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Consistent interactions of the 2� 1 dimensional noncommutative Chern-Simons field
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We consider 2� 1 dimensional noncommutative models of scalar and fermionic fields coupled to the
Chern-Simons field. We show that, at least up to one loop, the model containing only a fermionic field in
the fundamental representation minimally coupled to the Chern-Simons field is consistent in the sense that
there are no nonintegrable infrared divergences. By contrast, dangerous infrared divergences occur if the
fermion field belongs to the adjoint representation or if the coupling of scalar matter is considered instead.
The superfield formulation of the supersymmetric Chern-Simons model is also analyzed and shown to be
free of nonintegrable infrared singularities and actually finite if the matter field belongs to the fundamental
representation of the supergauge group. In the case of the adjoint representation this happens only in a
particular gauge.
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I. INTRODUCTION

Models containing Chern-Simons (CS) fields interacting
with the matter are very important both for the clarification
of conceptual aspects as well as for the applications of field
theory. Partially due to the recent interest in noncommu-
tative theories, some properties of noncommutative CS
models have been studied [1–15]. As it happens with its
commutative non-Abelian counterpart, gauge invariance of
the noncommutative CS model demands the quantization
of the CS coefficient [7–10]. Up to one loop, this was
proven to hold for the U(1) pure gauge model and also
when minimally coupled fermions are included [11,12].
Some results indicated that the pure CS theory is actually a
free field model [13].

One problem that still deserves studies is the possible
occurrence of nonintegrable infrared singularities associ-
ated with the ultraviolet/infrared (UV/IR) mixing. As
known, such singularities jeopardize the perturbative series
and may lead to its breakdown. For the pure CS model the
absence of linear UV/IR mixing has been verified up to
one-loop order [14]. In the present work, we will examine
various couplings of the CS field to matter determining in
what circumstances they may be consistent field theories.
We begin by considering separately the models of fermi-
onic and scalar fields minimally coupled to the CS field.
For the case of fermionic fields transforming in accord with
the fundamental representation of the gauge group there
are no dangerous (nonintegrable) infrared singularities.
However, for the same model but with the fermionic field
belonging to the adjoint representation, there are linear
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nonintegrable singularities in the radiative corrections to
the gauge field two point vertex function. The situation is
still more complicated in the case of a scalar field mini-
mally coupled to the CS field. Here there are infrared
singularities both for the fundamental and the adjoint
representation. In the case of the fundamental representa-
tion linearly divergent infrared singularities come from the
contributions to the scalar field four point vertex function
whereas in the case of the adjoint representation there are
additional infrared singularities in the two point vertex
function of the gauge field.

The presence of infrared divergences in ordinary field
theory signals that one may be expanding around an un-
stable vacuum, i.e. around a point of nonanalyticity of the
exact solution. It may indicate the existence of nonpertur-
bative effects that cannot be reached by a power series
expansion in the perturbative coupling. In such case, two
possibilities may be envisaged. One may try to use resum-
mations to rearrange the perturbative series to get a better
behaved expansion [16]. A difficulty in this method is the
absence of a perturbative parameter to control different
orders of the new series. Another possible procedure is to
enlarge the theory with new interactions, which, hopefully,
will cancel the IR divergences leading to a new expansion
without the mentioned singularities. In the spirit of our
previous work [17] we shall follow the last possibility.

We then show that the inclusion of an adequate Yukawa
coupling may remove the divergence if both the fermionic
and the scalar fields belong to the fundamental representa-
tion. For the scalar fields in the adjoint representation there
are infrared singularities which persist even after the in-
clusion of fermions. More general interactions are needed
and thus we consider the noncommutative supersymmetric
CS model (see [18–20] for some discussion on the quan-
tum dynamics of the commutative supersymmetric CS
model) and prove for the matter superfield both in the
fundamental and in the adjoint representations that, up to
one loop, the model is free from dangerous infrared singu-
-1  2005 The American Physical Society



ASANO et al. PHYSICAL REVIEW D 71, 105005 (2005)
larities and renormalizable. However, for the matter super-
field in the adjoint representation the absence of divergen-
ces happens only in a particular gauge.

