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Yang-Mills wave functional in Coulomb gauge
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We investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-
Popov determinant. We use a Gaussian wave functional multiplied by an arbitrary power of the Faddeev-
Popov determinant. We show, that within the resummation of one-loop diagrams the stationary vacuum
energy is independent of the power of the Faddeev-Popov determinant and, furthermore, the wave
functional becomes field independent in the infrared, describing a stochastic vacuum. Our investigations
show, that the infrared limit is rather robust against details of the variational Ansatz for the Yang-Mills
wave functional. The infrared limit is exclusively determined by the divergence of the Faddeev-Popov
determinant at the Gribov horizon.
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I. INTRODUCTION

Recently Yang-Mills theory in Coulomb gauge has be-
come the subject of intensive studies both on the lattice,
Refs. [1,2] and in the continuum, Refs. [3–7]. The
Coulomb gauge is a physical gauge and in this gauge
confinement is realized by the statistical dominance of
the field configurations near the Gribov horizon, which
gives rise to an infrared enhanced static color charge
potential.

For the calculation of static properties of continuum
Yang-Mills theory, the Schrödinger equation approach [8]
seems to be most convenient. In Refs. [5–7] the Yang-Mills
Schrödinger equation was approximately solved in
Coulomb gauge, using the variational principle. Different
Ansätze for the vacuum wave functional and different
renormalization conditions have been used, and different
infrared behaviors of the gluon and ghost propagators were
obtained. One might wonder, whether the different results
are a consequence of the different Ansätze for the wave
functional. To answer this question, in this paper we con-
sider a more general class of wave functionals, which
includes, in particular, the wave functionals previously
used in Refs. [5–7]. We will show, that the different
Ansatz used so far, have to yield the same unique infrared
behavior of the vacuum wave functional (at least to the
order considered). We will also show, that in the infrared
the wave functional becomes field independent, describing
a stochastic vacuum. Furthermore, the infrared limit of the
wave functional agrees with the exact vacuum wave func-
tional in D � 1� 1.
1For a point particle in a s state the wave function is of the
form ��r� � ��r�=r, where ��r� is the radial wave function and
the Jacobian is given by J � r2
II. THE VARIATIONAL ANSATZ

For the Yang-Mills vacuum we consider trial wave func-
tionals of the form

��A?� � J���A?���A?�; (1)

where
05=71(10)=105002(6)$23.00 105002
J�A?� �
Det��D̂i@i�

Det��@2�
(2)

is the Faddeev-Popov determinant, which for later conve-
nience has been normalized to J�A? � 0� � 1. Here D̂ �

@� Â? is the covariant derivative and Â? � A?aT̂a de-
notes the gauge field in the adjoint representation.
Furthermore ��A?� is a Gaussian wave functional defined
by

��A?� � N exp��S�A?��

S�A?� �
1

2

Z
d3x

Z
d3x0A?a

i �x�!ab
ij �x;x

0�A?b
j �x0�

(3)

with N � N ��;!� being a normalization constant to
ensure h j  i � 1. The Faddeev-Popov determinant
arises as Jacobian in the transformation from
‘‘Cartesian’’ coordinates Aai �x� to the ‘‘curvilinear coordi-
nates’’ A?a

i �x� satisfying the Coulomb gauge @iA?
i � 0,

and defines the metric in the space of transversal gauge
orbits A?

i �x�. Accordingly the scalar product in the space
of transversal gauge orbits is defined by

h� j �i �
Z
DA?J�A?���A?���A?�; (4)

where the integration should in principal be restricted to
the fundamental modular region [4,9]. The choice
!ab
ij �x;x

0� � �ij�ab!�x;x0� and � � 0 was used in
Refs. [5,6], while � � 1

2 was chosen in Ref. [7]. From
Eq. (1) it is seen, that for the latter choice��A?� represents
just the ‘‘radial’’ wave functional.1

We wish to study the dependence of the vacuum Yang-
Mills wave functional (1) on the power of the Faddeev-
Popov determinant �, which can take, in principle, any real
value as long as ��A?� is normalizable. The integral
kernel ! as well as the parameter � have to be determined
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by minimizing the expectation value of the energy

hHi �
Z
DA?J�A?���A?�H��A?�: (5)
             (a)                                                   (b)                

FIG. 1. Diagrammatic representation of the ghost self-energy.
(a) full, (b) in rainbow-ladder approximation. Throughout the
paper full and curly lines stand, respectively, for the full ghost
and gluon propagators. Furthermore, dots and fat dots represent,
respectively, bare and full ghost-gluon vertices.

