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Global structure of moduli space for BPS walls
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We study the global structure of the moduli space of BPS walls in the Higgs branch of supersymmetric
theories with eight supercharges. We examine the structure in the neighborhood of a special Lagrangian
submanifold M, and find that the dimension of the moduli space can be larger than that naively suggested
by the index theorem, contrary to previous examples of BPS solitons. We investigate BPS wall solutions in
an explicit example of M using Abelian gauge theory. Its Higgs branch turns out to contain several special
Lagrangian submanifolds including M. We show that the total moduli space of BPS walls is the union of
these submanifolds. We also find interesting dynamics between BPS walls as a by-product of the analysis.
Namely, mutual repulsion and attraction between BPS walls sometimes forbid a movement of a wall and
lock it in a certain position; we also find that a pair of walls can transmute to another pair of walls with
different tension after they pass through.
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I. INTRODUCTION

Solitons play a key role in understanding nonperturba-
tive dynamics in quantum field theories. In supersymmetric
(SUSY) theories, the Bogomol’nyi-Prasad-Sommerfield
(BPS) saturated solitons preserve a part of SUSY [1,2],
and they are important in understanding the quantum cor-
rection to perturbatively nonrenormalized quantities. BPS
solitons in SUSY theories are also important in the brane-
world scenario [3–5], because they are the necessary in-
gredients to build SUSY models on their worldvolume with
nonsingular space-time.

BPS solitons usually contain a number of parameters.
These parameters are called moduli, which provide
massless degrees of freedom in low-energy effective
Lagrangians on the worldvolume of the solitons. The ki-
netic term for them is nontrivial, and that makes the moduli
spaces for the BPS solitons fascinating subjects. The BPS
solitons in SUSY (possibly gauge) theories with codimen-
sion four, three, two, and one are called instantons, mono-
poles, vortices, and domain walls, respectively. The con-
struction of the moduli space for instantons is well-
established by Atiyah, Drinfeld, Hitchin, and Manin [6]
and for monopoles by Nahm [7]. These results have found
many physical and mathematical applications. The moduli
space of vortices has also been constructed recently by
using the D-brane configurations [8,9], after the discovery
for the case of one vortex [10].
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Somewhat surprisingly, moduli spaces of domain walls
were relatively unexplored for a long time although they
are the simplest of such solitons. We have seen that much
attention has been paid to BPS domain walls in these years
[11–14] as a revival of studies more than ten years ago
[15,16]. One of their motivations is the relation to the
brane-world scenario. We should construct BPS walls in
SUSY theories with eight supercharges for application to
the SUSY brane-world. BPS walls and other BPS solitons
in SUSY gauge theories or SUSY nonlinear sigma models
(NLSM) with eight supercharges have been studied exten-
sively [16–36]. Models and soliton solutions in the latter
can be obtained by those in the former by taking the limit
of strong gauge coupling, and it is often far easier to obtain
(exact) solutions in the latter than the former. The SUSY
NLSM with eight supercharges should have the hyper-
Kähler target manifold [37–42]. The method to obtain
hyper-Kähler manifolds by taking the strong gauge cou-
pling limit in gauge theories is called the hyper-Kähler
quotient construction [39–41], and it can sometimes yield
a target manifold of the form of T�M with a Kähler
manifold M as its special Lagrangian submanifold.

The moduli space of BPS walls was considered in a d �
4, N � 1 generalized Wess-Zumino model [12] and in
d � 4, N � 1 SUSY QCD [13,14]. However, for SUSY
theories with eight supercharges, the moduli space of BPS
walls was constructed only for U(1) gauge theory [19,20]
until recently. The moduli space of BPS walls has been
determined completely in the case of U�Nc� gauge theories
with massive Nf �>Nc� fundamental flavors with
eight supercharges [28,29]. It has been found that the
moduli spaces for various topological sectors glue together
to form a complex Grassmannian M � GrNf;Nc ’
SU�Nf�=	SU�Nc� 
 SU�Nf � Nc� 
 U�1��, which is a
special Lagrangian submanifold of the Higgs branch
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T�GrNf;Nc of the corresponding massless model. This total
moduli space is also valid for the massive hyper-Kähler
NLSM on T�GrNf;Nc , which can be obtained by taking the
strong coupling limit of the gauge theories. Hence it is very
natural to ask whether the total moduli space of BPS walls
in T�M is always M.

The domain walls enjoy also several interesting proper-
ties [29]. For instance, there are mutually penetrable pairs
of walls which can pass through each other by changing the
sign of the modulus for their relative distance. Up to now, it
has been found that each of these walls maintains its
individual identity after passing through. On the other
hand, certain pairs of walls are mutually impenetrable
and produce a single compressed wall, when the modulus
for their relative distance is taken to minus infinity. So far
in previous works, we find that all pairs of walls are
impenetrable in Abelian gauge theories and in the NLSM
resulting from it.

The purpose of this paper is to investigate the global
structure of the moduli space of BPS walls in the Higgs
branch of SUSY theories with eight supercharges. By
considering the local structure around a special
Lagrangian submanifold M, we first find that the dimen-
sion of the moduli space can be larger than that naively
indicated by the index theorem. To our knowledge, this sort
of phenomenon of additional zero modes has not been
found in the case of other BPS solitons. Taking an
Abelian gauge theory to obtain a NLSM for T�M as an
explicit example, we work out BPS wall solutions. Several
special Lagrangian submanifold Ma’s besides M are found
to be contained in its Higgs branch. We find that the total
moduli space of the BPS walls is the union of these special
Lagrangian submanifold Ma’s, some of which share
boundary subspaces. Thus the total moduli space gains
very ample structure contrary to naive expectation. The
hyper-Kähler quotient itself is given by gluing T�Ma’s
together.

By considering the physical reason behind the BPS wall
moduli space, we also observe an interesting mutual re-
pulsion and attraction between BPS domain walls. We also
find a new phenomenon where a pair of walls can pass
through each other, resulting in a different pair of walls.
Namely, a pair of walls is transmuted to another pair of
walls with different tension while preserving the total
tension after their encounter. We recognize that penetrable
pairs of walls are not restricted to non-Abelian gauge
theories (and their associated NLSM). The penetrable pairs
can also occur in gauge theories with rank larger than unity,
such as a direct product of U(1) factors. In particular, it is
quite common to have pairs of walls which transmute
through crossing when there are two or more factors of
U(1) gauge groups. We will see that the occurrence of these
phenomena is intimately related to the existence of mul-
tiple compact Lagrangian submanifolds, which is also
responsible for the violation of transversality.
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Before we move on to the main part, we would like to
comment on the nature of our analysis. We only analyze
classical aspects of BPS domain walls in the main part of
our paper. Because of the high degree of SUSY, the quan-
tum correction is under better control than those with less
supercharges. Furthermore, the target spaces we treat in the
latter half of our paper have as many triholomorphic U(1)
isometries as possible. Hence, they should give us a firm
grip on the correction to the hyper-Kähler metric, although
that for the general Higgs branch is relatively unexplored
compared to that for the Coulomb branch. Effective theo-
ries on the BPS walls, on the other hand, have only four
supercharges, which implies that there will be much more
diverse interesting nonperturbative phenomena. We plan to
discuss these matters in a future publication.

The organization of the paper is as follows: We discuss
in Sec. II the BPS flow equation in T�M, and study the
relation between the dimension of the moduli space and the
index theorem. We then move on to study in Sec. III the
BPS domain walls in hypertoric manifolds, i.e. the Higgs
branch of gauged linear sigma models. There the reader
will find explicit and concrete examples displaying phe-
nomena uncovered in Sec. II. We will see how several toric
Kähler manifolds glue together to form the total moduli
space of BPS walls. We also find interesting dynamics
among BPS walls, using the techniques developed in the
previous sections. We conclude the paper in Sec. IV with
some discussion. There are two appendices. Appendix A
will serve as a collection of definitions concerning the
Morse-Smale transversality. In Appendix B, we analyze
the index and vanishing theorem from the viewpoint of
gauged linear sigma models.
II. BPS FLOWS AND THE INDEX THEOREM

A. BPS flows on general hyper-Kähler manifolds

First we give a brief review of the BPS domain wall on
general massive hyper-Kähler sigma models. We consider
theories with eight supercharges, which force us to take a
hyper-Kähler manifold as the target space of the NLSM
[37]. Hyper-Kähler manifolds of real dimension 4n are
Riemannian manifolds with the holonomy group reduced
to Sp�n�. In other words, there are three complex structures
Ia �a � 1; 2; 3�, satisfying the relation of imaginary qua-
ternions:

I2a � �1 and IaIb � �abcIc when a � b; (2.1)

which are covariantly constant with respect to the metric g.
Corresponding to these, there exist a triplet of symplectic
structures (i.e. closed nondegenerate 2-forms) !a�; � �
g�Ia; �. Hyper-Kähler manifolds can be thought of as
complex manifolds by choosing one complex structure,
say I3, out of I1;2;3. Let us define complex coordinates �i

(i � 1; . . . ; 2n) using the chosen complex structure I3.
-2
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Then the symplectic form for I3 can be written in the
complex coordinates as !R � igij�d�

i ^ d��j. In addi-
tion they naturally have a holomorphic symplectic struc-
ture, made of the rest of the complex structures: it is given
by the �2; 0�-form !C � gik� 	�I1�k

�

j � i�I2�
k�
j�d�

i ^ d�j.
SUSY NLSM with eight supercharges are defined by the

target hyper-Kähler manifolds with the complex coordi-
nates �i as scalar fields. In order for the walls to exist, we
need a potential term in the Lagrangian lifting the vacuum
degeneracy. The Lagrangian is severely restricted by a
high degree of SUSY, so that the bosonic part of the
Lagrangian in d space-time dimensions should be written
as [38]

L boson � gij�@��
i@���j �

X
�

gij�K
i
�K
�j
� (2.2)

where Ki
� (� � 1; . . . ; 6� d) generates an isometry pre-

serving the three complex structures. Such isometries are
called triholomorphic Killing vectors.1 We absorbed the
mass parameters into the Killing vectors. This NLSM with
potential term is called the massive hyper-Kähler NLSM,
and it can be obtained by a Sherk-Schwarz dimensional
reduction [43] from a massless NLSM in six space-time
dimensions [42]. In five dimensions (d � 5), we can
choose one isometry Ki so that the potential for the hyper-
multiplet can be given by the square of the single Killing
vector. Although we can have options of choosing two
(three, four) different Killing vectors to obtain a potential
term in four (three, two) dimensions, it is enough to con-
sider one Killing vector to construct 1=2 BPS walls.
Therefore we take a single triholomorphic Killing vector
for the potential throughout this paper.