Our work is organized as follows. In Sec. II the non-
commutative models of scalar and fermionic fields mini-
mally coupled to the CS field are introduced and our
graphical notation is presented. The possible occurrence
of dangerous (quadratic or linear) infrared divergences is
investigated first in Sec. III, when the matter fields belong
to the fundamental representation, and then in Sec. IV,
when the fields are in the adjoint representation of the
gauge group. The superfield formulation of the noncom-
mutative CS field coupled to a supersymmetric matter is
considered in Sec. V. A general overview and comments of
our results are presented in Sec. VI.
II. SCALAR AND FERMIONIC MATTER
MINIMALLY COUPLED TO THE CHERN-SIMONS

FIELD

In this section we shall present some results concerning
the coupling of matter to the CS field. For both cases of
scalar and fermionic matter fields, the pure gauge part of
the noncommutative action is given by

Sgauge �
Z
d3x

�
����

2

�
A� � @�A� �

2ie
3
A� � A� � A�

�

�
1

2

�@�A

���@�A
��

� @� �c � 	@�c� i�c � A� � A� � c�

�
; (1)

where a generic gauge fixing (
) and the corresponding
Faddeev-Popov ghost actions have been included. The
matter field actions are

Sscalar � �
Z
d3x	�D�’�y � �D�’� �m2’y’
; (2)

for the scalar field and

Sfermion � �
Z
d3x � � ���D� �M� ; (3)
Γ1µ =

ρ

µ

k1

Γµν =

k2

p2 νµp1

ν

Γµνρ =

FIG. 1. Vertices for the CS field coupled to matter. Ch
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for the fermionic field. In this action  denotes a two-
component Dirac field and the representation for the
gamma matrices is such that ���� � g�� � ������,
where ���� is the completely antisymmetric Levi-Cività
symbol. Throughout this work we shall use the metric
g11 � g22 � �g00 � 1. Furthermore, to avoid possible
unitarity problems [21] we shall keep the noncommutativ-
ity parameter �0i � 0.

In the above expressionsD�O is the covariant derivative
of the field O and it is given by

D�O � @�O� ieO � A�; (4)

D�O � @�O� ie	A�;O
�; (5)

if the field O belongs to the fundamental and to the adjoint
representation, respectively (the Moyal commutator is de-
fined as 	A�;O
� � A� �O�O � A�). Except for Sec. V
in this work we will employ the Landau gauge by taking
the limit 
! 0.

A Feynman graph representation for the models de-
scribed above consists of wavy, continuous, dashed, and
dotted lines associated with the gauge field, fermionic,
scalar, and ghost propagators,

����k� �
����k

�

k2
; (6)

� �k� �
�i

�ik6 �M
; (7)

�’�k� �
�i

k2 �m2
; (8)

�c�k� �
i

k2
; (9)

respectively, and of the vertices (see Fig. 1):

���� � 2ie���� sin�k ^ p�; (10)

�1� � �2ek� sin�k ^ p�: (11)
µ

k + p
Γ3µ =

k1

k

Γϕψ =

Γ2µ =
µ

p1

k2

p2

arges flow in the opposite direction to the indicated.
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The graphical correspondence for the other vertices
depends on the representation. To distinguish the same
vertex in the fundamental and adjoint representations we
include an additional index F and A, respectively. Thus, to
the trilinear scalar-gauge field vertex, indicated by �2� in
Fig. 1, corresponds

�F2� � �ie�2k� p��e
�ik^p; (12)

for the fundamental representation and

�A2� � 2e�2k� p�� sin�k ^ p�; (13)

for the adjoint representation. Using this convention the
other vertices are

�F�� � �2ie2g��e�ik1^k2 cos�p1 ^ p2�; (14)

�A�� � 4ie2g�� sin�k1 ^ p1� sin�k2 ^ p2� � �p1 $ p2�;

(15)

�F3� � �e��eik^p; (16)

�A3� � 2ie�� sin�k ^ p�: (17)

From these rules, the ultraviolet degree of superficial
divergence of a generic diagram � turns out to be

d��� � 3� NA � N �
1

2
N’ �

1

2
Nc; (18)

where NA, N’, N , and Nc indicate the numbers of gauge,
scalar, fermionic, and ghost external lines of � (up to one
loop Nc � 0).
k

p

a

c

p
k + p

e
FIG. 2. One-loop corrections to the ga
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A simplifying property shared by these models is the
cancellation of the pure gauge contributions. Thus, when
computing the corrections to the gauge field two point
vertex function, one finds that the diagrams in Figs. 2(a)
and 2(b) mutually cancel [14].

Concerning the possibility of the appearance of non-
integrable infrared singularities special care should be
given to graphs with d���> 0. They can occur in the two
point vertex functions of the basic fields, in the three point
vertex function hTA�’y’i, and in the four point vertex
function hT’y’y’’i. In what follows we will restrict our
attention to the investigation of the possibility of the oc-
currence of nonintegrable infrared singularities.
III. FUNDAMENTAL REPRESENTATION

Let us begin our analysis by considering first the case of
the fundamental representation. In this situation the one-
loop contributions to the two point functions come from
planar graphs and so do not induce infrared nonintegrable
singularities. Thus, up to one loop the model whose action
is Sgauge � Sfermion is renormalizable and free from danger-
ous UV/IR mixing.

