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Baryons in the large N limit of (1� 1)-dimensional Gross-Neveu models with either discrete or
continuous chiral symmetry have long been known. We generalize their construction to the case where the
symmetry is explicitly broken by a bare mass term in the Lagrangian. In the discrete symmetry case, the
exact solution is found for arbitrary bare fermion mass, using the Hartree-Fock approach. It is
mathematically closely related to polarons and bipolarons in conducting polymers. In the continuous
symmetry case, a derivative expansion allows us to rederive a formerly proposed Skyrme-type model and
to compute systematically corrections to the leading order description based on an effective sine-Gordon
theory.
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I. INTRODUCTION

The original Gross-Neveu models [1] are asymptotically
free, self-interacting fermionic field theories in 1� 1 di-
mensions with Lagrangian

L � � �i��@� �m0� �
1

2
g2�� �  �2 � �� � i�5 �2�:

(1)

We suppress the flavor indices (i � 1 . . .N) and shall only
consider the ’t Hooft limit N ! 1; Ng2 � const: The
model with discrete chiral symmetry [� � 0 in Eq. (1)]
will be referred to as Gross-Neveu model (GN), the one
with continuous chiral symmetry (� � 1) as Nambu-Jona-
Lasinio model in two dimensions (NJL2) throughout this
paper. Apart from being of theoretical interest in their own
right, these models have been useful as a theoretical labo-
ratory for new methods and algorithms and to describe
quasi-one-dimensional condensed matter systems.
Whereas the massless models (m0 � 0) have been rather
comprehensively studied by now (see [2,3] for pertinent
review articles and [4–6] for a recent update on the GN
model), results about the massive versions with an explicit
symmetry breaking term (m0 � 0) are scarce and some-
what scattered through the literature. In view of the fact
that in nature quarks are massive and a lot of effort is
presently devoted to computing chiral corrections, we
believe that it is both worthwhile and timely to study
more systematically the massive Gross-Neveu models. In
order to motivate our specific work, let us briefly summa-
rize the present status of this field.

The gap equation which determines the vacuum and the
dynamical fermion mass m can easily be generalized to
finite bare quark mass m0. Apart from m, a second physi-
cal, renormalization group invariant parameter appears,
m0=Ng

2. It enters the renormalized vacuum energy and
observables like the �qq scattering amplitude or the mass of
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the ‘‘pion’’ in the NJL2 model [7]. The �-meson is un-
bound and disappears from the spectrum for any m0 � 0,
the �-meson becomes massive in the familiar way (Gell-
Mann, Oakes, Renner relation). If one assumes unbroken
translational invariance, one can also infer the phase dia-
gram in the (T;�) plane [8]. However, since we now know
that this assumption is not justified at m0 � 0 [6], this
analysis cannot be trusted and needs to be repeated.

As far as baryons in the massive Gross-Neveu models
are concerned, we are only aware of two variational cal-
culations so far. Salcedo et al. [9] have studied both the
’t Hooft model (large N QCD2 [10]) and the NJL2 model,
comparing a lattice Hartree-Fock calculation with a varia-
tional ansatz in which the chiral phase of the fermions
serves as effective low energy field. In the limit of small
but finite bare quark masses, the authors find a sine-Gordon
theory, the two-dimensional analogue of the Skyrme model
where baryon number is generated through a topologically
nontrivial pion field configuration. This elegant approach
yields the correct dependence of the pion mass on the
quark mass in a very simple manner and can readily be
generalized to finite temperature and chemical potential
[2,11]. In the case of the ’t Hooft model, the authors of
Ref. [9] compare the soliton approach with the full
Hartree-Fock calculation and notice that it works very
well, even away from the chiral limit. Unfortunately,
such a comparison was not done for the NJL2 model, so
that the accuracy of the sine-Gordon approach cannot be
assessed in the case at hand.

In the nonchiral GN model, Feinberg and Zee [12] have
performed a variational calculation, based on the scalar
potential of the standard (m0 � 0) kink-antikink baryon
[13]. They compute the energy of the baryon and discuss
the limiting cases of small and large bare quark masses.
They conclude that their ansatz does not satisfy the saddle
point equation. Claims made in this paper about the non-
existence of static bags in the massive GN model have later
been retracted by the authors [14].