From the expression (2.2), one can see that the SUSY
vacua are precisely the fixed points of the U(1) action by
Ki. Let us take coordinates �i so that their origin �i � 0
becomes a chosen fixed point. Then, we can expand the
Killing vector as Ki � qij�

j �O��2� near each vacuum.
Choosing suitable local coordinates, one can arrange so
that Ki � iqi�i with qi real (no summation on i). The
eigenvalue qi gives the charge and the mass of the ith scalar
field.

We assume that there exist at least two vacua to have
domain walls. Energy density of domain walls per unit
volume perpendicular to y direction can be bounded from
below as follows:
1When one couples the hyper-Kähler sigma model to N vector
multiplets �I � 1; . . . ; N� using triholomorphic isometries Ki;I ,
there appear additional (6� d)-parameters qI� �� � 1; . . . ; 6�
d� for each vector multiplet. When we use the vector multiplets
just as spurions, they give masses to hypermultiplets leading to
the potential term in the Lagrangian (2.2). Things will become
more interesting and complicated when one couples the system
above to dynamical vector fields. That direction of research will
be pursued elsewhere.
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where D is the moment map (or the Killing potential)2 for
Ki which is defined by Ki � �igij

�
@j�D. The inequality is

saturated [16] if the BPS equation

@�i

@y
� iKi (2.4)

is satisfied, and then the energy density is given by
	D�y��1y��1.

Let us analyze the flow near each of the vacua. Take
suitable coordinates as before, so that Ki � iqi�i (no
summation) and qi is real. The BPS equation near the
vacuum is then approximated by

@�i

@y
� �qi�i: (2.5)

This means that the wall flows in or out along the ith scalar
field according to the sign of the U(1) charge qi. As our
theories have eight supercharges, qi come in pairs of �q
and �q. Hence, out of the 4n real dimensions of the
tangent space, always 2n is of the incoming direction and
2n is of the outgoing direction. It is known that the BPS
equation (2.4) is precisely the Morse flow with the Morse
function D [19]. The Morse index, which is defined as the
number of outgoing directions of Morse flows, is always 2n
irrespective of the vacuum. Apparently, there is not much
geometrical information carried by the Morse flow at this
level of generality.

Another point to be noted is that hyper-Kähler manifolds
are Ricci-flat, and that compact Ricci-flat manifolds with
trivial "1 admit no Killing vectors. Therefore our hyper-
Kähler manifolds should be noncompact. The Morse func-
tion D diverges in general if the Morse flows are going to
infinities along the noncompact directions. So these flows
give infinite wall tension (2.3) and we have to discard them.
We will find in the next subsection that the Morse indices
will give rich information when they are calculated on a
compact submanifold of the hyper-Kähler manifold.
2Since the Killing vector is triholomorphic, the moment map is
also a triplet ~D � �D1; D2; D3�. Using SU�2�R transformation,
we can always take 	 ~D�y��1y��1 to lie along the third direction. This
choice is most convenient since we have selected I3 as the
complex structure corresponding to the four supercharges.
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B. BPS flow near special Lagrangian submanifold

A middle dimensional submanifold M with the holo-
morphic symplectic form !C restricted to M being zero,
!CjM � 0, is called a special Lagrangian submanifold. In
the following we suppose that the target hyper-Kähler
manifold contains a compact special Lagrangian submani-
fold M. Here M is Kähler with respect to nonvanishing
!RjM. Then, the neighborhood of M inside the hyper-
Kähler manifold can be identified with T�M. We can
utilize this description to analyze the structure of the flow
near M. The case of M � CPn manifold has been studied
along these lines in Ref. [19] using the Morse theory, and
one might suppose that the case already analyzed is suffi-
ciently generic. In this section, however, we will encounter
a lot of surprises.

Let us first recall the hyper-Kähler structure on T�M.
The manifold T�M has the holomorphic symplectic struc-
ture, which is the necessary conditions for any manifold to
have a hyper-Kähler metric. Mathematicians have found
[44] that there exists a unique hyper-Kähler metric g on
T�M, which satisfies the condition:
(*) g
 coincides with the given metric on M when re-
stricted on it, and is invariant under the U(1) rotation
along the cotangent direction.
There is also a physical realization of these metrics using
the projective superspace formalism [45]. It should be
noted that the metric may only be defined on some neigh-
borhood of the zero section and that the geodesic length to
infinity along the cotangent direction may be finite. This
remark will be important when we study the global struc-
ture of the flow in Sec. III. We focus in this section in the
neighborhood of the zero section.

We decompose the complex scalars �i �i � 1; . . . ; 2n�
into two sets �zi; ~zi� so that zi (i � 1; . . . ; n) will be the
local complex coordinate of the base M and ~zi will be their
canonical conjugates with respect to !C parametrizing the
cotangent direction. The holomorphic symplectic form can
be written in these coordinates as !C � !1 � i!2 �
dzi ^ d~zi. Let ki be a holomorphic Killing vector of M.
The action of ki onM naturally induces a vector field Ki �

�ki;�~zj@ikj� defined on all of T�M. Let us now check that
Ki preserves the holomorphic symplectic form. Using the
Lie derivatives of the one-forms

LKdz
i � @jk

idzj and

LKd~zi � �@ik
jd~zj � ~zj@i@lk

jdzl;
(2.6)

we have

LK!C � @jk
idzj ^ d~zi � dz

i ^ ��@ik
jd~zj � ~zj@i@lk

jdzl�

� 0: (2.7)

Second, let us show that Ki preserves the Kähler form !R

on T�M. Consider the integrated flow gy:T�M ! T�M
generated by Ki: dgy=dyjy�0 � Ki. From the assumption
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that ki is a holomorphic isometry of M, we have
g�y�!R�jM � !RjM. Additionally, the action of Ki com-
mutes with the U(1) rotation along the cotangent direction.
That is, g�y�!R� also satisfies the above condition (*).
Hence, we have g�y�!R� � !R from the uniqueness.
Summarizing, we have shown that Ki is triholomorphic
on T�M, so that we can use Ki to give masses to the
hypermultiplets.

The BPS equation (2.4) for walls then becomes

dzi

dy
� iki; (2.8)

d~zi
dy
� �i~zj

@kj

@zi
(2.9)

when one uses the variables zi and ~zi. Hence, we can first
solve the differential equation (2.8) for z, and then can
solve Eq. (2.9) for ~z by plugging in the solution just
obtained for z.

Let us consider a wall interpolating two vacua � �y!
1� and ( �y!�1� inside the base M. Then, the wall
satisfies the conditions ~zi � 0 at y! �1. We can think of
the study of (2.9) as the study of zero modes of the operator

D 1 � 1
d
dy
� iA (2.10)

acting on the functions ~zi�y� where 1 is the unit matrix and
Ai

j � @kj=@zi.
Let us next consider the linearized version of Eq. (2.8)

which governs the local deformation of the wall profile in
the base M:

d)zi

dy
� i

@ki

@zj
)zj: (2.11)

We set the boundary condition )zi ! 0 when y! �1 so
that the solution should describe normalizable deformation
in a fixed topological sector. Hence, the number of the
freedom inside the base space is given by the number of the
zero modes of the operator

D 2 � �1
d
dy
� iAT; (2.12)

which acts on the space of )zj. An alert reader will have
already recognized that the operators (2.10) and (2.12) are
adjoint to each other, and that the boundary conditions
placed are precisely those in the setup of the index theorem
on open spaces [46,47]. Thus we immediately obtain the
relation

dim RKerD2 � dimRKerD1 � n( � n�; (2.13)

where n�;( is the Morse index of the flow inside M at the
respective vacuum. The Morse index at a vacuum is de-
fined as the dimension of the outgoing direction of the flow.
-4
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It is given explicitly as the number of positive eigenvalues
of the matrix iA at the vacuum.

Note that the Morse index of the flow on all of T�M is
always half of the total dimensions. Therefore the above
index theorem (2.13), if we consider the flow on the entire
target manifold T�M, always gives the null result trivially.3

Hence, we need to take the Morse index of the flow
restricted inside the base.

What is the physical implication of relation (2.13)?
Recall the arguments in the previous subsection. The ei-
genvalues of the matrix Ai

j � @kj=@zi at the vacuum
control the masses of the hypermultiplets there, and these
in turn control the direction of the flow. If we restrict
attention to the flow inside the base space only and denote
the total dimensions of the base space by n, the stable
manifold S��� flowing into the vacuum � is of dimension
n� n� and the unstable manifold U�(� flowing out of the
vacuum ( is of dimension n(. Hence, the BPS flow to �
from ( naively will form a family of dimension n( � n�,
that is, if we assume the stable and the unstable manifolds
intersect transversally.4 This is precisely the number ap-
pearing in the right-hand side of relation (2.13). The true
dimension of the deformations of the BPS flow is, on the
other hand, the first term dimKerD2 in the left-hand side.
These arguments combined tell us that dimKerD1, which
counts the freedom of deformation in the cotangent direc-
tion, measures the nontransversality of the flow.

The index theorem used above is none other than the
prototypical one which counts the fermionic zero modes in
the instanton background in S3 
 Ry. In that case, D1�2�

corresponds to the Dirac operator acting on spinors of
positive (negative) chirality, and n�;( corresponds to the
winding number of the gauge field in the vacuum at y � 1
�y � �1�. The index theorem has been used also to count
the dimension of BPS domain walls in Abelian gauge
theories [33] and in non-Abelian gauge theories [36].
There is one crucial difference in the application of index
theorems to the wall system considered in this paper from
the cases previously considered. For wall systems and
instantons to date, if they are BPS (or in other words
they are self-dual for the case of instantons), there is a
vanishing theorem which guarantees the absence of zero
modes for D1. Hence, the number of fermionic zero modes
around BPS instantons was precisely proportional to the
instanton number. However, in our case, there is no such
vanishing theorem available. This means that we can have
excess zero modes even for BPS walls, and that the dimen-
sion of moduli of BPS walls may be bigger than the
difference of indices of the vacua connected. We will see
3This is a generic result applicable not only to NLSM, but also
to gauged linear sigma models at finite gauge coupling, as shown
in Appendix B.