For the scalar model described by the action Sgauge �
Sscalar we need to examine the contributions to the three and
four point vertex functions. We have the following:

(1) Three point vertex function. The relevant diagrams
are depicted in Fig. 3. Because of properties of the Levi-
Cività symbol, the divergent parts of the integrals associ-
ated with the graphs in Figs. 3(a)–3(c) actually vanish.

Furthermore, due to our gauge choice the graphs 3(d)
and 3(e) turn out to be only logarithmically divergent and
generate a mild (integrable) infrared divergence.
b

d

uge field two point vertex function.
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FIG. 3. One-loop corrections to the gauge-scalar field three point functions.
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(2) Four point vertex function hT’y’’y’i. There are
three types of diagrams as drawn in Figs. 4(a)–4(c). In the
Landau gauge, the diagrams in Figs. 4(a) and 4(b) are finite
but graph 4(c) presents a linear infrared divergence as can
be seen from its analytical expression

Fig :4c � �2e4ei�q^s�p^r�
Z d3k

�2#�3
����k�

k2

�
�����k� p� r��

�k� p� r�2
cos2	k ^ �p� r�
: (19)

Using cos2$ � 1
2 	1� cos�2$�
, we obtain the following

nonplanar part:

�Fig:4c�nplanar � �2e4ei�q^s�p^r�
Z d3k

�2#�3
k � �k� p� r�

k2�k� p� r�2

� cos	2k ^ �p� r�


�
ie4

2#j~p� ~rj
� finite term; (20)

where in the last line p ’ r. Of course, ‘‘finite term’’
designates the contributions that stay finite when p! r.
Although innocuous at this point the above infrared linear
divergence ruins the perturbative expansion as it is illus-
a

p r

q s
b

FIG. 4. One-loop contribution
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trated by the graph in Fig. 5, which presents a strong
nonintegrable singularity at k � p. To cancel such singu-
larity we enlarge the model by coupling a fermionic field to
the scalar field through the following Yukawa-like self-
interaction:

SYukawa � g
Z
d3x	 �  � ’y � ’� ’y �  �  � ’
:

(21)

The relative minus sign between the terms in this expres-
sion was chosen so that it provides a mechanism for the
cancellation of the infrared singularity and does not vanish
in the commutative limit. To see how this happens notice
that this interaction generates the vertex �’ indicated in
Fig. 1,

�’ � 2ig cos�k1 ^ k2 � p1 ^ p2�: (22)

Among the new diagrams produced by this new inter-
action we have the graph in Fig. 4(d) which gives the
nonplanar contribution
dc

s to the four point function.
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FIG. 5. Nonintegrable singularity generated by iteration of the graph in Fig. 4(c).
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�Fig4:d�nplanar � �2g2
Z d3k

�2#�3

�
�k � �k� p� r� �m2

	�k� p� r�2 �M2
�k2 �M2�

� cos	2k ^ �p� r� � p ^ r� q ^ s
;

(23)

from which we obtain the following divergent part as
p! r:

divergent part of �Fig4:d�nplanar � �
ig2

2#j~p� ~rj
(24)

so that, to cancel the divergence in �Fig:4c�nplanar, we must
set g � e2.

We can check that all one-loop additional diagrams
containing the vertex (21) do not generate nonintegrable
105005
singularities. Therefore, we may conclude that the model
whose action is

Sgauge � Sscalar � Sfermion � SYukawa (25)

is free from dangerous infrared divergences if g � e2.
IV. ADJOINT REPRESENTATION

Let us now examine the models introduced in the pre-
vious section but with the matter fields in the adjoint
representation. We begin the analysis by considering the
model with action Sgauge � Sfermion. In this case the graphs
contributing to the two point proper vertex functions are no
longer purely planar. Actually we have the following:

(1) Gauge field two point proper vertex function. The
relevant diagram is the graph in Fig. 2(c) which yields
#��f �p� � �4e2
Z d3k

�2#�3
Tr
�
��

i
�ik6 �M

��
i

�i�k6 � p6 � �M

�
sin2�k ^ p� � #��f;planar�p� � #��f;nplanar�p�; (26)

where the subscript f designates the fermionic contribution and the planar and nonplanar parts are (a �������������������������������������
M2 � x�1� x�p2

p
)

#��f;planar � �
ie2

#
�g��p2 � p�p��

Z 1

0
dx
x�1� x�

a
�
Me2

2#
����p�

Z 1

0
dx
1

a
(27)

and

#��f;nplanar�p� �
ie2

#
�g��p2 � p�p��

Z 1

0
dx
x�1� x�

a
e�a

����
~p2

p
�
ie2

#
~p� ~p�

~p2
Z 1

0
dx

�
a�

1������
~p2

p �
e�a

����
~p2

p

�
Me2

2#
����p�

Z 1

0
dx
1

a
e�a

����
~p2

p
; (28)

which diverges linearly as p! 0. To cancel this divergence we add scalar fields described by the action in Eq. (2) but with
mass m � M. We then have the contributions from the graphs in Figs. 2(d) and 2(e) which give