Since one does not know the accuracy of these varia-
tional calculations, they are insufficient if one wishes to use
-1  2005 The American Physical Society
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the Gross-Neveu models as testing ground for new theo-
retical approaches. Moreover, as should be clear from the
above short summary, the general situation concerning the
massive Gross-Neveu models is far from satisfactory. We
therefore decided to reconsider this whole issue more
systematically. In the present work, we begin such a study
with a fresh look at the baryon in both the massive GN and
the NJL2 models. Obviously, this is a prerequisite for a
future study of the full phase structure of these models. In
Sec. II, we will present the analytical solution for the
baryon in the discrete chiral massive Gross-Neveu model
for arbitrary quark masses, obtained along lines very simi-
lar to Ref. [12]. In Sec. III, we turn to the NJL2 model and
show that the Skyrme-type approach [9] can be identified
with the leading order term of a systematic derivative
expansion. We will also compute the three following
higher order corrections in the derivative expansion in
closed analytical form. It seems to us that the problem of
baryonic matter at finite temperature away from the chiral
limit should be tractable owing to these new insights, but
we leave such an investigation for the future. Section IV
contains a brief summary and our conclusions as well as a
comment on the quantitative relationship between baryons
in the massive GN model on the one hand and polarons,
bipolarons and excitons in conducting polymers on the
other hand.

II. BARYONS IN THE MASSIVE GN MODEL—
EXACT RESULTS

Here, we basically repeat the variational calculation of
Ref. [12], using the Hartree-Fock approach. We simply
write down a scalar trial potential and prove its self-
consistency. Since our trial potential has the same shape
as the m0 � 0 baryon with partial filling of the valence
level (a kink-antikink potential well [13]), we can take over
many results from the corresponding Hartree-Fock calcu-
lation in the chiral limit [15]. We refer the reader to this last
paper for more details and will concentrate on the differ-
ences caused by the bare quark mass.

The trial scalar potential reads

S�x� � m�1� y�tanh�� � tanh���� (2)

with

�
 � ymx

1

2
arctanh y; (3)

where m is the physical fermion mass in the vacuum, y 2
�0; 1� the only variational parameter. The potential is the
same as in the m0 � 0 case, except that we will get a
different relation between the parameter y and the occupa-
tion fraction � � n=N of the valence state. We first evalu-
ate the baryon mass relative to the vacuum. The calculation
of the sum over single particle energies is identical to that
in Ref. [15]. Hence the contribution from the negative
energy continuum states (E�k� �

�����������������
k2 �m2

p
),
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�Econt �
2Nym
�

� 2Nym
Z �=2

��=2

dk
2�

1

E�k�

�
2Nm
�

��������������
1� y2

q
arctan

��������������
1� y2

p
y

�
2Nym
�

�
1� ln

�

m
�

��������������
1� y2

p
y

arctan

��������������
1� y2

p
y

�
(4)

and the discrete states

�Ediscr � �N�1� ��m
��������������
1� y2

q
(5)

can be taken over literally. Only the double counting
correction of the interaction energy characteristic for the
Hartree-Fock approach gets modified due to the bare quark
mass m0,

�Ed:c: �
Z
dx

�S�m0�2 � �m�m0�2

2g2

�
1

2g2
Z
dxf�S2 �m2� � 2m0�S�m�g: (6)

Moreover, when eliminating the bare coupling constant,
we must now use the finite m0 gap equation,

1

Ng2
�
1

�

�
1�

m0
m

�
�1
ln
�

m
�
1

�

�
1�

m0
m

�
ln
�

m
; (7)

where we have dropped m0-terms not matched by
ln��=m�. This reproduces the previous result plus a finite
correction,

�Ed:c: �
N
2�
ln
�

m

Z
dx�S2 �m2�

�
N
2�

m0
m
ln
�

m

Z
dx�S�m�2: (8)

Carrying out the integrations and introducing the physical
parameter [12]

� �
m0
�m

ln
�

m
(9)

then yields

�Ed:c: � �
2Nym
�

ln
�

m
� 2Nm��y� arctanh y�: (10)

Collecting the results (4), (5), and (10), we get the follow-
ing answer for the (variational) baryon mass