4We summarize the mathematical definition surrounding trans-
versality in Appendix A.

105009
an explicit example shortly, and there we will also find that
this is rather a generic phenomenon for BPS walls.

This generalness necessitates another comment on the
nontransversality. When one considers Morse flows in
general (without SUSY), one can perturb the Morse func-
tion a bit to make the flow transversal. What distinguishes
our situation from such generic cases is that SUSY forces
the flow to be of specific type, so that we cannot take a
generic perturbation. As a result, we are forced to have the
nontransversal situation.5

When the manifold M is toric, that is, when it can be
realized using a gauged linear sigma model with four
SUSY, we can obtain T�M as an open subset of a toric
hyper-Kähler manifold, that is, we can realize T�M as a
subset of the Higgs branch of a gauged linear sigma model
with eight SUSY. We can study in more detail the reason
for the nontransversality of the flow in those cases. Before
doing that, however, let us see some typical examples
exhibiting the somewhat abstract argument above.

C. Example: T�CP2

Let us first study the wall on the cotangent bundle of a
projective space, T�CP2. This system has been analyzed by
many groups, e.g., [19], and can be understood as a simple
example of walls on the Grassmannians [28,29].

CP2 can be composed from three patches Ui � C2

parametrized by �vi; wi�, (i � 1; 2; 3):

�v1; w1� � �v;w�; �v2; w2� � �v=w; 1=w�;

�v3; w3� � �1=v;w=v�:
(2.14)

The U�1�2 isometry is given by the phase rotation of v and
w. Hence the fixed points, i.e. the vacua, are the origins �i
of coordinate patches [41]. We choose the U(1) subgroup
given by v! eim1/v andw! eim2/w to give masses to the
hypermultiplets, where m1;2 are taken to be real. The
isometry acts, near each vacuum, as

vi ! eim
�i�
1 /vi and wi ! eim

�i�
2 /wi; (2.15)

and the BPS flow is given by

vi ! e�m
�i�
1 yvi and wi ! e�m

�i�
2 ywi (2.16)

for suitable masses m�i�1;2, which are linear combinations of
m1 and m2.

Using the discrete symmetry exchanging �1;2;3, we can
assume 0<m2 <m1 without loss of generality. Then, the
schematic structure of the flow is easily read off to be like
5It has been already known that the holomorphic isometry
often violates the transversality, see e.g. [48].
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toric hyper-kähler. However, these are not always toric. Recall
that, in order for a manifold M of complex dimension n to be
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�1	0�

" -

�2	2�  �3	4�:

(2.17)

The Morse index, which is denoted in a square bracket
attached to each vacuum, is given by twice the number of
outgoing arrows from that vacuum. One can easily check
that there is no violation of transversality. The dimension
of the moduli space of walls with no cotangent component
between vacua �i and �j is given by twice the number of
sequences of arrows connecting them.

D. Another example: T�Fn

Let us next consider a massive hyper-Kähler sigma
model with the target T�Fn. Here, Fn is a complex two-
dimensional, real four-dimensional surface, which is called
a Hirzebruch surface, and is defined as the total space of
some CP1 fibration over CP1. n is an integer describing
how the CP1 is fibered on the base. We can take n to be
positive without loss of generality because Fn ’ F�n. An
explicit description of Fn can be given by means of four
patches with coordinates �vi; wi� 2 Ui � C2, i � 1; 2; 3; 4:

�v1; w1� � �v;w�; �v2; w2� � �1=v;w=v
n�;

�v3; w3� � �v; 1=w�; �v4; w4� � �1=v; vn=w�;

(2.18)

where v and 1=v parametrize the base CP1 and w and 1=w
the fiber CP1. These complex surfaces are toric and can be
written as a vacuum manifold of a gauged linear sigma
model with four supercharges. This property will be uti-
lized in later sections.

There is a natural isometry on Fn with the standard
metric, which is given in the first patch by

v! eim1/v; w! eim2/w: (2.19)

The action can be extended to other patches. This can be
used to give masses to the hypermultiplets. The vacua are
given by the fixed points of the isometry, namely, the
origins of the four patches Ui � C2, which are denoted
by �i, respectively.

The BPS flow of the wall corresponding to (2.19) is

v! e�m1yv; w! e�m2yw: (2.20)

Let us now consider the flow and the structure of the
moduli space of walls for some specific n, m1, m2. It can
be read off quite easily using the method exemplified in the
last subsection. Form2 < 0<m1, the flow is schematically
given by

�4	2�  �2	4�

# #

�3	0�  �1	2�:

(2.21)
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One can check that the dimensions of the BPS wall moduli
in each topological sector have the naive ones, that is, the
difference of the Morse indices.

Next, let us study the case for 0<m2 < nm1. The flow
diagram is changed to

�4	2�  �2	4�

# #

�3	2� ! �1	0�:

(2.22)

Now the vacua �3 and �4 have the same Morse index.
Naively, the real dimension of the moduli will be the
difference of the Morse index, which is zero. At the same
time the BPS wall connecting these two needs the whole
CP1 to parametrize the profile inside the base space Fn.
This means, from the discussion in the previous subsection,
that the BPS wall connecting �4 and �3 is allowed to have
nonzero expectation values of scalar fields corresponding
to the cotangent direction of T�Fn. The wall connecting �4
and �3 will show very peculiar dynamical behavior in this
case. The analysis can be made much more concrete when
one uses the gauged linear sigma model description. Thus,
we postpone the study of the interesting dynamics hidden
in this schematic diagram until Sec. III F, and let us now
move on to investigate the walls in the gauged linear sigma
model in general.
III. WALLS IN HYPERTORIC SIGMA MODELS

We saw in the previous sections that the wall moduli
space for T�Fn is bigger than just the base space Fn, unlike
the case for T�CPn. Namely, there exist BPS walls which
have some component along the cotangent direction, thus
moving out of the base. In this section, we realize T�Fn by
Abelian hyper-Kähler quotient construction [40], that is, as
the Higgs branch of certain Abelian gauged linear sigma
model. This viewpoint facilitates the analysis of the global
structure of the BPS flow. These Abelian hyper-Kähler
quotients are called the hypertoric manifolds.6 Having
gauged linear sigma model description, we can see more
explicitly and more physically why the transversality is
violated.

Let us begin with the outline of the subsections since this
section is rather long. We first study in detail the Higgs
branch of the massless model in Sec. III A. We will see
-6
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there that a hypertoric manifold contains several compact
toric manifolds as special Lagrangian submanifolds. Then
in Sec. III B we study how mass terms given through the
triholomorphic Killing vector determine the discrete va-
cua. We also write down the BPS equations which govern
the profile of BPS walls. In Sec. III C and III D, we will
study explicit examples of such walls. These exercises tell
us that the total wall moduli space are union of the compact
special Lagrangian submanifolds, glued with each other at
precisely the points where transversality of the flow may be
violated. This is summarized in Sec. III E. We will also see
that the existence of multiple compact special Lagrangian
submanifolds causes not only the possible violation of
transversality, but also interesting dynamics of walls. One
example is the mutual repulsion and attraction between
walls treated in Sec. III F and another is the transmutation
of a pair of walls when they encounter with each other, in
Sec. III G.

A. Abelian gauge theories with charged
hypermultiplets

Let us first review the construction of hypertoric mani-
folds using physical parlance. It is a direct extension to
eight supercharges of the construction of toric manifolds
using Abelian gauge theories with four supercharges [50].
The structure of these manifolds is discussed in [51] in
relation to the mirror symmetry in three dimensions, and in
[52,53] in relation to brane solution in supergravity.
Readers who prefer mathematical exposition can consult
[49].

Let us consider a U�1�N gauge theory with NF hyper-
multiplets with charge matrix qAI , where I and A are the
color and flavor indices, respectively. Let us denote the
field strength and the scalar field of the Ith multiplet by
FIMN and �I. If we denote the Ath hypermultiplet with the
SU�2�R doublet index i by Hi

A, the gauge group acts on the
hypermultiplet via

)�H
i
A � i�IqAI H

i
A (3.1)

where �I is the gauge parameter for the Ith U(1). The
bosonic part of the Lagrangian is then

L � �
1

4g2I
�FIMN�

2 �
1

2g2I
�@M�

I�2 � jDMH
i
Aj
2 � V;

(3.2)

where DMHi
A � �@M � iW

I
Mq

A
I �H

i
A is the covariant de-

rivative. The potential V is given by

V � j�qAI�
I �mA�Hi

Aj
2 �

1

2g2I
�YIa�2; (3.3)

where mA 2 R is the mass of the Ath hypermultiplet and
the auxiliary fields YIa are given by their equations of
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motion to be

YIa � g2I

 
cIa �

X
A

�Hi
A�
y�7a�ijq

A
I H

j
A

!
: (3.4)

In this subsection we consider only the massless case,
mA � 0. Let us redefine notations for hypermultiplet sca-
lars in order to make four of supercharges apparent as

Hi�1
A � hA; Hi�2

A � ~hAy; (3.5)

where hA and ~hA are chiral fields. It is useful to define the
following quantities in examining wall solutions and their
properties:

�A � hAyhA � ~hA ~hyA; 9A � ~hAhA; (3.6)

where index A is not summed. By using these notations, the
flatness conditions determining supersymmetric vacua are

qAJ�
IhA � 0; (3.7)

qAJ�
I ~hA � 0; (3.8)

qAI �A � cI; (3.9)

qAI 9A � 0: (3.10)

Here we have taken the Fayet-Iliopoulos (FI) parameters
all parallel in SU�2�R space. We leave the discussion for
nonparallel cases to later works.

Let us concentrate on the Higgs branch, i.e. we take
�I � 0. This condition is obtained automatically once one
considers a generic combination of FI parameters cI. Then
the imposed conditions are

qAI �A � cI; and qAI 9A � 0: (3.11)

The vacuum manifold V is obtained by dividing this by the
action of the gauge group (3.1). V is a hypertoric manifold
obtained by the Abelian hyper-Kähler quotient.

Next let us consider the relation to toric manifolds. First,
recall that the term toric is just a fancy mathematical way
of saying that it is a vacuum manifold of Abelian gauged
linear sigma model with four supersymmetries. Let K ’
RNF�N be the space spanned by�A’s modulo the constraint
(3.9). The hyperplane �A � 0 divides K to half-spaces
H����

A according to the sign of �A as illustrated in
Fig. 1. A small arrow is attached to the hyperplane in the
figure to indicate its orientation.