#��b �p� � �
ie2

4#

(
�g��p2 � p�p��

Z 1

0
dx

�1� 2x�2

a
�1� e�a

����
~p2

p
� � 4

~p� ~p�

~p2
Z 1

0
dx

�
1������
~p2

p � a
�
e�a

����
~p2

p
)
: (29)
As we see, this last expression presents the same infrared
divergence as in the fermion case. Thus, as the masses are
equal the two divergences cancel.

Let us now consider the one-loop corrections to the two
point vertex functions of the matter fields. Up to this point,
the relevant diagrams are depicted in Figs. 6(a)–6(c). In
the Landau gauge the integrands for the diagrams 6(b) and
6(c) vanish, so that the two point vertex function of the
scalar field does not introduce nonintegrable infrared sin-
gularities. Concerning the two point vertex function of the
-5
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fermion field, after a straightforward simplification, the
graph in 6(a) furnishes

  � 4ie2
Z d3k

�2#�3
k6 	i�k� p�(�

( �m


k2	�k� p�2 �m2�


� 	1� cos�2k ^ p�
; (30)

whose nonplanar part yields

  nplanar � 4e2
Z d3k

�2#�3
cos�2k ^ p�

�k2 �m2�
� finite term

� �
ie2

#
������
~p2

p e�m
����
~p2

p
� finite term: (31)

To keep things in perspective, we should recall that, be-
sides this divergence we need also to cancel the one
associated with the four point function hT’y’’y’i.
Before adding fermions this function receives a contribu-
tion from the diagram in Fig. 4(c). In the adjoint represen-
tation this graph gives

Fig:4c � �8e4
Z d3k

�2#�3
����k

�

k2
�����k� p� r��

�k� p� r�2
C

� �16e4
Z d3k

�2#�3
�k� p� r� � k

�k� p� r�2k2
C; (32)

where C is the trigonometric factor

C � 	sin�k ^ q� s ^ q� sin�k ^ s� � sin�k ^ q� sin�k ^ s

� s ^ q�
	sin�k ^ r� p ^ r� sin�k ^ p�

� sin�k ^ r� sin�k ^ p� p ^ r�
: (33)

As done in our study of the fundamental representation, we
investigate the possibility to cancel these divergences by
adding a Yukawa-like interaction. The structure of the
trigonometric factor in Eq. (33) suggests that one should
include the interaction

SYukawa;adjoint � g1
Z
d3xf	’y;  
� � 	’; 
�

� 	’y;  
� � 	’; 
�g: (34)

In fact, this interaction introduces a new vertex which will
still be represented by the last vertex in Fig. 1 but which
corresponds to
105005
�1’ � 4ig1	sin�k1 ^ p1� sin�k2 ^ p2�

� sin�k1 ^ p2� sin�k2 ^ p1�
: (35)

Because of this new vertex, there is one additional dia-
gram, Fig. 6(d), which provides the following contribution
to the two point vertex function of the fermion field

Fig :6d � 8g1
Z d3k

�2#�3
sin2�k ^ p�

k2 �m2
: (36)

As the nonplanar part of this graph is equal to

�Fig:6d�nplanar � �4g1
Z d3k

�2#�3
cos�2k ^ p�

�k2 �m2�

�
ig1

#
������
~p2

p e�m
����
~p2

p
; (37)

we see that the infrared singularity will cancel if g1 � e2.
Concerning the four point proper function of the scalar

field, notice that there is also a new diagram which topo-
logically is the same as the graph in Fig. 4(d) but whose
analytical expression is

Fig:4d� 16g21
Z d3k

�2#�3
Tr	� �k�� �k� p� r�
C

��32g21
Z d3k

�2#�3
�k � �k�p� r� �m2

	�k�p� r�2�m2
	k2�m2

C:

(38)

As g1 � e2 the two contributions, Eqs. (32) and (38), do
not cancel and a linear IR divergence persists. To remove
such divergence a further extension of the model is needed.
Taking into account these observations, in the next section
we will consider a superfield CS model.
V. THE SUPERFIELD CS MODEL

We begin our analysis by considering the 2� 1 dimen-
sional superfield CS model which is defined by the action
[22]

S � m
Z
d5z�A� �W� �

i
6
fA�; A(g� �D(A�

�
1

12
fA�; A(g� � fA�; A(g��; (39)

where
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W( �
1

2
D�D(A� �

i
2
	A�;D�A(
� �

1

6
	A�; fA�; A(g�
�

(40)

is a superfield strength constructed from the spinor super-
potential A�. This action is invariant under the infinitesi-
mal gauge transformations

