIEW D 71, 105015 (2005)
A7) 5 | B o
] B0JZRY R = 5 (8187 — 88w (47)

On the other hand, the Killing vector K® constructed from
Killing spinors in (30) is naturally given as an SU(2)_
Killing vector, corresponding to the decomposition
SO(4) = SU(2), X SU(2)_. In particular, Killing vectors
corresponding to SU(2), and SU(2)_ arise from
(7716'“7”) and (pté%m_), respectively. While K¢ =
(nT 6*n_) depends on the explicit Killing spinor 7_,
we may always choose coordinates such that K is aligned
along the T3 direction of SU(2). For the unit $° given in
(15), this corresponds to taking

ad ad
+ —
Ip oY
where we have identified ¢ and ¢ with rotations in the 1-2
and 3-4 planes, respectively. This also agrees with the

natural embedding of SU(2). in SO(4). Using these ex-
pressions in (44), we now read off the angular momentum

— 18(12)11 + k(34)ay (48)

2
Ji = —lim = f dOET, R

r—o g
3a1
d*0y/3R KD, 49
so that
J2 =% =" (3a,0). 50
4G5( a;A) (50)

We should note that, while these definitions for energy
and angular momentum were obtained for AdS black
holes, they exactly match their Minkowski black hole
counterparts in the case where the black hole is “small.”
When we say that the black hole is small, we mean that all
length scales associated with it are small compared to the
radius of AdS. In such a case there is a region of space such
that gr < 8, a;/r’f < 8-, 8. < 8- < 1. The black
hole’s energy and angular momentum may then be read
off from the metric using a standard ADM prescription;
these expressions should furthermore agree with the above
(up to the Casimir energy, which is absent in the ADM
mass). In fact, we would have chosen the definitions of the
conserved charges in such a way as to have this happen (by
modifying them with multiplicative constants). The fact
that they do agree merely confirms that we have defined
them in an appropriate manner.

B. The R-charge and magnetic dipole moment

The conserved gauge charges are straightforward to
obtain, and do not require a counterterm prescription.
Based on the Maxwell equation of motion from (2), we
obtain the conserved Noether (electric) charges

r—oo

0, = Jim [d 0./=8G F'". (51)
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Now, we simply note that the first order corrections in A to
J/—8G,;, when contracted with F ri fall off too fast to
contribute. The only modification to the charge of the
superpartners therefore comes from a direct shift in A.
From (34), we obtain

O; = q; —9Via AN, (52)

where ¢; were the original black hole electric charges,
given in (10).

For BPS states, we are more specifically interested in the
R-charge, given as the electric charge of A, = V,A;’L. In
this case, we may simply read off the R charge from V,A!:

2 3
V,A{=1—ﬂ<1—§gw>+---. (53)

2

Identifying this expression with Q/(2r?) (up to the con-
stant, which is pure gauge), we obtain

0= —4a1<1 - %g)\N). (54)

Finally, we may also read off the graviphoton magnetic
dipole moment from

vial = AR, = AR 4 RO, (55)
r r
Identifying this with — 1 u; ;RS2 yields
Mi2 = M3g = —aA (56)

for the magnetic dipole moment w;;. We will discuss the

relation between these charges in the next section.
\

3 1 1
D(Eo =50, r) = D(Ey, j,0), + D<E0 +2,0% 5.0

2 2

2

3 1 1
D<E0 = __r:O)j: r) :D(EOJOJJ)V+D<EO+§:O:J+§>

Since the BPS black holes of [12] carry nonzero
R-charge, they ought to correspond to the chiral short
multiplet given above. To see this, we identify the energy,
angular momentum and R-charge obtained in the previous
section as

-7
4G5

712 = =T 342,
4G5

3
E (6&1 +3ga1)\N+§g_2>,

(60)
0 = —4a; + 6ga;AN,

Removing the Casimir energy from E, and dropping the
prefactor 7/4Gs = ws/87Gs from gravitational quanti-
ties, we see that the appropriate identification of SU(2, 2|1)
quantum numbers is as follows:

EO == 6a1 + 3ga1AN, jl = 0,
r= —4a; + 6ga;AN.