MB

N
�
2ym
�

�
2m
�

��������������
1� y2

q
arctan

��������������
1� y2

p
y

� �1� ��m
��������������
1� y2

q
� 2m��y� arctanh y�: (11)

We now choose � (i.e., the fermion number) and vary MB
with respect to y
-2



BARYONS IN MASSIVE GROSS-NEVEU MODELS PHYSICAL REVIEW D 71, 105008 (2005)
@MB

@y
� 0 (12)

or (discarding the trivial solution y � 0)

��������������
1� y2

q �
1

�
arctan

��������������
1� y2

p
y

�
1� �
2

�
� �y: (13)

Introducing the angle � via y � sin� (0 � � � �=2), we
obtain

�
2
�
�
�
� � tan�: (14)

If we eliminate � from Eq. (11) with the help of Eq. (14),
the baryon mass at the minimum finally becomes

MB

N
�
2m
�
sin�� 2m� arctanh�sin��: (15)

The last two equations agree with Ref. [12].
Now consider the self-consistency condition for the

condensate and scalar potential in the form

�
�S�m0�

Ng2
�
Xocc
�  : (16)

The r.h.s. of Eq. (16) gets contributions from the discrete
states

Xocc
discr

�  � �1� ��
m
2

��������������
1� y2

q
�tanh�� � tanh���

� �1� ��

��������������
1� y2

p
2y

�S�m� (17)

and from the negative energy continuum,

Xocc
cont

�  � �S
Z �=2

��=2

dk
2�

1

E�k�
�m3y�1� y2�

� �tanh�� � tanh���
Z dk
2�

1

E�k��k2 �m2y2�

� �
S
�
ln
�

m
�

�S�m�
�

��������������
1� y2

p
y

arctan

��������������
1� y2

p
y

;

(18)

where we have again taken over results from Ref. [15]. The
l.h.s. of Eq. (16) can be rewritten with the help of the gap
Eq. (7),

�
�S�m0�

Ng2
� �

S
�
ln
�

m
�
S�m
�

m0
m
ln
�

m

� �
S
�
ln
�

m
� �S�m��: (19)

Combining Eqs. (17)–(19), the self-consistency condition
assumes the form
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1� �
2

��������������
1� y2

p
y

�
1

�

��������������
1� y2

p
y

arctan

��������������
1� y2

p
y

� � � 0

(20)

which coincides with the variational Eq. (13). Therefore,
surprisingly, the variational potential turns out to be self-
consistent and hence to provide us with the exact baryon of
the massive GN model in the large N limit. We have been
rather explicit here because although our variational cal-
culation agrees with Ref. [12], we have come to a different
conclusion concerning the self-consistency of this ansatz.

Let us summarize our findings. In the massless limit, the
shape of the self-consistent scalar potential depends only
on the filling of the valence level. For complete filling (� �
1), the well degenerates into infinitely far separated kink
and antikink. As one decreases �, the baryon shrinks and
eventually approaches a 1=cosh2-shape as expected from
the nonlinear Schrödinger equation [15]. In the massive
Gross-Neveu model, we have another parameter � which
controls the shape of the scalar potential. If we consider
only complete filling and turn on the bare mass term
respectively �, the baryon also shrinks and eventually
becomes nonrelativistic. This is physically very reason-
able. Interestingly, no new shape of S�x� appears as we
turn on the bare quark mass. It is this feature which makes
the massive GN model exactly solvable, a fact which we
had not expected. The only question is how the parameter �
in the general kink-antikink potential depends on � and �.
This is answered (implicitly) by Eq. (14). Equation (15)
then yields the baryon mass as a function of fermion
number � and symmetry breaking parameter �.

III. BARYONS IN THE MASSIVE NJL2 MODEL —
DERIVATIVE EXPANSION

In the present section, we consider the NJL2 model with
continuous chiral symmetry. Unlike in the case of the GN
model, here we have not been able to guess the self-
consistent Hartree-Fock potential for arbitrary bare quark
masses. The only clue we have is the fact that near the
chiral limit, the sine-Gordon model should somehow
emerge. In this limit, we know that the relevant length
scale over which the potential varies is given by 1=�, the
inverse pion mass. This suggests that the theoretical instru-
ment of choice should be the derivative expansion, at least
in the vicinity of the chiral limit. We will see that the sine-
Gordon equation is nothing but the leading order term of
such a derivative expansion. Moreover, the calculation of
higher order corrections can be done in closed analytical
form, so that we will get a quantitative understanding of the
baryons in a reasonable range of bare mass parameters,
although not for arbitrary mass. This is a nice example
where one can study in all detail how a Skyrme-type
description of baryons emerges from an underlying fermi-
onic theory, including an unusually good control of the
corrections.
-3
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As far as the derivative expansion is concerned, we refer
the reader to the original paper [16] as well as to Ref. [17]
from which we take over the basic formulae and the
notation. Nevertheless, we shall try to keep our paper
self-contained as far as possible.