(a)                                    (b)

FIG. 2. Leading order contribution to (a) hlnJ�A?�i (11) and
(b) to the curvature � (13).
III. MINIMIZATION OF THE ENERGY

Inserting the explicit form of the wave functional Eq. (1)
into Eq. (5) variation of the energy with respect to the
kernel ! yields the ‘‘gap equation’’:

�hHi

�!
� 2

�
�S
�!

�
hHi �

��
�S
�!

;H
��

� 0: (6)

Here the first term arises from the variation of the normal-
ization constant ��N =�! � N h�S=�!i� and f; g de-
notes the anticommutator. Minimization of the energy
hHi (5) with respect to the power � yields the condition

dhHi

d�
� 2hlnJ�A?�ihHi � hflnJ�A?�; Hgi � 0; (7)

where we have used dN =d� � N hlnJ�A?�i.
Consider now the structure of the Faddeev-Popov deter-

minant (2), which obviously satisfies lnJ�A? � 0� � 0.
Furthermore, by definition (2) we have

� lnJ�A?�

�A?a
i �x�

� �Tr�G�o;ak �x��; (8)

where

G � ��D̂i@i�
�1 (9)

is the inverse Faddeev-Popov operator and �0;a
k �x� �

�G�1=�A?a
k �x� is the bare ghost-gluon vertex [7]. Since

�0;a � T̂a (group generator in the adjoint representation)
and T̂a occurs inG only in the combination Â? � A?aT̂a it
is clear, that the quantity (8) has to be proportional to A?,
since trT̂a � 0. Therefore we find the representation

lnJ�A?��
Z
d3xd3x0Cabij �A

?��x;x0�A?a
i �x�A?b

j �x0� (10)

with some, not explicitly known functional Cabij �A
?�. Let

us stress, this representation is exact and does not rely on
an expansion in powers of the gluon fields.

Consider now the expectation value

hlnJ�A?�i � hTr�lnG�1 � ln��@2��i: (11)

In a diagrammatic expansion this quantity is given by
closed ghost loops from which an even number of gluon
lines are emitted or absorbed, which are pairwise con-
tracted to gluon propagators hAAi. We use here the
rainbow-ladder approximation (used also in [5–7]) which
consists in replacing the full ghost-gluon vertex in the one-
particle irreducible ghost self-energy by the bare one, see
Fig. 1. Within this approximation, in leading order of the
loop expansion (in terms of the full ghost propagator) the
quantity hlnJ�A?�i (11) is given by the 2-loop diagram
shown in Fig. 2(a). Note that this diagram contains only
105002
a single gluon propagator. Therefore, to leading order in
the loop expansion (in full ghost propagators) the expec-
tation value of Eq. (10) is given by

hlnJ�A?�i ’
Z
d3xd3x0hCabij �A

?��x;x0�ihA?a
i �x�A?b

j �x0�i:

(12)

Furthermore, to this order we can neglect terms of the form
h��C=�A?�A?i and h�2C=�A?�A?i and find from (10)
for the curvature in orbit space [7]

�abik �x;x
0� � �

1

2

�
�2 lnJ

�A?a
i �x��A?b

j �x0�

�

� �hCabij �A
?��x;x0�i; (13)

which is diagrammatically illustrated in Fig. 2(b). Note
that diagram (b) arises from (a) by removing the gluon
propagator hA?A?i [cf. Eqs. (12) and (13)]. To the consid-
ered order we can also replace C�A� in (10) by its expec-
tation value ���� yielding

lnJ�A?� � �
Z
d3xd3x0�abij �x;x

0�A?a
i �x�A?b

j �x0�: (14)

Inserting Eq. (14) into Eq. (7) we find

dhHi

d�
� �

Z
d3xd3x0�abij �x;x

0��2hA?a
i �x�A?b

j �x0�ihHi

� hfA?a
i �x�A?b

j �x0�; Hgi�: (15)

On the other hand for the Gaussian wave functional (1) and
(3) we have
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�S

�!ab
ij �x;x

0�
�

1

2
A?a
i �x�A?b

j �x0�; (16)

so that Eq. (6) becomes

2
�hHi

�!ab
ij �x;x

0�
� 2hA?a

i �x�A?b
j �x0�ihHi

� hfA?a
i �x�A?b

j �x0�; Hgi: (17)