These hyperplanes divide K to cells Ka, a � 1; . . . ; m.
Let us enumerate them so that a � 1; . . . ; n corresponds to
bounded cells and a � n� 1; . . . ; m unbounded ones. An
example with NF � 4, N � 2 is shown in Fig. 2.

For each cell Ka, let us define new variables ��A; ~�
A�

based on the relative position of the hyperplane�A andKa:
-7



FIG. 1. The definition of H�
A . The arrow indicates in which

side �A is positive.
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q̂AI � �q
A
I ; ��A; ~�

A� � �hA; ~h
A� if H�

A \ Ka � ;;

(3.12)

q̂AI � �q
A
I ; ��A; ~�

A� � �~hA; hA� if H�
A \ Ka � ;:

(3.13)

An illustrative example is depicted in Fig. 2. The shaded
region K intersects with H�

1 , H�
2 , H�

3 , and H�
4 , thus,

�A � �h1; h2; h3; ~h
4y�.

Consider a subspace Ma of the hypertoric V defined by
~�A � 0. Together with the vacuum conditions (3.11), the
equation reduces to X

A

q̂AI �A�
y
A � cI (3.14)

and the gauge equivalence is defined by

�A � exp�i�
Iq̂AI ��A �no summation on A�: (3.15)
FIG. 2. An example with NF � 4; N � 2.
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Each subspaceMa is a toric manifold defined by the charge
matrix q̂AI and the FI parameters cI.

Let us determine how Ma is embedded inside V.
Consider a point p � h�Ai 2 Ma. By expanding (3.11)
to the leading order, the neighborhood of Ma near p is
determined by the equations

Re
X
A

q̂AI )�Ah�
y
Ai � 0; (3.16)

X
A

q̂AI ) ~�
Ah�Ai � 0; (3.17)

modulo the gauge variation

)�A � )�A � i)�
Iq̂AI h�Ai �no summation on A�:

(3.18)

Gauge fixing can be naturally attained by extending (3.16)
to X

A

q̂AI )�Ah�
y
Ai � 0: (3.19)

Equation (3.19) by definition determines the tangent space
TMajp of the manifold Ma at h�Ai. Comparing (3.17) and
(3.19), the infinitesimal displacement along the ~�A direc-
tion can be naturally identified with TMajp ’ T

�Majp. As
an easy corollary, Ma is a special Lagrangian subspace of
V. Summarizing, V contains T�Ma for a � 1; . . . ; m as
subsets. Ma is compact or noncompact if Ka is bounded
or unbounded, respectively. The union of Ma ’s which is
compact is called the core of V.

Before going to the analysis of massive models on
hypertoric, let us study a bit more on the geometry of these
manifolds. Consider a hypertoric V of real dimension 4n
and notice that �A and 9A modulo relations (3.11) provide
real 3n functions to be used as coordinates of V, which are
invariant by the hypertoric isometries. Furthermore, points
on V with the same values for ��A; 9A� form a real n
dimensional submanifold. Thus, it is isomorphic to Tn.
Summarizing, the hypertoric V can be visualized as a
family of n dimensional tori Tn parametrized by triplet
of moment maps ��A; 9A�. The subspace 9A � 0 is pre-
cisely the union of all Ma, regardless of whether it is
noncompact or not.

B. Massive hypermultiplets

Now let us turn to hypermultiplet masses mA to lift the
continuous degeneracy of vacua, so that we can consider
walls interpolating the discrete vacua. For simplicity and to
extract essence, we assume that the FI parameters cI are
sufficiently generic so that no Coulomb branch remains.
Then, we arrange the masses mA so that no hypermultiplet
remains massless. The vacua are now isolated and the
equations determining those vacua are

�qAI�
I �mA�hA � 0; (3.20)
-8
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�qAI �
I �mA�~hA � 0; (3.21)

qAI �A � cI; (3.22)

qAI 9A � 0: (3.23)

Let us determine vacua by solving these conditions. If
we consider NF equations qAI �

I �mA � 0 which define
hyperplanes 7A, only N equations within them can be
solved at once with the generic mA. Thus the first two
equations, (3.20) and (3.21), imply that (NF � N)-
hypermultiplets must vanish. Let � be a set of N flavor
indices selected among NF flavor indices, that is, � �
fA1A2   ANg. Furthermore, let �q��

AJ
I be a N 
 N sub-

matrix of qAI with fAJg 2 �. If q� is invertible, i.e.
det�q��

AJ
I � 0, the equations for the supersymmetric vac-

uum can be solved as follows:

h�Ii� � �q�1� �
AJ
I mAJ ; (3.24)

h�AI i� � �q
�1
� �

AI
J c

J; (3.25)

h9AI i� � 0; (3.26)

and all �hA; ~h
A� vanish for fAg =2 �. The assumptions of

generic cI and mA imply that there are no other kinds of
solutions. The condition det�q�� � 0 indicates that each
plane within N hyperplanes defined by 7AI intersects with
all the other (N � 1)-hyperplanes. Therefore, the above
isolated vacua labeled by � are given by the intersecting
points of N hyperplanes in the space of �I ’s. The last
equation means that either hA or ~hA must be zero for
each flavor A.

These vacua can be also determined from the viewpoint
of Sec. II. The set of mA determines a U(1) subgroup of
U�1�NF flavor symmetry, and this descends to a triholomor-
phic isometry on the hypertoric manifold. Each vacuum
corresponds to the fixed point of the isometry. For generic
mA, this fixed point should become a fixed point for all the
U�1�NF symmetry. As the hyperplane �A � 0 is precisely
the fixed points of Ath U(1) subgroup of U�1�NF , each
vacuum � should be on the intersection of (NF � N )-
hyperplanes �A � 0 ( A =2 �) in the space K. Consider
the vacuum expectation values �hhAi; h~h

Ai�. They are in-
variant under Ath U�1� for A =2 �. They are, however, not
invariant by the Bth U(1) for B 2 �, but this can be gauged
away using the U�1�N symmetry. In this sense, the vacuum
is labeled by the locking of flavor and color symmetry.

Let us now move on to study a wall interpolating two
vacua labeled by � � fA1; A2; . . . ; ANg and ( �
fB1; B2; . . . ; BNg, respectively. We would like to determine
BPS equations and the wall tension by performing the
Bogomol’nyi completion of wall energy density under
the wall ansatz. The energy density is given by
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E �
1

2g2I
�@y�I � g2I �cI � q

A
I �A��

2 �
1

2g2I
jg2I q

A
I 9Aj

2

� jDyhA � �q
A
I �

I �mA�hAj
2

� jDy
~hA � �qAI �

I �mA�~hAj2

� @y�cI�I � qAI �
I�A �mA�A�: (3.27)

The topological charge can be read from the last term to
give

T� ( �
Z �1
�1

dy@yf;

with f � cI�I � qAI�
I�A �mA�A:

(3.28)

The BPS equations are obtained from Eq. (3.27) as

@y�I � g2I �c
I � qAI �A�; (3.29)

�2g2I q
A
I 9A � 0; (3.30)

�@y � qAI ��
I � iWI

y��hA � hAmA; (3.31)

�@y � q
A
I ��

I � iWI
y��~h

A � �~hAmA: (3.32)

When these equations are satisfied, the energy density
becomes equal to 	f�y��1y��1.

Formal solutions can be found by using the method
which we have developed in the previous works
[20,28,29]: First, we define functions  I�y� by the relation

�I�y� � iWI
y�y� � @y I�y�: (3.33)

Let us note that  I is defined up to an additive constant.
The hypermultiplets can be expressed using  I by solving
(3.30), (3.31), and (3.32):

hA�y� � h0Ae�q
A
I  

I�mAy; (3.34)

~h A�y� � ~hA0e
�qAI  

I�mAy; (3.35)

9A � ~hA0h0A � 0: (3.36)

Here, h0A and ~hA0 are vectors with NF elements. We call
these vectors moduli matrices in the rest of the paper,
following the terminology in Refs. [28,29]. Equa-
tion (3.36) follows from the boundary conditions 9A � 0
at y! �1. Hence, either hA or ~hA must vanish identically
for each flavor A. Thus, we find that�A cannot flip the sign
in a wall configuration. This fact means that there are no
BPS walls which interpolate from one vacuum with non-
vanishing vacuum expectation values (VEV) of hA to
another vacuum with nonvanishing VEV of ~hA. That is,
BPS walls cannot cross hyperplanes �A � 0. Based on
these considerations, we can identify sets of vacua which
can be interpolated with each other by wall solutions.
-9



FIG. 3 (color online). Left: Hyperplane arrangement for T�CP2. Right: Flows in T�CP2 with masses mA � �1; 0;�1�. Dashed
(blue) lines are the level sets of the Morse function mA�A.

7This statement has been proved in Appendix C of Ref. [29]
for the more general case of V � T�GrNF;NC without taking the
strong coupling limit.
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Finally,  itself is solved by plugging (3.33) into (3.29):

1

g2I
@2y Re� 

I� � cI � qAI �A�y�

� cI � qAI �jh0Aj
2e�2q

A
J Re� 

J��2mAy

� j~hA0 j
2e�2q

A
J Re� 

J��2mAy�: (3.37)

Once this second order nonlinear differential equation
(3.37) is solved for given moduli matrices h0A and ~hA0 , all
fields can be determined from Eqs. (3.34), (3.35), and
(3.36). Equations (3.34) and (3.35) show that the additive
ambiguity of  I results in the GL�1;C�N equivalence on
the moduli matrices

�h0A; ~h
A
0 � ’ ��=I�

qAI h0A; �=I��q
A
I ~hA0 �; =I 2 C� � C� f0g:

(3.38)

Thus the equivalence class of the moduli matrices defined
by Eq. (3.38) describes the moduli spaces of walls, which
are submanifolds of the hyper-Kähler manifold V. Note
that we eventually take the strong gauge coupling limit
gI ! 1 since we are now interested only in the Higgs
branch which we constructed using the hyper-Kähler quo-
tient. Therefore the differential equation (3.37) reduces to a
mere algebraic equation

cI � qAI �A�y� (3.39)

throughout the wall profile. Combined with a trivial equa-
tion 0 � qAI 9A�y�, flows defined by the BPS equations can
be interpreted as Morse flows on the hyper-Kähler mani-
fold in the strong coupling limit. The Morse function for
those flows is the function f in the Bogomol’nyi comple-
tion (3.28)

f � cI�I � �qAI �
I �mA��A � mA�A: (3.40)

In the following, we will mainly treat cases in the strong
coupling limit for simplicity.
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C. Walls in the gauged linear sigma model of the form
T�CP2

Let us first study the hypertoric realization of T�CP2.
CP2 is specified as a toric manifold by the charge matrix

qAI � �1; 1; 1�: (3.41)

The hypertoric manifold V is determined by the same
charge matrix. The arrangement of three hyperplanes and
the computed flows are depicted in Fig. 3. From this we can
see that V contains CP2 as the only compact Kähler special
Lagrangian submanifold and V � T�CP2. Furthermore, all
the vacua of the massive T�CP2 model reside on CP2.
Hence, nothing strange happens. The moduli space for
walls in this case is given by the homogeneous coordinates
h0A with ~hA0 � 0 under the identification

�h01; h02; h03� ’ =�h01; h02; h03�; (3.42)

which describes CP2. All flows satisfy the transversality.
We can chase the flow starting from a point outside the base
CP2. They all go to infinity in the field space, however, as y
goes to �1 as one can see. Therefore they do not corre-
spond to walls interpolating between two vacua.7 What
will happen then, when there are vacua outside the original
base toric manifold? We will see this in the next subsection
and how this is related to the violation of transversality.