To avoid confusion, we should like to draw the attention
to the following difference between this section and the
preceding one. In the case of the NJL2 model, the Skyrme-
picture applies only to the case where the fermion number
is an integer multiple of N, the number of flavours (this
corresponds to � � 1 in Sec. II). One should not think of
filling a positive energy valence level, but rather that the
winding number of the potential induces fermion number
by sending energy levels from positive to negative energies
or vice versa, changing the spectral asymmetry. This is
discussed in more detail in Refs. [2,11]. Only for this case
of complete filling of single particle states, the baryon gets
massless in the chiral limit. One can also contemplate
partially filled states in the NJL2 model, along the lines
of the original work of Shei [18], but we shall not consider
this possibility here. This allows us in the following to
define the baryon number as an integer, namely, fermion
number divided by N.

A. General setup of the derivative expansion

The central quantity for computing ground state energy
and baryon number for a system with Hamiltonian H is the
spectral density

��E� � Tr��H � E� �
1

�
ImTrR�E� i��; (21)

where we have introduced the resolvent

R�z� � Tr
1

H � z
� Tr

H � z

H2 � z2
: (22)

The induced fermion number is ( � 1=2) times the spectral
asymmetry,

hNi � �
1

2

Z 1

�1
dE��E�sgn�E�

� �
1

2�
Im

Z 1

0
dE�R�E� i�� � R��E� i���; (23)

whereas the ground state energy can be written as

hHi �
Z 0

�1
dEE��E� �

1

�
Im

Z 0

�1
dEER�E� i�� (24)

In a notation similar to Ref. [17] we decompose H and H2

formally into

H � K � I; H2 � H20 � V (25)

and expand the resolvent in powers of V,
105008
R�z� � Tr�K � I � z�
1

H20 � z2 � V

� Tr�K � I � z�

 
G0

X1
n�0

��VG0�
n

!
(26)

with

G0 �
1

H20 � z2
: (27)

If one commutes the V’s through the G0’s by repeatedly
applying the identity

G0V � VG0 �G0�V;H
2
0�G0; (28)

one generates the derivative expansion (the commutator
�V;H20� involves derivatives of V). As is well known, this
method quickly becomes tedious due to the proliferation of
higher order terms. Therefore we shall use another tech-
nique based on momentum space below.

B. Specialization to the massive NJL2 model

In the large N limit, the Hartree-Fock approach is ade-
quate. We can therefore choose for H a single particle
Dirac Hamiltonian with general scalar and pseudoscalar
local potentials. Without loss of generality, it can be cast
into the convenient form

H � ��5i@x �m0�0 � � �m� %�x��ei�
5&�x��0e�i�

5&�x�

(29)

which exhibits the bare mass term and a Hartree-Fock
potential equivalent to

��x��0 � ��x�i�1 (30)

with

� � � �m� %� cos2&; � � �� �m� %� sin2&: (31)

We have introduced a mass parameter �m which differs
from the physical fermion mass m,

m � �m�m0 (32)

to ensure that %�x� vanishes asymptotically. The
�-matrices will be taken in the representation �0 �
�1; �1 � �i�2; �5 � �3. Next we identify the operators
K and I from the preceding subsection as follows,

H � K � I �
�
�i@x 0
0 i@x

�
�

�
0  
 � 0

�
(33)

with

 � � �m� %�e2i& �m0: (34)

A natural way of decomposing H2 into H20 and V is

H20 � ��@2x �m2� (35)
-4
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V �

�
j j2 �m2 �i 0

i� 0�� j j2 �m2

�
(36)

where, using Eq. (34),

j j2 �m2 � 2 �m%� %2 � 2m0� �m� %� cos2&� 2m0 �m

 0 � �%0 � 2i� �m� %�&0�e2i&: (37)