Comparison of Eqs. (15) and (17) yields

dhHi

d�
� �2

Z
d3xd3x0�abij �x;x

0�
�hHi

�!ab
ij �x;x

0�
: (18)

Thus stationarity of the energy with respect to
!ab
ij �x�; �hHi=�! � 0 implies also stationarity with re-

YANG-MILLS WAVE FUNCTIONAL IN COULOMB GAUGE
2The ghost and Coulomb form factor, d�k� and f�k�, satisfy the
Schwinger-Dyson equations derived in Ref. [7] with ! replaced
by �.
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spect to �; dhHi=d� � 0. Let us emphasize, that Eq. (18)
is exact to leading order in the number of loops (i.e. to one-
loop order in the equation of motion, to two-loop order in
hHi).
IV. THE ENERGY FUNCTIONAL

The above obtained result [Eq. (18)] can be also imme-
diately inferred from the explicit expression of the expec-
tation value of the Yang-Mills Hamiltonian in the state (1),
which to leading order in the loop expansion (see above
and Ref. [7]] is given by
hHi � Ek � EB � EC (19)
Ek � �3�0�
N2
C � 1

2

Z
d3k

���k� � ��k��2

��k�

EB � �3�0�
N2
C � 1

2

Z
d3k

�
k2

��k�
�
NCg

2

8

Z d3k0

�2"�3
�3� �k̂ k̂0�2�

1

��k���k0�

�

EC � �3�0�
NC�N

2
C � 1�

16

Z d3kd3k0

�2"�3
�1� �k̂ k̂0�2� �

d2�k� k0�f�k� k0�

�k� k0�2
����k� � ��k�� � ���k0� � ��k0���2

��k���k0�
;

3Although the curvature (21) does not explicitly depend on !
it depends implicitly on ! via the ghost form factor d�k�.
where d�k� and f�k� are the ghost and Coulomb form
factors defined in Ref. [7] and � is the scalar curvature
defined in terms of the curvature tensor (13) by

tkn�x��abnl �x; y� � �abtkl�x���x; y� (20)

��k� �
NC
4

Z d3q

�2"�3
�1� �k̂ q̂�2�

d�k� q�d�q�
�k� q�2

(21)

with tkl�x� � �kl � @k@l=@2 being the transversal projec-
tor.2 Furthermore

��k� � !�k� � �2�� 1���k� (22)

is the inverse of the gluon propagator

hA?a
i �k�A?b

j ��k�i �
1

2
�abtij�k���1�k�: (23)

Note, that the curvature ��k� (21) is entirely determined by
the ghost form factor d�k� and does not depend on !�k�.
The energy (19) depends on � and !�k� only through the
combination ��k� � !�k� � �2�� 1���k�. From this
fact immediately follows, that Eq. (6) implies Eq. (7), so
we find again, that the wave functional (1) which mini-
mizes the energy is independent of �. In fact, since hHi
(19) depends on ! and � only through the combination
� � !� �2�� 1�� it suffices to minimize the energy
with respect to �. The resulting gap equation3 also de-
pends only on � and its solution is independent of �. This
shows, that the infrared behavior of the gluon propagator
hA?A?i (23) is independent of the power� of the Faddeev-
Popov determinant assumed in the wave functional (1).
Therefore we are free to choose � for our convenience, for
example, � � 1

2 . This choice has the technical advantage,
that ��k� � !�k�, which allows a straightforward appli-
cation of Wick’s theorem in the calculation of expectation
values.

In this context let us also mention that the choice � � 1
2

in Eq. (1) yields the wave function used by the present
authors in Ref. [7], while the wave function used in
Refs. [5,6] corresponds to the choice � � 0. In spite of
the different wave functions chosen in Refs. [5–7], the
same infrared behavior of the gluon propagator should be
obtained in one-loop order, as shown above, provided the
same renormalization condition is used. However, while
Refs. [5,6] find an infrared finite gluon propagator, we find
an infrared vanishing gluon propagator [7]. Two sources of
the different behaviors obtained in Ref. [7], and Refs. [5,6]
come to mind: (i) different choices of the renormalization
However, also the ghost form factor d�k� depends on ! only
through �. This dependence is, however, a higher order effect
and to one-loop order (in the equation of motion) ��=�! or
��=�� can be neglected. Then the gap equation �hHi=�� � 0
is exactly the one obtained in Ref. [7] with ! replaced by �.
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condition and (ii) different treatments of the curvature of
orbit space. In Ref. [7] we choose the so-called horizon
condition [9]

