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Quantized gauge-affine gravity in the superfiber bundle approach
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The quantization of gauge-affine gravity within the superfiber bundle formalism is proposed. By
introducing an even pseudotensorial 1-superform over a principal superfiber bundle with superconnection,
we obtain the geometrical Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST transformations of the
fields occurring in such a theory. Reducing the four-dimensional general affine group double-covering
GA�4;R� to the Poincaré group double-covering ISO�1; 3� we also find the BRST and anti-BRST
transformations of the fields present in Einstein’s gravity. Furthermore, we give a prescription leading
to the construction of both BRST-invariant gauge-fixing action for gauge-affine gravity and Einstein’s
gravity.
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I. INTRODUCTION

One of the most outstanding problems in modern theo-
retical physics is to construct a consistent theory of quan-
tum Einstein gravity. Several models have been proposed
(for a review see e.g. Ref. [1] and references therein),
however none of these models, both renormalizable and
unitary, has been found. This is basically due to the dimen-
sionful nature of the gravitational coupling constant [2]
which destroys the predictivity of quantum Einstein grav-
ity, i.e. it is impossible to have a renormalizable theory.

On the other hand, a serious progress has been achieved
by Ne’eman and Šijački [3] for solving this problem. They
proposed a model for quantum gravity that reproduces
Einstein’s gravity at low energy with a fair possibility to
be renormalizable and unitary. However, it has been proved
by Stelle in [4] that a theory containing Einstein’s action
with term quadratic in the appropriate curvatures was
renormalizable, but violated unitarity. The failure of uni-
tarity in that model arises through the Riemannian condi-
tion which relates the connection to the metric (i.e. torsion
free and metric compatible). To avoid this difficulty one
has attempted to consider spacetime with torsion and thus
guaranteeing the independence of metric and connection
fields. In this context, the Poincaré gauge theory (PGT) has
been developed as a gravitational theory based on the
double-covering ISO�1; 3� � SL�2;C� � R4 of the
Poincaré group ISO�1; 3� � SO�1; 3� � R4 [5,6]. We note
that the connection is not an independent variable, since
the metricity condition is also preserved in this model [5–
7]. However, it has been confirmed that no PGT model can
be renormalizable if one imposes unitarity [8].

Another possibility for doing away with the Riemannian
condition consists to have gravitational gauge model in
which the Poincaré group acting on the local frames is
extended to a larger gauge group for frames, namely
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GA�4;R�. The resulting gravitational model is a metric-
affine gauge theory of gravity (MAG) which has been
suggested in Ref. [3]. The theory has a metric-affine space-
time with torsion and nonmetricity and incorporates gravi-
tational models like Einstein’s gravity. The model is based
on gauging the four-dimensional general affine group
GA�4;R� � GL�4;R� � R4 [9–11], or its double-covering
GA�4;R� � GL�4;R� � R4 [1,12,13]. The existence of a
double-coveringGL�4;R� of the general linear group
GL�4;R� has been realized in Ref. [14]. Here, the spinorial
double-covering exists only in infinite matrix representa-
tions and the corresponding infinite-component fields, the
so-called manifields [14,15]. The renormalizability of
MAG model has been proved [16,17], but unitarity has
not been properly checked to date.

Recently, in [18] the algebraic structure of Becchi-
Rouet-Stora-Tyutin (BRST) transformations [19] of a
metric-affine gauge gravity based on the Hamiltonian for-
malism has been analyzed. This approach leads to the same
BRST transformations obtained in [20,21] in the context of
the Batalin and Vilkovisky formalism [22]. Here, the au-
thors generalize the work developed by Okubo [23] where
a new type of BRST operator has been constructed only for
spacetimes with teleparallelism. They follow the rather
transparent exposition of van Holten [24] which departs
from the Hamiltonian formalism and replaces the Lagrange
multipliers for the first class constraints by ghost operators.

Moreover, BRST transformations equivalent to those
given in [18,20,21] can also be obtained geometrically.
Indeed, as shown in Ref. [25], we have used a superspace
formalism to determine geometrically the BRST and anti-
BRST algebra for gauge-affine gravity. Our method was
based on the introduction of GA�4;R�-superconnection
over a (4, 2)-dimensional superspace obtained by extend-
ing a metric-affine space with two anticommuting coordi-
nates. This superconnection represents the gauge fields and
their associated ghost and antighost fields occurring in
gauge-affine gravity. In particular, the introduction of the
-1  2005 The American Physical Society
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coordinate ghost and antighost fields leads to the construc-
tion of a basis, where the local expression of the super-
connection becomes more natural. By using this basis, we
have determined the BRST and anti-BRST transformations
from the structure equations by imposing horizontality
conditions on the supercurvature.