D. Walls in the gauged linear sigma model containing
Fn

Let us next examine the hypertoric manifold containing
T�Fn. This model admits walls which flow into cotangent
directions. A charge assignment matrix giving this mani-
fold by the quotient construction is as follows:
-10



TABLE I. The vacua of massive sigma models which contain Fn in the sigma model target.

Vacua �1 �2 �1 �2 �3 �4

�1 m2 � nm3 m3 0 c1 c2 � nc1 0
�2 m2 � nm4 m4 0 c1 0 c2 � nc1
�3 m1 m3 c1 0 c2 0
�4 m1 m4 c1 0 0 c2
�5 m1 �m1 �m2�=n c1 � c2=n �c2=n 0 0
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qAI �
1 1 0 0
0 �n 1 1

� �
: (3.43)

Using this charge matrix, we can write down concretely the
flatness conditions (3.20), (3.21), (3.22), and (3.23) for
SUSY vacua

��1 �m1�hA � 0; ��1 � n�2 �m2�hA � 0;

��2 �m3�hA � 0; ��2 �m4�hA � 0;
(3.44)

together with the same equations for ~hA, and

�1 ��2 � c1; �n�2 ��3 ��4 � c2;

91 � 92 � 0; �n92 � 93 � 94 � 0:
(3.45)

Isolated SUSY vacua are determined by these equations,
which have five independent solutions. We present these
solutions, which are labeled from �1 to �5, in Table I.

Note that, for any generic choice of the FI parameters,
there exists at least one vacuum where both hA and ~hA have
nonzero VEVs. For simplicity, let us choose the sign of two
FI parameters to be positive from now on. Then, only the
vacuum �5 has the nonzero VEV of ~h2. We show the
corresponding hyperplane arrangement and the placement
of vacua in Fig. 4.

As depicted there, there are two compact toric submani-
foldM1 andM2 corresponding to the bounded cells K1 and
K2.M1 contains vacua�1;2;3;4 andM2 contains �3;4;5. In the
1=02=0
3=0

4=0
K2

K1

α5

α4

α3

α2

α1

µµ
µ

µ

FIG. 4. Hyperplane arrangement for the hypertoric which con-
tains T�Fn.
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former ~hA vanish identically but in the latter this is not the
case. Since signs of �A’s cannot change in the wall con-
figuration, BPS walls cannot interpolate between the vac-
uum �5 and �1;2. The total moduli space of BPS walls of
this model is the union of M1 and M2. The intersection of
the two M1 \M2 is complex one dimensional.

Homogeneous and inhomogeneous coordinate represen-
tations of Ma �a � 1; 2�, can be tabulated as follows: First,
for a � 1, homogeneous coordinates describing M1 are
given by

M1:�h01; h02; h03; h04�; others � 0; (3.46)

with the GL�1;C�2 symmetry

�h01; h02; h03; h04� ’ �=1h01; =1h02; h03; h04�

’ �h01; =�n2 h02; =2h03; =2h04�: (3.47)

Therefore, the coordinate patches with inhomogeneous
coordinates �v;w� can be determined as follows:
Patch
-11
h01
 h02
 h03
 h04
U1
 w
 1
 1
 v

U2
 w=vn
 1
 1=v
 1

U3
 1
 1=w
 1
 v

U4
 1
 vn=w
 1=v
 1
We can see that the transition functions for M1 are precisely
the ones for Fn as described in Sec. II D.

Second, let us analyze the case a � 2: homogeneous
coordinates are given by exchanging h02 for ~h20 as

M2:�h01; ~h
2
0; h03; h04�; others � 0; (3.48)

with the GL�1;C�2 symmetry,

�h01; ~h
2
0; h03; h04� ’ �=1h01; =

�1
1
~h20; h03; h04�

’ �h01; =
n
2
~h20; =2h03; =2h04�: (3.49)

In this manifold h01 always takes nonzero values because
of �1 > 0 and can be fixed to one by the first symmetry
shown above. Then the second symmetry defines M2 �

WCP21;1;n, which is described by three coordinate patches
with inhomogeneous coordinates �u; v� as follows:
Patch
 h01
 ~h20
 h03
 h04

~U3
 1
 1=un
 1
 v

~U4
 1
 1=�uv�n
 1=v
 1

~U5
 1
 1
 u
 uv
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Next, let us concentrate on the intersection of two submani-
folds where �2 � 0, that is, w! 1 in M1 and u! 1 in M2,
and we find

�h01; 0; h03; h04� ’ �1; 0; 1; v� ’ �1; 0; 1=v; 1�: (3.50)

It is thus clear that M1 \M2 � CP1 and the vacua �3 and �4
are on that intersection.

Therefore, we conclude that the total moduli space of
walls in this model is the union of special Lagrangian
submanifolds Fn and WCP21;1;n with CP1 as their
intersection.

Now let us write down wall solutions explicitly and
investigate directions of flows. By changing mass parame-
ters, flow directions and indices at each vacuum change.
Types of flow can be classified into the following three
cases:

Case I: m3 >m4; m2 � nm3 >m1 >m2 � nm4;

Case II: m3 >m4; m1 >m2 � nm3;

Case III: m3 >m4; m2 � nm4 >m1;

and negative thereof.

1. Case I

In Case I, m3 >m4; m2 � nm3 >m1 >m2 � nm4, the
flow structure is as follows:

�4	4; 2�  �2	4�

. # #

�5	2� ! �3	0; 2� ! �1	0�:

(3.51)

We calculated the Morse indices of the flow inside M1 and
M2 and showed the results in the square brackets after the
symbol designating the vacua. For �3 and �4 which are
contained in both M1 and M2, the second numbers in the
square brackets denote Morse indices onM1 � Fn, and the
first numbers in them are for M2 � WCP21;1;n. The wall
connecting �4 and �3 breaks transversality from the view-
point of Fn, because two vacua �4 and �3 have the same
Morse index. From the index theorem in Eq. (2.13), there
should be BPS walls which flow out along the cotangent
direction from �4 and come back from that direction to �3.
These are precisely the walls depicted in the left half of
diagram (3.51).

Let us explicitly work out walls interpolating between
vacua �2 and �1. For simplicity, let us set
�m1; m2; m3; m4� � �0; 0; m;�m� and c1 � c2 � c. We
fix the gauge for GL�1;C�2 symmetry and take the moduli
matrix of the topological sector �2 ! �1 to be

�h10; h
2
0; h

3
0; h

4
0� �

���
c
p
�
a; 1;

1���
2
p e�?;

1���
2
p e?

�
: (3.52)

Parameters a and ? are the moduli. The configuration
corresponding to the above moduli matrix contains three
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walls; the first one flows from �2 to near �4, the second
flows from near�4 to near�3, and the third from near �3 to
�1. We call these walls W1, W2, and W3, respectively, as in
Sec. II D.

Before constructing explicit wall solution �2 ! �1, let
us estimate wall positions in terms of these moduli a; ?. We
now assume that three walls W1;2;3 are well separated with
each other for simplicity. Then field configurations are
approximately equal to the vacuum configuration away
from wall centers, since Eq. (3.45) is close to being sat-
isfied. From Table I, we find that the configuration be-
comes far from the vacuum �2 and �1 (�4 and �3) as �1
(�2) increases. So we expect W1 and W3 is situated around
the point where the values of �1 and �2 cross each other,
namely �1 % �2. To express this condition and construct
the wall solution, it is useful to introduce the following
functions:

X�y� � e�2 Re  
2
; Y�y� � e�2 Re  

1
;

Z�y� � cosh2�my� Re ?�:
(3.53)

�A are simply expressed in terms of X, Y, and Z:

�1 � cjaj2Y; �2 � c
Y
Xn
; �3 ��4 � cXZ:

(3.54)

Then, the condition �1 % �2 implies jaj2 � X�n. On the
other hand, in the limit that �1 & �2 we obtain jaj2 &
X�n � Zn by solving Eq. (3.45). Therefore wall positions
for W1 and W3 can be roughly estimated by the condition
jaj2 � Zn, which leads to the following result:

y� y� �
1

m
Re�?� �

1

n
logjaj; if jaj & 1: (3.55)

Similarly, the position of the wall W2 for �4 ! �3 turns
out to be y� y0 � Re�?�=m by considering the crossing of
�3 and �4. Note that the middle wall W2 freezes at the
center of the outer two walls W1 and W3, since there are
only two moduli for three constituent walls. This situation
never occurs among walls in the case of T�CPn, where all
flows satisfy the transversality. So we can say that the
breaking of the transversality causes this result.