We shall perform the derivative expansion of the basic
building blocks

Tr �K � I � z�G0�VG0�
n (38)

of the resolvent as follows. Consider first the term propor-
tional to z. In momentum space,

Tr G0�VG0�n �
Z dpdq1
2�2�

. . .
dqn�1
2�

G0�p�2

�G0�p� q1� . . .G0�p� qn�1�

� tr V�q1�V�q2 � q1� . . .V��qn�1� (39)

BARYONS IN MASSIVE GROSS-NEVEU MODELS
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where now tr is only the Dirac trace. In p-space, the
potentials vary rapidly as compared to the Green’s func-
tions. We can therefore expand the product of G0’s in a
power series in the qi’s. Once this is done, we transform the
potentials back to coordinate space and carry out most of
the integrations. The qi’s are replaced by derivatives acting
on the V0s,

TrG0�VG0�
n�

Z
dx
Z dp
2�
G0�p�

2

�G0�p�q1� . . .G0�p�qn�1�jqk�i�@1�...�@k�

� trV�x1�V�x2� . . .V�xn�jxk�x: (40)

In this process, partial integrations are carried out which
can be justified for the functions %; & which will come out
at the end (there are no surface terms). We have suppressed
the Taylor expansion in Eq. (40) in order to keep the
structure of the formula transparent. The other two terms
in Eq. (38) can be handled similarly with the result
Tr IG0�VG0�
n �

Z
dx
Z dp
2�

G0�p�G0�p� q1� . . .G0�p� qn�jqk�i�@1�...�@k�trI�x1�V�x2�V�x3� . . .V�xn�1�jxk�x

TrKG0�VG0�n �
Z
dx
Z dp
2�

pG0�p�2G0�p� q1� . . .G0�p� qn�1�jqk�i�@1�...�@k�tr�3V�x1�V�x2� . . .V�xn�jxk�x:

(41)
If we apply the above formalism to Hartree-Fock, we must
of course add the double counting correction to the energy,

E � hHi �
Z
dx

� �m� %�2

2Ng2
: (42)

C. Energy

Only the odd part of the resolvent R�z� in Eq. (26)
contributes. In the expansion in powers of V, the terms of
order V0 and V1 play a special role. They contain diver-
gencies which require regularization and renormalization,
whereas all higher order terms are finite. Besides, they do
not necessitate the derivative expansion (there are no qi to
expand in). We therefore show this calculation in some
detail first and then discuss the higher order terms.

Terms of order V0

Here we are considering the vacuum energy. Although
this will be subtracted from the baryon energy, it is useful
to calculate it in order to rederive the renormalization
condition needed later on. The resolvent is given by

R�z� �
Z
dx
Z �=2

��=2

dp
2�

2z

�p2 �m2� � z2
(43)

with an UV cut-off�=2. Equations (24) and (42) then yield
the energy density
E vac � �
Z �=2

��=2

dp
2�

������������������
p2 �m2

q
�

�m2

2Ng2

� �
�2

8�
�
m2

4�
�
m2

2�
ln
m
�
�

�m�m0�
2

2Ng2
: (44)

Minimizing with respect to the dynamical fermion massm,
we recover the well-known gap equation

�m�m0�

Ng2
�
m
�
ln
�

m
: (45)

Upon using this condition, the vacuum energy density
becomes (up to an irrelevant quadratic divergence)

E vac � �
m2

4�
�
mm0
2�

ln
�

m
: (46)

As pointed out above, m0=Ng2 or equivalently m0 ln�=m
is a physical quantity. Here, it is more natural to express it
in terms of the pion mass � (see [7]),

�m0
Ng2m

�
1�������������
�� 1

p arctan
1�������������
�� 1

p ; � �
4m2

�2
: (47)

For later convenience, we introduce the function
-5



MICHAEL THIES AND KONRAD URLICHS PHYSICAL REVIEW D 71, 105008 (2005)
F�y� �
4

y
��������������
4� y2

p arctan
y��������������
4� y2

p
� 1�

1

6
y2 �

1

30
y4 �

1

140
y6 � . . . (48)

which allows us to express the renormalized vacuum en-
ergy density in the following way,

E vac � �
m2

4�
�
�2

8�
F��=m�: (49)

This already shows that an expansion for small quark
masses should be thought of as an expansion in the ratio
of pion mass to (dynamical) quark mass in the NJL2
model. The bare quark mass m0 goes to 0 in the limit �!
1 and cannot appear in any physical quantity.