+A� � D�K � i	A�;K
�; (41)

where K is a scalar superfield parameter. As a first step for
quantization, we eliminate this gauge freedom by choosing
the gauge fixing and associated Faddeev-Popov terms as
specified by the action

SGF�FP � �
m
2


Z
d5z�D�A���D(A(� �

1

2g2

�
Z
d5z�c0D�D�c� ic0 �D�	A�; c
��; (42)

so that the quadratic part of the action reads

S2 � �
1

2
m
Z
d5zA(

�
D�D( �

1



D(D�

�
A�

�
1

2g2
Z
d5zc0D�D�c: (43)

From this action we get the free gauge and ghost propa-
gators as being

hA��z1�A
(�z2�i �

i
4m�

	D(D� � 
D�D(
+5�z1 � z2�;

(44)

and

hc0�z1�c�z2�i � �ig2
D2

�
+5�z1 � z2�: (45)

The interaction part of the action determines three types
of vertices:

�3 � a3mA(�k1�A��k2�D�A(�k3� sin�k2 ^ k3�;

�4 � a4mA
(�k1�A

��k2�A��k3�A(�k4� sin�k1 ^ k2�

� sin�k3 ^ k4�;

�c � �
1

g2
c0�k1�D��A��k2�c�k3�� sin�k2 ^ k3�; (46)

where a3 �
2
3 and a4 �

1
3 . Instead of writing their explicit

values, we will retain the notations a3 and a4 to keep track
of the contributions of each vertex.
a b

FIG. 7. Superficially linearly divergent diagrams contribu
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To study the divergence structure of the model we shall
start by determining the superficial degree of divergence
d��� associated with a generic supergraph �. Explicitly,
d��� receives contributions from the propagators and, im-
plicitly, from the supercovariant derivatives. This last de-
pendence can be unveiled by the use of the conversion rule

D���k; -�D(��k; -� � k�( � C�(D
2��k; -� (47)

and the identity �D2�2 � �k2. Let V1 be the number of
pure gauge vertices containing one superderivative and Vc
the number of ghost vertices; let PA and Pc be the numbers
of gauge and ghost superpropagators and let ND be the
number of supercovariant derivatives that act on the exter-
nal lines after the usual D-algebra transformations. The
superficial degree of divergence is then

d��� � 2L�
1

2
�V1 � Vc� � PA � Pc �

1

2
ND; (48)

where L is the number of loops. As we are going to
consider Green functions of the gauge superfield only,
then Vc � Pc. Using this and the topological identity
relating the number of lines, the number of vertices and
the number of loops, the above formula can be rewritten as

d��� � 2�
1

2
EA �

1

2
ND; (49)

where EA denotes the number of external A lines.
At one loop, due to symmetric integration, the super-

ficially logarithmically divergent contributions are actually
finite. We have therefore to examine only graphs that are
potentially linearly divergent. They contribute to the two
point gauge superfield vertex function and are depicted in
Fig. 7. First notice that the ghost contribution in Fig. 7(c) is
the same as in noncommutative super-QED3 so that we just
quote the result from [23]

�2c � �
1

2

Z d3p

�2#�3
d2-1

Z d3k

�2#�3

�
sin2�k ^ p�

k2
A(��p; -1�A(�p; -1� � � � � ; (50)

where the ellipsis stands for finite terms. The second con-
tribution, which comes from the tadpole graph in Fig. 7(b),
c

ting to the two point function of the gauge superfield.
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is also easily evaluated giving

�2b �
3

2
a4�1� 
�

Z d3p

�2#�3
d2-1

Z d3k

�2#�3

�
sin2�k ^ p�

k2
A(��p; -1�A(�p; -1�: (51)

The evaluation of the graph in Fig. 7(a) is more compli-
cated as it involves two types of contractions distinguished
105005
by the fact that the two derivatives at the vertices act on the
same line [denoted by �a�, �b�, and �c�] or on different lines
[indicated by �a0�, �b0�, and �c0�]:

�2a � �a� � �b� � �c� � �a0� � �b0� � �c0�; (52)
where
�a� � m2a23
Z d3p

�2#�3
d2-1d2-2

Z d3k

�2#�3
sin2�k ^ p�hD�A(�k; -1�D�0A(0 ��k; -2�ihA(�p� k; -1�A�

0
���p� k�; -2�i

� A���p; -1�A(
0
�p; -2�;

�b� �
m2

2
a23

Z d3p

�2#�3
d2-1d2-2

Z d3k

�2#�3
sin2�k ^ p�hD�A(�k; -1�D�0A(0 ��k; -2�ihA(�p� k; -1�A(

0
���p� k�; -2�i

� A���p; -1�A�
0
�p; -2�;