Now let us construct these BPS wall solutions explicitly.
As we take the strong coupling limit g2 ! 1, we obtain
the following algebraic equations from Eq. (3.39):

1 � Yjaj2 �
Y
Xn
; 1 � �n

Y
Xn
� XZ: (3.56)

Eliminating Y, we obtain the �n� 1�th order equation in X:

jaj2ZXn�1 � jaj2Xn � XZ� �n� 1� � 0: (3.57)

For n � 1, we can solve the above equation explicitly as
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Y �
X

jaj2X� 1
;

X �
1

2

�
1

Z
�

1

jaj2

�
�

����������������������������������������������
1

4

�
1

Z
�

1

jaj2

�
2
�

1

jaj2Z

s
:

(3.58)

We must plug in these results to moment maps. The final
result is

�2 �
c

jaj2X� 1
; �4 �

c
2
Xe�2�my�Re ?�: (3.59)

We used two linearly independent ones from�1;2;3;4. If one
lets the outer two walls go to infinities y! �1, by taking
the limit jaj2 ! 1, one finds that X � Z�1, Y � 0, and
then

�1 � c; �2 � 0; �3 � c
e�2�my�Re ?�

cosh2�my� Re ?�
;

�4 � c
e2�my�Re ?�

cosh2�my� Re ?�
; (3.60)

which is just the single-wall solution interpolating �3 and
�4 in the case of CP1.

Next, let us study the walls connecting �4 and �3
through M2. We express the moduli matrix using ? as

�h10; ~h
2
0; h

3
0; h

4
0� �

���
c
p
�
b; 1;

1���
2
p e�?;

1���
2
p e?

�
: (3.61)

We obtain the following two algebraic equations for X and
Y as before:

c � cYjbj2 � c
Xn

Y
; c � nc

Xn

Y
� cXZ: (3.62)

Positions of the two walls are approximated by

y� y� �
1

m
Re�?� �

1

n
logjbj; if jbj & 1; (3.63)
FIG. 5 (color online). Numerically calculated structure of the fl
�0; 0; 1;�1�; Case II, mA � �1; 0; 0;�1�; Case III, mA � ��1; 0; 1;
contours of constant mA�A.
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which result from the condition �2 ��3 ��4. The ex-
plicit solution for n � 1 is given by

X �
Y

ZY � 1
;

Y �
1

2

�
1

jbj2
�
1

Z

�
�

����������������������������������������������
1

4

�
1

jbj2
�
1

Z

�
2
�

2

jbj2Z

s
;

(3.64)

and the relation to the moment maps is

�2 �
�c

ZY � 1
; �4 �

c
2
Xe�2�my�Re ?�: (3.65)

The structure of the flows is depicted in the leftmost figure
of Fig. 5. If one compresses the two walls into a single wall
by taking jbj2 ! 0, one finds that X � Z�1 and Y � 1,
reproducing the result (3.60). We thus have found that two
moduli spaces intersect through CP1.

2. Cases II and III

In Case II,m3 >m4; m1 >m2 � nm3, the flow structure
is as follows:

�4	4; 2�  �2	4�

. # #

�5	0�  �3	2; 0�  �1	2�:

(3.66)

In the right half of the above diagram, the square made up
of �1;2;3;4 denotes the projection of Fn by the moment map.
One can check there are no walls breaking the Morse-
Smale transversality condition. From the general discus-
sions in Sec. II, there should be no walls flowing out to and
coming back from the cotangent direction. Indeed, any
flow from �4 with arbitrarily little cotangent component
goes to the vacuum �5 and never comes back to �3.

To construct explicit wall solutions, let us take the
hypermultiplet masses,
ow in the n � 1 case. From left to the right: Case I, mA �
0�. For all cases cI � �1; 1�. Dashed (blue) lines designate the
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TABLE II. The tensions and positions of walls in Case II.

Wall Tension Position

2! 1 �1� n�cm Re ?2=m
1! 3 qcm Re ?1=m
2! 4 �q� n�cm Re n?2�q?1

�n�q�m
4! 3 cm Re ?2=m

8See also Ref. [22] and the introduction in Ref. [19]. A similar
phenomenon has been also studied in a theory with four SUSY
[55].
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mA � �qm; 0; 0;�m�; (3.67)

as an illustrative example. Using the symmetry (3.47), the
moduli matrix can be fixed to the following form with the
complex moduli parameters ?1; ?2:

�h10; h
2
0; h

3
0; h

4
0� �

���
c
p
�e�q?1 ; 1; 1; e?2�: (3.68)

By a similar analysis at strong gauge coupling as in Case I,
we find the wall tensions and positions as summarized in
Table II. As will be explained more in Sec. III G, walls are
transmuted as the relative positions are interchanged.
Although the tension of individual wall changes after two
walls pass through, the sum of tensions and the center of
gravity are preserved. We have depicted the results in the
middle of Fig. 5.

In Case III, m3 >m4; m2 � nm4 >m1, the flow struc-
ture is as follows:

�4	2; 4� ! �2	2�

% # #

�5	4� ! �3	0; 2� ! �1	0�:
(3.69)

This case is very similar to Case II. The computed flow
structure is given in the rightmost figure of Fig. 5.

E. Wall moduli for generic hypertoric sigma models

From the examples that we have studied in detail in the
preceding subsections, we can understand the structure of
BPS walls of the massive hypertoric sigma models. Let us
recall that a hypertoric manifold contains several possibly
noncompact toric manifolds Ma as special Lagrangian
submanifolds, and the Higgs branch of the vacua V of
the massless model is of the form

V �
[
a

T�Ma: (3.70)

Isolated vacua of a corresponding massive theory sit on
some of these Ma. Next, we know that 9A is zero through-
out the flow because of the BPS equation. Hence, BPS
walls live in one of Ma, although Ma may be noncompact.
Solutions of BPS equation starting from such noncompact
Ma, however, never reach any vacua and have infinite
tension. Therefore they have to be discarded. Thus, the
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total moduli space Mwall of walls consists of the union of
Ma’s which is compact, that is,

M wall �
[

Ka:bounded

Ma: (3.71)
F. Attraction and repulsion between BPS walls

Let us move on to study the dynamics of BPS walls.
Using the method in Ref. [54], repulsive force between two
BPS walls was found [21] in the massive hyper-Kähler
NLSM on the ALE target space with multicenter arranged
on a single line.8 As a preliminary to the later analysis, we
first show that the similar repulsive force can occur in
double walls interpolating three vacua �;(; B arranged
on a straight line in the �A space. Examples in the present
paper are the two double wall configurations interpolating
�1; �3; �5, and �2; �4; �5 in Fig. 4 in Sec. III D.
Interaction between two walls �! ( and (! B turns
out to be repulsive as follows. Each individual wall of the
double wall is a BPS state preserving the same 1=2 super-
symmetry. Once placed side by side, however, the configu-
ration �! (! B is a non-BPS state. This is because the
sign of one of �A ’s must be flipped somewhere in such a
configuration but it is prohibited by the BPS equations as
was explained below Eq. (3.36). Unlike double walls which
consist of a BPS wall and an anti-BPS wall, total energy
density of such double walls is bounded below by a sum of
the tension of each individual BPS wall. Therefore the total
energy density must increase if we bring one of the BPS
walls close to the other wall from the spatial infinity. We
thus have shown that there exists repulsive force between
two walls connecting vacua arranged on a straight line in
the �A space.

The same discussion can be applied to other pairs of BPS
walls, for instance, a set of walls �4 ! �3 and �3 ! �1 in
Case I in Sec. III D 1. Namely, there exists a repulsive force
between these two walls. This repulsion is explained natu-
rally if we deform the wall �4 ! �3 to the double wall
configurations made of the walls �4 ! �5 and �5 ! �3,
because the two walls �5 ! �3 and �3 ! �1 are the case
explained in the last paragraph. Indeed, there are no walls
directly going from �4 to �1. In the same way we can find
that there exists a repulsive force between walls �2 ! �4
and �4 ! �3. There turns out to be also attractive forces
between certain sets of BPS walls as we will explain below.

In the generic massive hypertoric sigma model, there
exist many sets of vacua arranged on a straight line in the
�A space as in Fig. 2. Thus repulsion between BPS walls is
not special, but one of commonplace features.

Let us now study in detail the dynamics of the BPS walls
in Case I. First, consider walls connecting �4 and �3. From
-14
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the flow diagram, we can see that the wall moduli is
complex two dimensional and that it can be identified
with WCP21;1;n. The walls can also be considered from
the viewpoint of T�Fn, since both the vacua �3;4 are on
Fn. The Morse indices at the vacua of the flow insideFn are
both two, as can be seen in (2.22) or (3.51). The wall
moduli inside Fn is of real dimension two, namely
dim	S��3� \U��4�� � 2 where S and U denote stable
and unstable manifolds, respectively, defined in
Appendix A. When transversality holds this must coincide
with dimS��3� � dimU��4� � dimFn. However, the
latter is now dimS��3� � dimU��4� � dimFn � 2�
2� 4 � 0 � 2 � dim	S��3� \U��4��. Therefore the
flow violates transversality. According to the general
discussion in Sec. II, there should be walls along the
cotangent direction. We can now identify these walls
with the component along the cotangent direction as the
walls inside WCP21;1;n, thanks to the embedding to the
hypertoric.

We can also see that there is another vacuum �5 outside
the base Fn. It may be allowed to say that this extra vacuum
�5 pulled the wall along the cotangent. Note that, although
�5 is situated at the coordinate infinity along the cotangent
direction, the geodesic distance from Fn to �5 is finite.
This addition of point at ‘‘infinity’’ is very natural from the
hypertoric point of view. It is also inevitable from the
viewpoint of the cotangent bundle of generic toric mani-
folds. This is because, as mentioned in Sec. II B, the hyper-
Kähler metric on T�M is unique once one fixed the metric
on M and placed the condition ���. Thus, one cannot help
but add �5 at infinity.

Next let us study the wall interpolating �2 and �1. In a
certain limit it becomes a compressed single wall along
�1 � 0 in Fig. 4. The moduli space with generic moduli
parameters is contained in Fn and is of complex two
dimensions. Contrary to this, there exist three BPS walls
-2.5
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 0.5

 1

 1.5
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 2.5

-15 -10 -5  0  5  10  15
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FIG. 6 (color online). Profiles of walls �2 ! �4 ! �3 ! �1. We p
density E in the right.
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interpolating �2 ! �4, �4 ! �3, and �3 ! �1, and each
wall carries a U(1) phase. There exists one complex moduli
parameter if we consider each of them independently.
Therefore one might expect that there exist three complex
moduli parameters for the configuration interpolating �2
and �1, whose number is not in agreement with the dimen-
sion of Fn. This apparent discrepancy can be resolved if we
interpret that the wall �2 ! �1 is in a sense a merger of
three walls as follows. Indeed, in a certain range of moduli,
there are clearly three spatial regions where energy is
concentrated as depicted in Fig. 6. One can see there that
the position of the inner wall is determined by the outer
walls for the system to attain minimum energy. This can be
understood as follows: First recall that there is repulsive
force acting between a pair of walls�2 ! �4 and�4 ! �3
and between another pair �4 ! �3 and �3 ! �1, as dis-
cussed in the second paragraph in this subsection.
Nevertheless there are BPS walls once we put in three
walls. From these two facts, we deduce that there must
be attractive force between walls �2 ! �4 and �3 ! �1 in
order to balance the repulsive interaction.