d�1�k! 0� � 0 (24)

as renormalization condition while Refs. [5,6] require the
kernel ! in the Gaussian wave functional to be infrared
finite !�k! 0� � const.4 Furthermore, while the curva-
ture of orbit space � (13) was fully included in Ref. [7], it
was completely neglected in [5] and ignored5 in the
Coulomb energy in the numerical calculations of
Ref. [6]. As will be shown in the next section ignoring
the curvature in the Coulomb energy will change the
infrared behavior of the wave functional. It was already
observed in Ref. [7], that the full inclusion of the curvature
is vital for the infrared limit of the theory. This is consistent
with the observation in Landau gauge, that in the
Schwinger-Dyson equations the ghost loop is by far more
important than the gluon loop [10].
V. THE YANG-MILLS WAVE FUNCTIONAL IN THE
INFRARED

With the relation (14) the wave functional (1) becomes

��A?� ’ e�
R
A?�A?��1=2�

R
A?!A?

: (25)

Furthermore, the solution of the gap equation Eq. (6) is
such, that in the infrared

��k! 0� � ��k! 0�; !�k! 0� � 2���k! 0�

(26)

holds. This is an extension of the relation ��k! 0� �
!�k! 0� found in Ref. [7] for � � 1

2 .
The relation (26) holds independent of the employed

renormalization condition as long as the curvature ��k� is
infrared divergent. Since the Faddeev-Popov determinant
vanishes on the Gribov horizon, which contains the infra-
red dominant field configurations, from Eq. (14) follows
that the curvature has, indeed, to be infrared divergent. The
condition (26) is, however, lost when the curvature is
neglected in the Coulomb energy as done in Refs. [5,6].
Given the infrared singular behavior of ��k! 0� the con-
dition (26) implies that for � � 0 (in particular for � � 1

2
[7]) the variational kernal !�k� in the Gaussian Ansatz (3)
has to be infrared singular, while the choice � � 0 [5,6]
can tolerate an infrared finite !�k�. Nonetheless, indepen-
dent of the specific choice of �, by the first equation in
4InD � 2� 1 we find a self-consistent solution to the coupled
Schwinger-Dyson equations only when we impose the horizon
condition (24).

5In the formal part of [6] the curvature was fully included.
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(26), the infrared behavior of the gluon propagator (23) is
exclusively determined by the curvature � (13) in orbit
space, and since ��k� is infrared divergent the gluon propa-
gator (23) has to vanish in the infrared. Furthermore, with
the relation (26) the vacuum Yang-Mills wave functional
becomes in the infrared

��A?� � 1: (27)

In Ref. [11] this wave functional was assumed in the
infrared regime, for the sake of simplicity. We have thus
shown that, to one-loop order, Eq. (27) is the correct wave
function in the infrared. The infrared wave functional
��A?� � 1 suggests that gauge fields at distant positions
x;x0; jx� x0j ! 1 are completely uncorrelated. However,
one should keep in mind that the space of gauge orbits is
curved due to the presence of the Faddeev-Popov determi-
nant in the integration measure. Indeed, from Eq. (14) and
(27) it follows that in the infrared limit the vacuum expec-
tation values of the gauge fields are given by the ‘‘Gaussian
ensemble’’

h� � �i �
Z

DA?J�A?� � � � �
Z
DA? � � � e�

R
A?�A?

;

(28)

so that we obtain for the gluon propagator

hA?�x�A?�x0�ijjx�x0j!1 � ��1�jx� x0j�; (29)

which agrees with our previous result, see Eq. (23) and
(26), i.e. the infrared behavior of the gluon propagator is
exclusively determined by the curvature � and not by the
kernel ! in the Gaussian Ansatz, Eq. (3). In Ref. [7] it was
found, in the so-called angular approximation, that ��k!
0� � 1=k, so that the gluon propagator, Eq. (29) vanishes in
the infrared. From the physical point of view the static
gluon propagator represents (in momentum space, up to a
factor of 2) the inverse of the (single) gluon energy. Thus
the infrared vanishing gluon propagator (29) implies an
infrared diverging gluon energy and hence the absence of
free gluons in the infrared, which is a signal of confine-
ment. Let us also emphasize that within the present ap-
proach the potential between static color charges is not
given by the static gluon propagator but instead by the so-
called Coulomb kernel