�c� �
m2

2
a23

Z d3p

�2#�3
d2-1d

2-2
Z d3k

�2#�3
sin2�k ^ p�hD�A(�k; -1�D�0A(0 ��k; -2�ihA

��p� k; -1�A
�0
���p� k�; -2�i

� A(��p; -1�A
(0
�p; -2�; (53)

�a0� � m2a23
Z d3p

�2#�3
d2-1d2-2

Z d3k

�2#�3
sin2�k ^ p�hD�A(�k; -1�A�

0
��k; -2�ihA(�p� k; -1�D�0A(0 ���p� k�; -2�i

� A���p; -1�A(
0
�p; -2�;

�b0� �
m2

2
a23

Z d3p

�2#�3
d2-1d

2-2
Z d3k

�2#�3
sin2�k ^ p�hD�A(�k; -1�A

(0
��k; -2�ihA

(�p� k; -1�D�0A(0 ���p� k�; -2�i

� A���p; -1�A
�0
�p; -2�;

�c0� �
m2

2
a23

Z d3p

�2#�3
d2-1d

2-2
Z d3k

�2#�3
sin2�k ^ p�hD�A(�k; -1�A

�0
��k; -2�ihA

��p� k; -1�D�0A(0 ���p� k�; -2�i

� A(��p; -1�A
(0
�p; -2�: (54)

After straightforward D-algebra transformations we obtain

�a� � 8a23

Z
d2-

Z d3pd3k

�2#�6
Jk2A(��p; -�A(�p; -�;

�b� � 8a23

Z
d2-

Z d3pd3k

�2#�6
Jk2A(��p; -�A(�p; -�;

�c� � 4a23�
� 
2�
Z
d2-

Z d3pd3k

�2#�6
Jk2A(��p; -�A(�p; -�;

�a0� � 8a23

Z
d2-

Z d3pd3k

�2#�6
Jk2A(��p; -�A(�p; -�;

�b0� � 8a23

Z
d2-

Z d3pd3k

�2#�6
Jk2A(��p; -�A(�p; -�;

�c0� � 4a23

2
Z
d2-

Z d3pd3k

�2#�6
Jk2A(��p; -�A(�p; -�;

(55)

where

J �
1

32

sin2�k ^ p�

k2�p� k�2
: (56)
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FIG. 8. Coupling to matter: contributions to the two point
function of the gauge superfield.
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The final contribution of this graph is therefore

�2a �
9

8
a23


Z d3p

�2#�3
d2-

Z d3k

�2#�3

�
sin2�k ^ p�

k2
A(��p; -�A(�p; -�: (57)

Thus, collecting the results in (50), (51), and (57) we get
that the would-be divergent part of �2,

�Div2 �

�
9

8
a23
�

3

2
a4�1� 
� �

1

2

�Z d3p

�2#�3
d2-

�
Z d3k

�2#�3
sin2�k ^ p�

k2
A(��p; -�A(�p; -�; (58)

vanishes irrespective of the gauge parameter 
. This means
that the one-loop two point vertex function of the gauge
superfield is free from both UV and UV/IR infrared singu-
larities in any covariant gauge. As a matter of fact, using
arguments similar to those presented in [23] one can dem-
onstrate that all superficially logarithmically divergent
graphs are finite. We therefore conclude that in any gauge
the model is one loop finite.

Let us now consider the effect of the inclusion of matter
fields. We first examine the case in which a scalar super-
field in the adjoint representation couples to the CS super-
field through the action

SA �
Z
d5z

�
�$�D2 �M�$�

i
2
�g	 �$;A�
� �D�$

� gD� �$ � 	A�;$
�� �
g2

2
	 �$;A�
� � 	A�;$
�

�
:

(59)

With this modification the superficial degree of divergence
in Eq. (49) must be replaced by

d��� � 2�
1

2
�EA � E$� �

ND
2
; (60)

where EA and E$ are the numbers of the external A and $
lines, respectively. The more dangerous situations corre-
spond to linearly divergent contributions which are pos-
sible only if E$ � 2 or EA � 2. The addition of the action
(59) generates new contributions to the two point proper
vertex function of the gauge superfield. The corresponding
supergraphs are listed in Fig. 8 and the details of their
computation are the same as in the three dimensional
noncommutative CPN�1 model [24]. They give the follow-
ing contributions to the effective action:
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iSA8a�p� � �2g2
Z
d2-

Z d3k

�2#�3
I�k; p�

�

�
�k2 �M2�C�(A

���p; -�A(�p; -�

� �k�( �MC�(��D
2A���p; -��A(�p; -�

�
1

2
D�D�A���p; -��k�( �MC�(�A(�p; -�

�
(61)

and

iSA8b�p� � 2g2
Z d3k

�2#�3

�
sin2�k ^ p�

�k� p�2 �M2 C�(A
���p; -�A(�p; -�;