(61)
j2 = 3&1)\,
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V. DISCUSSION

Given the above construction of BPS black hole super-
partners in AdSs, and the further determination of their
conserved charges, we now demonstrate that the structure
of the superpartners is consistent with representation the-
ory. In particular, we have worked in the context of gauged
D=5 NN =2 supergravity, with superalgebra
SU(2,2|1). Recall that highest weight representations
[15,16] (see also Appendix B of [17]) may be labeled by
D(Ey, ji, Jo; ¥) where the lowest energy E, spins j; and
J2, and R-charge r label the compact bosonic subalgebra

SU(2,2]1) D SO(2,4) x U(1)

D SO(2) X SU(2) X SU(2) X U(1). (57)
This superalgebra allows for two types of short multiplets
(chiral and nonchiral) in addition to ordinary long multip-
lets. The long multiplets generically contain 2* = 16
states, while the short ones contain 2> = 4 states. The
nonchiral multiplets are of the form

D(Ey=2j+1,),j:0)

=D(Ey, j, ))o
(Bt L vl ) p(E ) el
< 0 2)] 2’]>71 ( 0 2:]:] 2>1
1 1
+D(Ey+1Lj+5,j+5]), (58)
2 2/o

while the chiral ones are

1 1
+D\Ey+5,j—5,0) +D(E;+17j0),,
r—1 2 2 r—1
(59)

r+

1 1
+ D Eo + ) O,] - = + D(E() + 1, O, j)r+2.
1 2 2)r1

\
Setting A = O for the original bosonic solution then yields

EO = - % r=6a s
corresponding to the lowest weight component of D(E, =
— % r, 0,7 =0, r) given in (59).

Turning now to the superpartners, we first note from (14)
that g, satisfies a projection o,&; = —¢g(. Hence this two-
component Majorana spinor in fact has only one indepen-
dent real component, which may be taken as an unimpor-
tant real multiplicative constant in the product
€ = gg X n_. In other words, the interesting fermion
zero-mode algebra arises from the Killing spinors 77— on
the sphere, and not from g, itself. Based on standard
representation theory techniques, we see that this algebra
is essentially that of fermionic creation and annihilation
operators. Thus we view the two-component Dirac spinor
n_ and its conjugate nfas a pair of creation and annihi-

D(Ey, 0,0),, (62)
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lation operators
nt=(a af)

with corresponding number operator

0 = (“T ) 63)

a

N=(nptn.)= a;raT + afal =m + ny (64)

Of course, given the semiclassical analysis of the previous
sections, the normalization of these operators is not so
obvious. Fortunately, we have just seen that the parameter
A, defined in (33) as A = 4(&&y), is an ordinary c-number.
Thus we simply assume that the black hole superpartners
with nonvanishing spin will be normalized so that j, =}
(actually the third component of j,). This corresponds to
setting 6a;A = 1 in (61). To be somewhat more precise,
there are actually two independent sets of creation and
annihilation operators, as indicated in (63). In this case,
the third component of angular momentum j, in the second
SU(2) may be either “spin up‘‘ or “spin down*, depending
on the choice of Killing spinors 7_ used to construct the
Killing vector K®. In fact, from (30), we may write down

1 ! !
73 = 5(77J£0'3“/]7) = E(a;raT - alJral) = E(nT - n).
(65)

We now see that the choice of Killing vector in (48) is
overly restrictive. As a consequence, instead of having
j» = 3a; A in (61), we ought to write m, = 6a; AT> with
T3 given in (65), where m, is the third component of j,.

Given the above considerations, we see that the super-
partner quantum numbers read off from (61) fit the repre-
sentations

D<E0+lgN,0,m2=T3> y E(): —ér, (66)
2 r+gN 2

where N = n; + nj and T° = 1(n; — n)). Note here that
the spin j, is given implicitly in terms of the angular
momentum representations |j,, m,). Since the number op-
erators ny and n| independently take on the values O, 1, we
identify precisely the 4 states of the short multiplet. In
particular, we have N = 0, 1, 2, with corresponding spins
Jj» =0, %, 0. As the dimensionful quantities E; and r are
measured with respect to the AdS inverse radius g, the
above expression is in complete agreement with the chiral
short representation of (59) with superspin j = 0. Thus we
have demonstrated that, in fact, working to second order in
the supersymmetry transformations is sufficient to repro-
duce the appropriate zero-mode algebra of the correspond-
ing supersymmetry algebra.