Finally consider separating the outer two walls to two
spatial infinities in the three wall system above. Now, the
remaining wall can be thought of as interpolating from �4
to�3. Although this wall is apparently a single-wall system
as exemplified in Fig. 7, there are additional moduli for the
cotangent direction and we can make it split into a double
wall configuration consisting of walls �4 ! �5 and �5 !
�3. The inner walls cannot be separated in the presence of
outer walls �2 ! �4 and �3 ! �1. This fact suggests that
the repulsive force from the outer two walls compresses the
inner two walls to the single wall �4 ! �3. The dividing
process of a compressed single wall �2 ! �1 to the three
walls and further dividing of the middle wall �4 ! �3 to
the two walls after taking off the outer two walls are shown
in Fig. 8.
energy density
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FIG. 8 (color online). Walls breaking into constituents.
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FIG. 9. Schematic view of the intersection of Fn and
WCP21;1;n. The coordinate representing the center of mass is
suppressed as Mwall=C�.
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In this system, the total wall moduli is the union of
M1 � Fn and M2 � WCP21;1;n. Their intersection is CP1,
which is precisely the moduli space of walls �4 ! �3,
with the two vacua �3;4 added. This wall has the position
Re ? and the phase Im ? associated with it as the only
moduli. Let us look in more detail how M1 and M2 join
at CP1. We take ? and a as the coordinates of M1, and ?
and b as those forM2. As we have seen in (3.55) and (3.63),
logjaj and logjbj control the relative position of constituent
walls. Then, the intersection is the curve 1=a � 0 in M1 or
b � 0 in M2, which is schematically illustrated in Fig. 9.

One can imagine a non-BPS wall configuration interpo-
lating all vacua successively as �2 ! �4 ! �5 ! �3 !
�1, as depicted in Fig. 10. Only when 1=a � 0, i.e., two
outer walls are infinitely far away, BPS walls with b � 0
can appear. Conversely, BPS walls with jaj<1 can arise
only when b � 0, i.e., two inner walls are completely
α α α α α4 12 5 3

log | b |

log | a |

repulsive repulsive

attractive

y

FIG. 10 (color online). Schematic structure of walls interpo-
lating from �2 to �1.
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compressed to a single wall. In this sense, one can consider
b  �1=a� � 0 as the defining equation of the whole BPS
moduli space.

Although we used an explicit example containing T�Fn
in order to illustrate the properties of walls, it is easy to see
that these phenomena happen generically for any massive
hyper-Kähler sigma model with hypertoric target spaces.
Extra vacua at infinity along the cotangent direction appear
whenever the hyperplanes bounding the toric diagram of
the base form an obtuse angle and intersect outside of the
base. Simultaneously, there appear walls which flow out-
side the cotangent direction. It is extremely rare to have no
obtuse angles. Indeed, any toric diagram with only acute or
right angles necessarily corresponds to some direct product
of weighted projective spaces. Thus, other than those cases,
there are various violations of transversality and mutual
attraction/repulsion between BPS walls.

G. Transmutation of walls

In the previous section, we focused on Case I of the
gauged linear sigma model containing Fn, and have found
interesting attraction and repulsion force between BPS
walls. Although Cases II and III do not violate in them-
selves the transversality of the flow, there are fascinating
dynamics between the BPS walls when they pass through
each other.

Recall the case of the walls in the Grassmannians [29].
There, a certain pair of walls cannot cross each other, and
when the moduli parameter for the relative distance is
formally taken to be negative infinity the walls are made
into a single compressed wall. Another pair of walls can
pass through each other, and we called them a penetrable
wall system. The wall system before and after the crossing
was equivalent, hence the walls retained their identities,
like their tension.

The case studied in the last subsection is in a sense
analogous to the compressed wall in Grassmannians.
Now let us study the crossing of walls in Fn. It may not
energy density
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FIG. 11 (color online). Transmutation of walls when they pass thr
right.
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be surprising to the reader, who has read all the findings
discussed in the previous sections, that we find richer
dynamics in this case also.

Let us concentrate on Case II in Sec. III D 2 and consider
walls interpolating from vacua �2 to �3. We have worked
out the wall tensions and wall positions for the case M1 �
F1 and the hypermultiplet masses mA � �qm; 0; 0;�m� in
Sec. III D 2. The wall positions can be parametrized by
yi � Re ?i=m using the moduli matrix parametrization in
Eq. (3.68). We present the result of wall positions in Fig. 11
by taking m � 1 and q � 1 or q � 2 as illustrative
examples.

In the limit y1 � y2 ! 1, the double wall system breaks
into two walls W1:�2 ! �4 and W2:�4 ! �3. In the limit
y1 � y2 ! �1, on the other hand, the system breaks into
W01:�2 ! �1 and W02:�1 ! �3. If y1 � y2, the two walls
are merged into one wall W. The process can clearly be
seen in Fig. 11. What distinguishes this case and the
previously studied examples of walls in Grassmannians
or projective spaces is that now the soliton before and after
the encounter, W1 and W02, is not equivalent. W2 and W01
also cannot be transformed to each other. Hence, the BPS
walls transmuted through the encounter. In the case mA �
�1; 0; 0;�1�, the tension of the walls W1 and W01 acciden-
tally equals each other as can be seen from Table II. In the
case mA � �2; 0; 0;�1�, however, the tension of walls W1;2

and W01;2 differs from each other completely with the sum
of the tension unchanged. Thus there is no doubt that the
soliton has changed its identity.

IV. CONCLUSION AND DISCUSSION

In this paper, we have analyzed the BPS flow equation of
massive NLSMs with eight supercharges for various hyper-
Kähler target spaces. We first have treated the most generic
hyper-Kähler manifold, and then have studied the case of
T�M with Kähler manifolds M and finally hypertoric
manifolds, with an increasing amount of detail in this
order.
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It is still difficult to survey the whole structure of general
hyper-Kähler sigma models. However, we have been able
to see at least the connection of the index theorem and the
problem of transversality of the BPS flow equation for the
models with the T�M target space. In addition, once we
restricted attention to hypertoric sigma models, we have
found that the total moduli space of BPS walls, containing
all possible topological sectors, is precisely the core of the
hypertoric manifold, which is the union of the special
Lagrangian toric compact submanifolds defined by the
charge matrix for the hypertoric manifold.

We also have found that the essential reason for the
nontransversality of the flow is that the hyperplane ar-
rangement for T�Fn contains a trapezoidal cell K1 with
an obtuse angle, representing M1 � Fn in Fig. 4. Because
of this, another vacuum �5 appears outside of the base Fn
and it is on another compact special Lagrangian submani-
foldM2 � WCP21;1;n neighboring Fn. In such a case, sets of
vacua, (�2; �4; �5) and (�1; �3; �5), are arranged along a
straight line in the �A space, and this is the cause of the
mutual repulsion among BPS walls.

Directions of BPS flows are classified into three cases as
in Fig. 5, depending on the arrangement of the hyper-
multiplet masses. The violation of the transversality can
be seen in Case I but not in Cases II and III. We have found
in Case I that, in the triple wall sector, the position of the
center wall is locked in the center between the outer two
walls as in Fig. 6. We then have deduced the existence of
the mutual attraction and repulsion between the walls as
summarized in Fig. 10. It would be extremely interesting to
elucidate the dynamical mechanism leading to those
forces. On the other hand, in the other two cases, the
same feature of the T�Fn model, namely, the existence of
multiple compact special Lagrangian submanifolds, causes
completely different phenomenon, the transmutation of
walls: when two walls path through, tension of one wall
is transferred to the other with the sum of their tension
unchanged, as illustrated in Fig. 11. So we have obtained
these interesting dynamics of walls for the T�Fn model
from the same geometrical characteristic.

The total moduli space is the union of Fn and WCP21;1;n
which join together sharing the submanifold CP1 as sche-
matically illustrated in Fig. 9. We would like to emphasize
that we never see the global structure of the moduli space
like this if we restrict ourselves only to each topological
sector.

We expect that a similar analysis can be extended to
more general and complicated hypertoric sigma models. If
the model contains n-polygons (n � 4) in the hyperplane
arrangement, the nontransversality and transmutation may
occur to walls connecting vertices of one of the polygons.

One of interesting future directions of research will be
the study on the dynamics of the wall moduli. As in the
work by Atiyah and Hitchin [56] on the scattering of BPS
monopoles, we should be able to study the scattering of
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BPS walls with each other because the Kähler potential of
the moduli space can be obtained easily as done in
Ref. [29] in the case of Grassmannian. This will be par-
ticularly interesting when the transmutation of walls oc-
curs. Extending the discussion to the quantum case will be
also worthwhile. Since the worldvolume theory has only
four supercharges, there will be nonperturbative superpo-
tential generated by BPS solitons of the effective theory.
These solitons are precisely the vortices of the original
theory, and their moduli space has been already analyzed in
[30]. Hence, the calculation of Affleck, Dine, and Seiberg
[57] will in principle be possible. We can expect richer
nonperturbative dynamics of the BPS walls.

BPS walls in the case of Grassmannian NLSM can be
realized using kinky Dp-brane configuration in the back-
ground D�p� 4�-branes on the ALE space [32]. That D-
brane picture was extremely useful to understand various
dynamics of walls. Therefore D-brane construction for the
models discussed in the present paper is desirable. In
particular it would be interesting to understand compli-
cated dynamics of walls like the wall locking or the trans-
mutation found in the present paper.

Finally, we would like to recall that much has been
gained from taking the Killing potential of the holomor-
phic isometry as the Morse function. Combined with the
restriction which comes from the eight supercharges, we
should be able to extract more geometrical information
from the BPS flow structure on hyper-Kähler target spaces.
We are planning to investigate these problems further.
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APPENDIX A: TRANSVERSALITY AND THE
MORSE-SMALE CONDITION

In this appendix we collect facts about the Morse-Smale
condition and transversality.
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TABLE III. Comparison of notations with Ref. [36].