(62)

where

I�k; p� �
sin2�k ^ p�

�k2 �M2�	�k� p�2 �M2

: (63)

Although individually divergent the sum of iSA8a�p� and
iSA8b�p� is finite being equal to

iSA8 �p� � �2g2
Z
d2-

Z d3k

�2#�3
I�k; p��k�( �MC�(�

�

�
�D2A���p; -��A(�p; -�

�
1

2
D�D�A���p; -�A(�p; -�

�
; (64)

or equivalently,

SA8 �p� �
g2

16#

Z
d2-f�p�A(�p; -�	D2 � 2M
W0(��p; -�

�
g2

16#

Z
d2-f�p�	W�

0W0� � 2MW�
0 A�
; (65)

where

f�p� � �16#i
Z d3k

�2#�3
I�k; p� (66)
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FIG. 9. Coupling to matter: contributions to the two point
function of the matter field.
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and W�
0 � 1

2D
(D�A( is a linearized superfield strength.

As we see, these graphs originate nonlocal Maxwell and
CS terms in the effective action.

Let us now consider the two point function of the scalar
superfield. The one-loop contributing graphs are depicted
in Fig. 9; they are superficially linearly divergent. Notice
that, as before by reasons of symmetry, the would be
logarithmic divergences vanish and therefore all terms
which do not contain linear divergences are finite.

The UV leading part of the graph in Fig. 9(a), which
involves two vertices with three fields is

iS�1�A
$ �$

��
1

2
g2

Z d3k

�2#�3
Z
d2-1d2-2

sin2�k^p�

4mk2	�p� k�2�M2


� �D(D��
D�D(�+12D�1�D2�M�

�D(2+12	$��p;-1� �$�p;-2�� �$��p;-1�

�$�p;-2�
 (67)

and, after D-algebra transformations turns out to be

iS�1�A
$ �$

� 
g2
Z
d2-

$��p; -� �$�p; -�
m

Z d3k

�2#�3
sin2�k ^ p�

k2

� finite term: (68)

Notice that this gauge dependent contribution vanishes
only in the Landau, 
 � 0 gauge, as could be anticipated
from a rapid inspection of Eq. (67). Now, after trivial
D-algebra transformations the contribution from the graph
in Fig. 9(b) becomes
105005
iS�2�A
$ �$

� ��1� 
�g2
Z
d2-

$��p; -� �$�p; -�
m

�
Z d3k

�2#�3
sin2�k ^ p�

k2
� finite term: (69)

Differently from Eq. (68) the above result vanishes only in
the Feynman, 
 � 1, gauge where the propagator of the A�

superfield does not contain spinor derivatives. The sum of
Eqs. (68) and (69) vanishes only in the 
 � 1=2 gauge and
thus only in this gauge the model with the matter super-
fields in the adjoint representation is free from dangerous
UV/IR infrared divergences.

A more favorable situation occurs if the matter super-
field belongs to the fundamental representation of the
gauge group. In this case the matter action is

SF �
Z
d5z

�
�$�D2 �M�$�

ig
2
� �$ � A� �D�$

�D� �$ � A� �$� �
g2

2
�$ � A� � A� �$

�
; (70)

which implies the following form of the vertices after the
Fourier transform:

�F3 � �
ig
2
A��k1��D�$�k2� �$�k3�

�$�k2�D�
�$�k3��eik2^k3 ;

�F4 � �
g2

2
�$�k1�A��k2�A��k3�$�k4�eik1^k2�ik3^k4 :

(71)

We can easily calculate the contributions of graphs con-
taining these vertices to the two point function of the gauge
superfield. In fact, the D-algebra transformations are ex-
actly the same as in the adjoint representation, the only
differences in the analytical expressions being due to the
replacement of trigonometric factors by phases in the way
specified in the Eqs. (71). However, these phase factors do
not interfere with the calculations since both graphs turn
out to be planar. Their corresponding analytical expres-
sions are
iSF8a�p� � �
g2

2

Z
d2-

Z d3k

�2#�3
1

�k2 �M2�	�k� p�2 �M2


�
�k2 �M2�C�(A

���p; -�A(�p; -� � �k�( �MC�(�

� �D2A���p; -��A(�p; -� �
1

2
D�D�A���p; -��k�( �MC�(�A

(�p; -�
�

(72)

and

iSF8b�p� �
g2

2

Z d3k

�2#�3
1

�k� p�2 �M2 C�(A
���p; -�A(�p; -�: (73)

Their sum is also finite and equal to
-10
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iSF8 �p� � �
g2