A. The gyromagnetic ratio

Following [2,3], we may also compute the gyromagnetic
ratio of the black hole superpartners. Here we make use of
the definition

PHYSICAL REVIEW D 71, 105015 (2005)
80

i =2% jij, 67

® i (67)

where g denotes the gyromagnetic ratio (to distinguish it

from the inverse AdS radius). The magnetic dipole moment
was identified in (56) to be

Mi2 = M3g = —ajA, (63)

which is clearly proportional to the angular momentum

Jip = J3y = (7/4G,4)3a, A given in (50). To compute the

gyromagnetic ratio, we further use the mass and charge of

the original bosonic solution, M = (7/4G5)6a, and Q =
—4a/ to obtain

g(—4
(—al)t) — g( al) (

a
2w /4G:)6a, _3“‘)‘>’ (69)

4G5

which yields ¢ = 1. This agrees with the asymptotically
Minkowski case previously obtained in [18]. We use the
mass and charge of the original system because J;; and u;;
were only calculated to leading order.

This result appears somewhat surprising, as it was
proven in [19,20] that unbroken supersymmetry in four
dimensions is sufficient to ensure that g is exactly equal to
2 for the superspin-O multiplet. In this case, the situation is
somewhat different, as we are working in five dimensions
and furthermore with the anti-de Sitter superalgebra. It
turns out, however, that it is not the AdS nature of the
system that leads to g # 2, but rather just the simple fact
that ¢ = 1 is natural in five dimensions, at least for super-
partners of nonrotating black holes [18]. While N = 2
supersymmetry shares many common features between
four and five dimensions, there are differences as well.
Consider, for example, the minimal (ungauged) supergrav-
ity multiplet (g, ¥,,A,), with supersymmetry transfor-
mation

i
| (10)
- l — =
(Sg,u,v = 67(/1«1//’/)’ 5AIU“ - D—3 6(/1/'“

normalized in either D =4 or D =5 according to
[61, 8:]P =1(&;y*€y)d, P + -+, with ® any of the

fields in the multiplet. This system admits BPS
(Reissner-Nordstrom) black holes of the form
ds? = —H2dP + HYP-Igy2,
o) 71)
A = ——=Hdr.
W D-3

For a spherically symmetrical black hole with harmonic
function H = 1 + ¢/rP~3, application of the techniques
of [1-3] to generate superpartners yields
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. jae (D—=2)
088, = (617{€)xj2T_2q,
| " (72)
65Al = (El’yfe)xjm.

where € is a fermion zero-mode spinor. After extracting

then angular momentum and magnetic moment from these

expressions, and inserting them into (67), we obtain
.2 2 for D =4,
g=—

(73)

D—3: 1 for D =5.

So we see that § = 1 is actually expected in five dimen-
sions, regardless of whether the background is AdS or
Minkowski. Noting that g = 1 is the natural value in
both ITA theory in ten dimensions and maximal supergrav-
ity in eight dimensions [3], it rather appears that § = 2is a
unique feature of four dimensions.

Finally, we note that while we have focused on the
stationary BPS solutions of [12], they actually have singu-
lar horizons or naked singularities in the context of the
STU model. While this is a rather undesirable feature, our
present analysis is unaffected by such singularities, as we
only depend on the asymptotics away from the singularity.

PHYSICAL REVIEW D 71, 105015 (2005)

It would, however, be worthwhile to extend the fermion
zero-mode construction to the case of the recently con-
structed supersymmetric AdSs black holes supported by
rotation [21,22]. In addition, while to our knowledge this
method has only been applied to the generation of super-
partners of particlelike representations, nothing prevents it
from being extended to more general backgrounds with
partially broken supersymmetry. It would be of particular
interest to examine the fermion zero modes in the recently
constructed 1/2 BPS backgrounds [23,24], and to explore
the role they may play in the AdS/CFT context.
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