Terms of order V1

Now we have to compute

hHi�1� � �
1

�

Z 0

�1
dEE Im Tr zG0VG0

�
Z
dx

� �m� %�2 � �m2

2Ng2

�
Z
dx

(
�
1

�

Z �=2

��=2

dp
2�

�
Z 0

�1
dEE Im zG20�p� trV�x�

�
� �m� %�2 � �m2

2Ng2

)
: (50)

The integrations over E and p can easily be carried out.
Owing to the gap equation, all divergencies cancel out and
the unphysical quantities (Ng2; m0;�) can again be elim-
inated in favor of � and m with the result

hHi�1� �
�2

4�
F��=m�

Z
dx
��
1�

%
m

�
�1� cos2&� �

%2

2m2


:

(51)

Once again we have dropped all terms in which the bare
mass m0 is not multiplied by a factor ln��=m�.

Terms of order Vn, n > 1
All higher order terms in the expansion (26) are free of

UV divergencies. Therefore, we can set the bare quark
mass m0 � 0, thereby greatly simplifying our potential
V, and calculate the traces and integrals mechanically
with computer algebra (we used Maple). The result for
the energy density coming from these higher order terms is
a polynomial in %, & and their derivatives. Detailed results
will be given in Sec. III E.

D. Baryon number

The leading order contribution comes from the
TrIG0VG0 term in Eq. (26) and can easily be shown to
have the expected topological form
105008
hNi �
Z
dx
&0

�
�
1

�
�&�1� � &��1��; (52)

with the well-known identification of winding number of
the chiral phase with baryon number. Since we were not
sure to which extent the general topological arguments
carry over to a system with explicit symmetry breaking,
we have computed the next three orders in the derivative
expansion, using Maple. We found that the result (52) does
not get any correction whatsoever and therefore presum-
ably holds to all orders. Although many terms are produced
in the integrand (the baryon density) by our algorithm, they
can be nicely combined into total derivatives of functions
which vanish at infinity and therefore do not affect the
lowest order topological result (52).

E. Results

On the basis of the effective sine-Gordon theory [9] for
the NJL2 model, the mass of the baryon with fermion
number N is expected to approach 2�=� for �! 0. Our
goal is to compute corrections to this result up to order
�6=m6. This requires a substantial number of terms in the
derivative expansion and correspondingly involved alge-
braic expressions. To simplify the notation, let us set m �
1 from now on. Then, the energy density in the relevant
order of the derivative expansion computed along the lines
of Sec. III C has the following form,

2�E � �
�2

2
F���

�
�1� %��cos2&� 1� �

1

2
%2

� �&0�2

�
1

6
�&00�2 �

1

30
�&000�2 �

1

140
�&IV�2 �

1

45
�&00�4

� %2 �
1

12
�%0�2 �

1

120
�%00�2 �

1

3
%3 �

1

6
%�%0�2

�
1

12
%4 �

1

3
%�&00�2 �

1

15
%�&000�2 �

1

5
%&00&IV

�
1

2
%2�&00�2 (53)

We have subtracted the vacuum contribution and simplified
the result as much as possible with the help of partial
integrations (only the energy

R
dxE is uniquely defined in

this approach). To appreciate the complexity of expression
(53), one should compare it with the leading order terms
only,

2�E � �&0�2 �
�2

2
�cos2&� 1�; (54)

which reproduce exactly the sine-Gordon theory and rep-
resent the state of the art prior to this work. We then vary
the energy with respect to & and %. In order to solve the
resulting differential equations, we expand F��� and as-
sume the following Taylor series for & and %,
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& � &0 ��2&1 ��4&2 ��6&3

% � �2%1 ��4%2 ��6%3:
(55)

The coefficients &n and %n in turn are taken to depend only
on � � �x, so that each derivative with respect to x
increases the power of � by one. All of these assumptions
can be justified a posteriori by showing that they are the
simplest ones which lead to a consistent approximate
solution of the differential equations. This procedure yields
the following set of inhomogeneous differential equations
for &n and algebraic equations for %n (where now 0 �
d=d�),