2

Z
d2-

Z d3k

�2#�3
1

�k2 �M2�	�k� p�2 �M2

�k�( �MC�(�

�
�D2A���p; -��A(�p; -�

�
1

2
D�D�A���p; -�A(�p; -�

�
; (74)

the only difference with respect to Eq. (64) being the absence of the trigonometric factor.
We still have to examine the contributions to the two point vertex function of the scalar superfield. The relevant graphs

are again those drawn in Fig. 9 and in this case are totally planar. We get

iS�1�F
$ �$

� �
1

8
g2

Z d3k

�2#�3
Z
d2-1d

2-2
1

4mk2	�p� k�2 �M2

�D(D� � 
D�D(�+12D�1�D

2 �M�

�D(2+12	$��p; -1� �$�p; -2� � �$��p; -1�$�p; -2�
; (75)
which after D-algebra transformations becomes

iS�1�F
$ �$

�
1

4
g2


Z
d2-

$��p; -� �$�p; -�
m

Z d3k

�2#�3
1

k2

� finite term: (76)

The D-algebra transformations for the second graph are
simpler and yield

iS�2�F
$ �$

� �
1

4
�1� 
�g2

Z
d2-

$��p; -� �$�p; -�
m

�
Z d3k

�2#�3
1

k2
: (77)

For practical calculations we may use the method of di-
mensional reduction [25]: all tensor contractions appearing
in Feynman graphs are first realized in (2� 1) dimensions
and only the resulting scalar integrals are extended to D �
3� � dimensions. At higher orders this method may lead
to ambiguities and if necessary a different regularization
scheme should be employed. To our purposes, however, it
should be stressed that (76) and (77) are both IR finite and
vanish if dimensional reduction is employed.

Thus in any gauge the one-loop contributions to the two
point vertex function of the scalar superfield are IR finite.
This result singles out the fundamental representation as
the preferable one for the construction of the model.

It should be noticed that although absent in the one-loop
corrections a quartic self-interaction of the scalar super-
FIG. 10. The contribution to the two point function of the
matter field generated by the matter self-interaction.

105005
field may be induced at higher orders. In that situation for
renormalizability one should a fortiori introduce the cou-
pling

�
�
2

Z
d5z �$ �$ � �$ �$; (78)

which in its turn generates new one-loop graphs. In par-
ticular, for the two point function of the scalar superfield
we have the graph depicted in Fig. 10 which corresponds to

�2�
Z
d2-

Z d3p

�2#�3
Z d3k

�2#�3
1

k2 �M2 �D
2 �M�

� +11$��p; -� �$�p; -�; (79)

which after a trivial D-algebra transformation is equal to

�2�
Z
d2-

Z d3p

�2#�3
Z d3k

�2#�3
1

k2 �M2$��p; -�
�$�p; -�;

(80)

providing a finite mass renormalization for the scalar
superfield.
VI. CONCLUSIONS

In this work we have studied various models of matter
fields coupled to the CS field both in the fundamental and
in the adjoint representation of the U(1) noncommutative
gauge group. Special attention was given to the occurrence
of UV/IR mixing as it may generate nonintegrable infrared
singularities. We began by proving that the model describ-
ing a fermionic field minimally coupled to the CS field is
free from dangerous UV/IR mixing. On the other hand, the
model with only a scalar field also in the fundamental
representation and minimally coupled to the CS field
presents a linear infrared divergence in the one-loop con-
tribution to the four point vertex function of the matter
field. We proved that it is possible to cancel such diver-
gence by incorporating fermions interacting with the scalar
field via a noncommutative Yukawa-like Lagrangian. The
situations are more complicated if the matter fields belong
to the adjoint representation: to eliminate the UV/IR
-11
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mixing in the one-loop contributions to the gauge field
propagator it is necessary to consider a more general model
containing both scalar and fermionic fields minimally
coupled to the CS field. However, even with the addition
of a Yukawa interaction it was not possible to eliminate all
one-loop infrared divergences which are present in the two
point vertex function of the fermionic field and also in the
four point function of the scalar field. More general inter-
actions seemed to be necessary and also motivated by
results in supersymmetric gauge theories [23,24] we were
led to study a noncommutative CS superfield coupled to
matter. We first demonstrated that the pure gauge sector is
finite in an arbitrary gauge. The inclusion of matter brought
new features depending on the representation to which the
corresponding superfield belongs. For the matter superfield
in the fundamental representation of the gauge group all
105005
one-loop graphs with a positive superficial degree of di-
vergence are planar and are therefore finite in the context
of dimensional regularization. However, for the matter in
the adjoint representation we found that the absence of
dangerous UV/IR singularities in the two point vertex
function of the matter field happens only in a particular
gauge, namely, 
 � 1=2.
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