F�x;x0� � g2hG��@2�Gi�x;x0�; (30)

where G denotes the ghost propagator (9) (see Ref. [7] for
more details). Resorting to the angular approximation it
was found in Ref. [7] that this kernel behaves in the
infrared (k! 0), indeed, like F�k� � 1=k4 and thus pro-
duces a linear rising confinement potential. Thus the con-
finement property of static color charges is determined by
the infrared behavior of the ghost rather than gluon propa-
gator. In this context it is worth mentioning that also in
-4
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Landau gauge the confining properties are encoded in the
ghost propagator [12].
VI. YANG-MILLS THEORY IN D � 1� 1

Let us test the above result in 1� 1 dimension, where
Yang-Mills theory can be solved exactly on a torus and
reduces to quantum mechanics in curved space.
Implementing the Coulomb gauge @1A1 � 0, there is
only a constant gauge field A1�x1� � const left, which
can be diagonalized in color space by exploiting the resid-
ual global gauge freedom U, not fixed by @1A1 � 0.
Defining the remaining quantum mechanical degree of
freedom, a, by

gA1L � gLAa1
+a

2
� U

a
2
+3Uy; (31)

where L is the spatial extension of the torus the Faddeev-
Popov determinant becomes [13]

J�a� � sin2a: (32)

The Gribov horizon occurs at a � n" and the fundamental
modular region is obviously given by 0 � a � ".
Furthermore the Yang-Mills Hamiltonian in the variable
a is given by

Hkin � �
g2L
8

1

sin2a

d
da

sin2a
d
da
: (33)

In one spatial dimension there is no magnetic field and no
dynamical gluon charge ��Âab1 �a

1 � 0�, since the gauge
field has only one (nonzero) color degree of freedom.
Accordingly, the Coulomb term of the Yang-Mills
Hamiltonian [8] vanishes in the absence of external color
charges.

With the Ansatz

�k�a� �
1									
J�a�

p �k�a� �
1

sina
�k�a�; (34)

which corresponds to the choice � � 1
2 in Eq. (1), the

Schrödinger equation H�k � Ek�k reduces to

�
g2L
8
�00
k �a� �

�
Ek �

g2L
8

�
�k�a�; (35)

whose solution is given by6

�k�a� � sin�ka�; Ek �
g2L
8

�k2 � 1�: (36)
6This solution was previously found in Ref. [14].
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In the continuum limit L! 1 only the vacuum state k � 1
survives �E1 � 0�, while all excited states k > 1 acquire an
infinite energy and are thus frozen out. The vacuum wave
function is given by (34) and (36)

�k�1�a� � 1; (37)

which is precisely the infrared limit of the vacuum Yang-
Mills wave functional in D � 3� 1 found above [see
Eq. (27)]. Note also that the radial wave function �k�a�
(36) vanishes on the Gribov horizon a � n" to compen-
sate for the vanishing of the Faddeev-Popov determinant
J�a� (32), just as in the D � 3� 1 dimensional case where
(for � � 1

2 ), the radial wave functional ��A?� (3) vanishes
in the infrared due to the infrared divergence of !�k! 0�.
VII. SUMMARY AND CONCLUSIONS

We have studied the variational solution of the Yang-
Mills Schödinger equation in Coulomb gauge for a class of
wave functionals (1) consisting of a Gaussian and an
arbitrary power ( � �) of the Faddeev-Popov determinant.
We have found, that up to one loop in the gap equation (i.e.
two loops in the energy) the stationary solution is indepen-
dent of this power �. The same is true for the transversal
gluon propagator (23) which is exclusively determined by
the self-consistent solution � of the gap equation
�hHi=�! � 0. This solution � is independent of the
choice of �. Different choices of � will lead to different
kernels ! (with possibly different infrared behaviors) in
the wave functional (3). But this will not affect the gluon
propagator (23). Furthermore in the infrared the Yang-
Mills vacuum wave functional becomes field independent
describing a stochastic vacuum, in which color cannot
propagate over large distances. The infrared limit of the
wave functional becomes exact in D � 1� 1.

Our investigations show that the infrared behavior of
Yang-Mills theory in Coulomb gauge is rather robust with
respect to changes in the variational Ansätze for the wave
functional as long as the curvature in orbit space induced
by the Faddeev-Popov determinant is properly included.
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