&00
0 �

1

2
sin2&0 (56)

%1 �
1

4
�cos2&0 � 1� (57)

&00
1 � &1 cos2&0 �

1

2

�
%1 �

1

6

�
sin2&0 �

1

6
&IV0 (58)

%2 �
1

24
�cos2&0 � 1� �

1

2
&1 sin2&0 �

1

6
�&00
0 �
2

�
1

4
%1 �

1

2
%21 �

1

12
%00
1 (59)
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&00
2 � &2 cos2&0 �

�
�&21 �

1

2
%2 �

1

12
%1 �

1

60

�
sin2&0

� �%1&1 �
1

6
&1� cos2&0 �

1

30
&VI0

�
1

3
%1&

IV
0 �

1

3
%001&

00
0

�
2

3
%01&

000
0 �

1

6
&IV1 (60)

%3 � �

�
1

2
&21 �

1

120

�
cos2&0 �

�
1

2
&2 �

1

12
&1

�
sin2&0

� %1%2 �
1

120
�
1

10
&00
0&

IV
0 �

1

30
�&000
0 �
2

�
1

4
%2 �

1

12
%002 �

1

6
%31 �

1

3
&00
0&

00
1

�
1

12
�%0
1�
2 �

1

6
%1%001 �

1

120
%IV1 �

1

24
%1

�
1

2
%1�&

00
0 �
2 (61)
&00
3 � &3 cos2&0 �

�
1

6
&2 � %1&2 � %2&1 �

2

3
&31 �

1

30
&1 �

1

6
%1&1

�
cos2&0 �

�
2&1&2 �

1

280
�
1

6
&21 �

1

12
%2 �

1

2
%3

� %1&21 �
1

60
%1

�
sin2&0 �

1

140
&VIII0 �

4

15
&00
0 �&

000
0 �
2 �

2

15
�&00
0 �
2&IV0 �

1

2
%001&

IV
0 �

1

3
%000
1 &

000
0

�
2

15
%1&

VI
0 �

2

5
%01&

V
0 �

1

10
%IV1 &

00
0 �

1

6
&IV2 �

1

3
%00
2&

00
0 �

2

3
%0
1&

000
1 �

2

3
%01&

000
1 �

1

3
%1&

IV
1 �

2

3
%02&

000
0

�
1

3
%1&

IV
1 �

2

3
%02&

000
0 �

1

3
%2&

IV
0 �

1

3
%001&

00
1 �

1

30
&VI1 � %1%

00
1&

00
0 � 2%1%

0
1&

000
0 �

1

2
%21&

IV
0 � �%01�

2&00
0

(62)
In spite of their frightening appearance, it is not too hard to
solve these equations recursively in the order in which they
have been written down here. Our analytical results for
baryon number 1 are (sech� � 1= cosh�)
&0 � 2 arctane� %1 � �
1

2
sech2 � &1 �

1

8
sinh� sech2 � %2 � �

1

6
�sech2 �� sech4 ��

&2 � �
1

1152
sinh��23 sech2 �� 122 sech4 �� %3 � �

1

1440
�252 sech2 �� 1225 sech4 �� 1061 sech6 ��

&3 � �
1

691200
sinh��2621 sech2 �� 108092 sech4 �� 90456 sech6 ��

(63)
In the course of this calculation, we had to decide what to
do with the homogeneous solution of the differential equa-
tions for &n. Physically, they reflect the fact that there is a
flat direction in function space due to the breaking of
translational invariance by the baryon. We have made the
choice that & is odd under �! ��, a requirement which
fixes the position of the baryon in space and leads to a
unique solution of the differential equations.
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We see that the leading order results (keeping only &0)
agree with the sine-Gordon theory, whereas the higher
order corrections yield systematic corrections to it.
Inserting Eqs. (63) into Eqs. (55), the scalar and pseudo-
scalar potentials can be written as a power series in�2, i.e.,
the ratio of pion mass to physical quark mass (remember
that we have chosen units such that m � 1), with smooth
coefficient functions depending only on �x.