Ours @y � D1 D2 g2 c 7 D

Ref. [36] @3 ET ,y , e2 v2 � (
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1. Stable and unstable manifolds

Let M be a compact manifold with dimension n, f be a
Morse function, and �;(; . . . be critical points of f. Let g
be a metric on M. Define the Morse flow ’y�p� with
parameter y with respect to f as the solution of the differ-
ential equation

d
dy
’y�p� � gij@jf�’y�p�� (A1)

with the initial condition ’0�p� � p. Then, stable and
unstable manifolds of � are defined as follows:

S��� � fp 2 Mj lim
y!�1

’y�p� � �g;

U��� � fp 2 Mj lim
y!�1

’y�p� � �g;
(A2)

respectively. These S��� and U��� are submanifolds of M
and homeomorphic to Rn�n� and Rn� , respectively, and n�
is called the Morse index of �. If we change the sign of the
Morse function from f to �f, the definition of stable and
unstable manifold is exchanged. The Morse function f on
M defines the following two kinds of decompositions. The
first one is

M �
[
�

S��� �
[
�

U���; (A3)

where � is summed over all critical points of f. So M is
decomposed into a sum of disjoint cells S��� or U���. The
second decomposition is

M �
[
�;(

F��;(�; F��;(� � S��� \U�(�; (A4)

where the sum is taken over all critical points �;(.
Namely, M is the sum of walls which go from ( to �.

2. Morse-Smale transversality condition

S��� intersect transversely with U�(� if and only if the
following condition is satisfied for all critical points�;( of
f:

TpS��� � TpU�(� � TpM; for all p 2 S��� \U�(�:

(A5)

This condition is called the Morse-Smale condition and
then f is called the Morse-Smale function on M. In this
case, since S��� \U�(� is a submanifold of M,

dim	S��� \ U�(�� � dim S��� � dimU�(� � dimM;

(A6)

so that we find

dimF��;(� � �n� n�� � n( � n � n( � n�; (A7)

where n�;( are indices of �;(.
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APPENDIX B: ON THE ABSENCE OF THE
VANISHING THEOREM

In the main part of the article, we saw that the BPS flow
inside Fn violates transversality for a certain range of mass
parameters. Additionally, we explicitly constructed a
gauged linear sigma model with eight supersymmetry
which contains Fn as a special Lagrangian submanifold.
Using the notation of Sec. III D, the BPS flow inside Fn
starting from �4 to �3 connects the vacua with the same
Morse index. As we showed in Sec. II, this violation of
transversality is related to the nonvanishing of the zero
modes of the operator D1, which is the adjoint of the
operator D2 governing the deformation of the flow inside
the base.

Those who also read the papers [33,36], however, may
wonder why such a situation occurs, because it was shown
therein that there were no such zero modes for gauge
groups U(1) and SU�Nc�, respectively. We would like to
clarify why the naive extension of the argument in those
papers fails in our case. As the exposition closely follows
that of [36], please place the paper side by side and
compare with it. The notation difference is tabulated in
Table III. We emphasize that the various phenomena, such
as violation of transversality, can be regarded as one and
the same phenomena as the absence of the vanishing
theorem.

Let us take a massive Abelian gauged linear sigma
model with several U(1) factor groups. Since the gauge
coupling gI can be absorbed into the redefinition of the
hypermultiplet charges qAI , we will choose to use 2g2I � 1.
The equations for the fluctuations around the BPS wall
solution can be obtained by perturbing the BPS equations
following the argument in [36]. Denoting the fluctuations
of �I � iWI

y, hA, and ~hA as 7I, DA, and ~DA, respectively,
we find after using the Gauss law and fixing the gauge

�@y7I �
X
A

qAI �h
AyDA � ~hyA ~D

A� � 0 �for each I�;

(B1)

 
�@y �

X
I

qAI�
I �mA

!
DA �

X
I

qAI hA7
I � 0

�for each A�;

(B2)

 
�@y �

X
I

qAI�
I �mA

!
~DA �

X
I

qAI ~h
A7I � 0

�for each A�:

(B3)
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9A similar analysis in Ref. [33] contains an incorrect result in
its Eq. (15) with respect to this point. Therefore the proof of the
vanishing theorem in that case also requires the argument that we
give in Appendix B.
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As shown in Sec. II, we should consider a special
Lagrangian submanifold to obtain a nontrivial index.
Here let us take a flow on the special Lagrangian submani-
fold M defined by ~hA � 0. By disregarding the fluctuation
~DA and setting ~hA � 0 in Eqs. (B1)–(B3), we obtain the
operator D2 in (2.12) as

D 2 �
�@y1 �qAI h

y
A

�qAI hA diag
�
�@y �

P
I
qAI�

I �mA
�0B@
1CA; (B4)

acting on a vector �7I; DA�T . Here 1 is the unit matrix
acting on the color indices, and qAI hA should be thought of
as a N 
 NF matrix. The operator D1 is obtained as the
adjoint of the operator D2 as

D 1 �
@y1 �qAI h

y
A

�qAI hA diag
�
@y �

P
I
qAI �

I �mA
�0

B@
1
CA: (B5)

Let us try to show that there is no zero modes of the
operator D1, imitating the argument in [36]. Then we have

��������D1

7I

DA

 !��������2 � j@y7Ij2 �
���������
X
A

qAI h
y
ADA

���������
2

�

���������@yDA �
X
I

DAqAI �
I � DAmA

���������
2

�

���������
X
I

qAI hA7I

���������
2

�X-terms; (B6)

and the X-terms vanish when one uses the BPS equation,
just as in [36]. Hence, the following four conditions are
necessary and sufficient for �7I; DA�T to be a zero mode:

@y7I � 0 �for each I�; (B7)

X
I

qAI hA7I � 0 �for each A�; (B8)

X
A

qAI h
y
ADA � 0 �for each I�; (B9)

@yDA �
X
I

DAqAI �
I � DAmA � 0 �for each A�:

(B10)

Equations (B7) and (B8) immediately dictate the fluctua-
tion of vector multiplet scalar to vanish7I � 0. Let us now
concentrate on Eqs. (B9) and (B10) to examine if the
fluctuation DA of the hypermultiplet scalar hA has zero
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mode or not. The ‘‘moduli matrix’’ qAI hA is just a row
vector, and the condition (B9) imposes only N conditions
on the Nf variables.9 Hence Eq. (B9) is not sufficient to
conclude that D vanishes. Equation (B9) is just the condi-
tion (3.19) which signifies that D should be cotangent to the
base manifold. Thus, we found again that the adjoint of the
operator governing the deformation of the BPS flow inside
the base describes the BPS flow along the cotangent
direction.

We can do better in sorting out the zero modes of D1. It
is important to realize that the remaining zero mode equa-
tion (B10) for each A is identical to the equation for the
fluctuation ~DA of the cotangent direction ~hA in Eq. (B3),
provided we can neglect the background ~hA � 0 or the
fluctuation of vector multiplet scalar 7I � 0. This again
shows that the vanishing theorem (no zero mode of D1) is
the same condition as the absence of the zero mode in the
cotangent direction, even for finite gauge coupling rather
than the NLSM (strong gauge coupling) limit.
Equation (B10) combined with the BPS equation (3.31)
implies that the quantities hA ~DA (no summation on A) are
constant along the flow. Since hA ~DA at y! �1 are con-
strained to vanish, hA ~DA (no summation on A) should
always be zero, similarly to 9A as noted already in (3.36).
Thus, when hA is nonzero for a particular flavor A, there is
no zero mode ~DA along the corresponding ~hA direction. Let
us note that the condition hA vanishes is equivalent to the
condition �A � hAh

y
A vanishes, and recall that the hyper-

planes �A � 0 define the boundary of the cell correspond-
ing to the special Lagrangian submanifold we are
considering. Therefore, we can conclude that the vanishing
theorem can be established when the flow is properly in-
side the cell, and the zero mode along the cotangent
direction is possible only for the flow along the boundary
of the cell.

When there is indeed a nontrivial zero mode along ~hA,
the same condition hA ~DA � 0 (no summation on A) now
implies hA � 0 for that particular A. This means that the
BPS flow in this particular topological sector lost one
moduli inside the base. Additionally, the flow with nonzero
~hA can be naturally considered as the flow inside the other
special Lagrangian submanifold M0 which shares the hy-
perplane �A � 0. Thus, for the flow inside the hypertorics,
the appearance of the zero mode along the cotangent
direction in a topological sector can be better understood
as the existence of another compact special Lagrangian
submanifoldM0 sharing a boundary withM. Then, the wall
in the particular topological sector is better interpreted as a
result of taking the limit ~hA ! 0 for walls inside M0.
Indeed, if we choose to consider the index theorem with
-20
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respect to the special Lagrangian submanifold M0 instead
of M, we have a valid vanishing theorem and no violation
of transversality. This point is very well illustrated in the
discussion in Sec. III F. There, the wall connecting �4 to�3
violated transversality and looked like a single wall from
the viewpoint of Fn. The wall is, however, decomposable
further into two walls �4 ! �5 and �5 ! �3 from the
viewpoint of WCP21;1;n. This example strengthens our in-
terpretation that the walls violating transversality should be
thought of as a limit of the wall on another special
Lagrangian submanifold.

We have shown in Sec. II A that Morse index for the
entire hyper-Kähler manifold is always 2n and does not
give information on the possible number of zero modes
(wall directions). These NLSM’s may be obtained by tak-
ing the strong gauge coupling limit from our gauged linear
sigma model. We can obtain the corresponding result at
finite gauge couplings by extending our analysis of zero
105009
modes as follows. Suppose we apply the same type
of analysis of zero modes for index theorems by choosing
the fluctuations 7I; DA; ~DA of the entire gauged linear
sigma model. The operator D2 in (2.13) can be read off
from Eqs. (B7)–(B10). The adjoint operator D1 can be
easily worked out to give the same operator as D2 except
that the sign of @y is just reversed. If we apply the same
zero mode analysis as above for this case, we first find
that vector multiplet scalar fluctuations should vanish.
Then the remaining zero mode equations for D2 become
@yDA �

P
IDAq

A
I �

I � DAm
A � 0 and @y ~DA �P

I ~DAq
A
I �

I � ~DAm
A � 0. It is easy to see that these

equations are identical to the corresponding zero mode
equations for the operator D1, since the two equations
are interchanged under @y $ �@y. This result implies
that the index in Eq. (2.13) always vanishes if it is defined
for the entire fluctuations of the gauged linear sigma
model.
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