Inserting the results (63) into the expression for the
energy density (53) and integrating over dx, we finally
get the following chiral expansion for the baryon mass in
the NJL2 model,

MB

N
�
2�
�

�
1�

1

36
�2 �

1

300
�4 �

1

588
�6 � O��8�

�
(64)

Because of the values of the coefficients, the corrections
are numerically small even for �=m� 1. We see no diffi-
culty in principle to push this calculation to higher orders,
but the number of terms appearing in intermediate steps of
the calculation increases rapidly. It then becomes increas-
ingly difficult for Maple to handle and simplify the lengthy
expressions.

IV. SUMMARY AND CONCLUSIONS

The purpose of this work was to begin a systematic study
of massive Gross-Neveu models in 1� 1 dimensions. As a
warm-up for a comprehensive study of the phase diagram
of these models, we have reconsidered the issue of baryons.
Two different strategies turned out to be successful for the
massive discrete chiral GN model and the massive con-
tinuous chiral NJL2 model, respectively.

In the case of the GN model, we simply guessed the
scalar potential for a Hartree-Fock calculation and proved
its self-consistency. Actually, the shape of the potential is
the same as in the massless limit, but for a different fermion
number. This was crucial for being able to carry through
the calculation, since potentials for which one can solve the
Dirac equation analytically are extremely rare. The same
calculation in a somewhat different framework has already
been done some time ago [12]; however, the decisive fact
that the result is self-consistent was apparently missed by
the authors. This baryon solution should be a good starting
point for studying hot and dense matter in the GN model,
generalizing our recent work in the chiral limit [6] to finite
bare quark masses.

Baryons in the NJL2 model are a totally different story:
In the chiral limit, they become massless, baryon number
has a topological meaning, and a Skyrme-type physical
picture is adequate. Here we applied a derivative expansion
105008
technique which allows us to bypass the cumbersome
Hartree-Fock procedure. Without explicitly solving the
Dirac equation, we have nevertheless obtained quantitative
results encoded in the first three correction terms beyond
the sine-Gordon limit. In effect, this procedure can be
regarded as a kind of bosonization where a chiral angle
field & and a radial field % carry all the dynamical infor-
mation. The emergence of the Skyrme picture is put on
very solid grounds in this case. The small parameter which
governs the expansion of potentials and baryon masses is
the ratio of pion mass to dynamical quark mass, whereas
the bare coupling constant and the bare quark mass dis-
appear in the process of renormalization.

Unfortunately, it is unlikely that this method carries over
to higher dimensions. The fact that the size of the baryon
increases like the inverse pion mass in the NJL2 model was
instrumental here, but is not expected to hold in more than
one space dimension. Nevertheless, we hope that our re-
sults are of some use to test algorithms or study questions
related to chiral perturbation theory with baryons.

Finally, let us comment on the relationship between the
GN model and quasi-one-dimensional condensed matter
systems. As is well known and has recently been re-
emphasized by us [6], the GN model can serve to describe
systems like the Peierls-Fröhlich model, one-dimensional
superconductors, or conducting polymers. Does the step
from the massless to the massive GN model have any
analogy as well? The answer is yes—it is the transition
from systems with a two-fold degenerate ground state to
nondegenerate systems. The prime example is perhaps the
step from trans-polyacetylene to cis-polyacetylene.
Following the work of Brazovskii and Kirova [19], a
number of studies have been devoted to the existence of
polarons, bipolarons and excitons in such doped, nonde-
generate polymers (doping changes the number of elec-
trons in the valence band), see the reprint volume [20]. We
can compare these studies to our results in Sec. II for N �
2 (there is no flavour in the condensed matter case, only
two spin states). Thus, the bipolaron corresponds to our
� � 1 case, the polaron to � � 1=2, and indeed for these
values the mathematics of the condensed matter continuum
models is identical to our calculation. In the polymer case,
one also considers states with one electron in the negative
and positive energy valence levels, an exciton. As a matter
of fact, our calculation can be repeated for arbitrary occu-
pation fractions �
 for these two discrete levels, preserving
self-consistency. Such states would correspond to heavier,
excited baryons in the GN model, with fermion number
N��� � �� � 1� and an admixture of antiquarks. If the
baryon number vanishes (�� � 1� ��), one could per-
haps talk about ‘‘baryonium’’ as the analogue of an
exciton.
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