In the present paper, we discuss the quantization of
gauge-affine gravity theory by using the superfiber bundle
formalism, see e.g. Ref. [26] and references therein, in
analogy to what is realized for the case of super-Yang-
Mills theory [27,28] and the four-dimensional non-Abelian
topological antisymmetric tensor gauge theory, the so-
called BF theory [29]. In section II, we show how the
various fields of gauge-affine gravity and their geometrical
BRST and anti-BRST transformations can be determined
via a principal superfiber bundle endowed with a super-
connection and an even pseudotensorial 1-superform in the
adjoint representation. Reducing the four-dimensional
general affine group double covering to the Poincaré group
double covering we also find the BRST and anti-BRST
transformations of the fields present in quantum Einstein
gravity. The obtained geometrical BRST and anti-BRST
transformations are nilpotent. In section III we first build a
gauge-fixing superaction for gauge-affine gravity as a
natural generalization of the one corresponding to the usual
Yang-Mills theory. Then, a gauge-fixing action is obtained
as the lowest component of the gauge-fixing superaction.
However, we also work in the same spirit of construction as
in [27–29] for building the gauge-fixing action for quan-
tum Einstein gravity. Section IV is devoted to concluding
remarks.
II. GEOMETRICAL BRST AND
ANTI-BRST ALGEBRA

Let P�M;Gs� be a principal superfiber bundle with
superconnection �. The base space M is the four-
dimensional metric-affine spacetime and the structure
group Gs is the direct product of the general linear group
double-covering GL�4;R� with the general affine group
double-covering GA�4;R� as well the two-dimensional old
translation group S0;2. We consider P as being globally
trivial with respect to S0;2. This will be related to the fact
that the BRST and anti-BRST transformations are defined
globally.

The Lie superalgebra gs of the structural Lie supergroup
Gs is given by
gs � gl�4;R� � ga�4;R� � s0;2: (1)
1Here (ad) means adjoint representation.
Let �T���f�;��1;...;4g, �Tab�fa;b�1;...;4g,�Pb�fb�1;...;4g, and
�F��f��1;2g be the generators of GL�4;R�, GA�4;R�, and
S0;2, respectively. They satisfy the following commutation
104033
relations

�T�"; T
�
�	 � �����

�
���" 
 ��"����

�
��T

�
� ;

�Tab; T
c
d	 � ��ad�

c
e�
f
b 
 �cb�

f
d�

a
e�Tef;

�Tab; Pc	 � �ac�
d
bPd;

�Pa; Pb	 � �Tab; T
�
�	 � �Pa; F�	 � 0;

�T��; Pb	 � �F�; T
�
�	 � �Tab ; F�	 � �F�; F 	 � 0:

(2)

Let � be an even 2-superform associated to the super-
connection � and # an even pseudotensorial 1-superform
of the type (ad, gs).

1 The introduction in P�M;Gs� besides
the usual superconnection� an even 1-superform# will be
related, as we will see later, to the fact that the imposed
constraints on the supercurvature � can be obtained by the
fact that the covariant differentiation of a pseudotensorial
1-superform # is tensorial.

In order to realize supercurvature constraints, we need to
introduce an even 1-superform generalized superconnec-
tion " such that

" � �
 #: (3)

At this point, let us mention that the introduction of the
generalized superconnection is related, on the one hand, to
the fact that the double-covering group Diff�4;R� of the
group of general coordinate transformations (GCT) (i.e.,
the group of diffeomorphisms) is realized through the
direct product of the general linear group double-covering
GL�4;R� with the translation group R4 as well a simply
connected Lie subgroup [15,30,31] and, on the other hand,
as we will see later, to the fact that the gauge-fixing action
for quantum Einstein gravity can be deduced from gauge-
fixing action for gauge-affine gravity by reducing the linear
connection to the symmetric Levi-Civita connection.

Acting the exterior covariant superdifferential D on "
we define then the generalized supercurvature � ( even 2-
superform) given by

� � D" � �
�; (4)

where the associated supercurvature � and � to � and #
are defined by � � D� and � � D#, respectively. They
satisfy the structure equations

� � d��
1

2
��;�	; (5)

� � d# � ��;#	; (6)

where d is the exterior superdifferential and �; 	 the graded
Lie bracket.

Let z � �zM� � �x�; &�� be a local coordinates system
on P, where �x����1;...;4 are the coordinates of the metric-
affine spacetime M and �&����1;2 are ordinary anticom-
muting variables. Upon expressing the generalized super-
-2
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connection " and the generalized supercurvature � as

" � dzM"M � dzM��M 
 #M�;

� �
1

2
dzN ^ dzM�MN �

1

2
dzN ^ dzM��MN 
�MN�;

(7)

we have

�MN � @M�N 
 �
1�mn@N�M � ��M;�N	; (8a)

�MN � @M#N 
 �
1�mn@N#M 
 ��N; #M	

� �
1�mn��M;#N	; (8b)

where m �j zM j is the Grassmann degree of zM. Note that
the Grassmann degrees of the superfield components �M,
#M, "M, �MN , �MN , and �MN are given by

j �M j�j #M j�j "M j� m;

j �MN j�j �MN j�j �MN j� m� n �mod2�;

since �, #, ", �, �, and � are even superforms.
Moreover, the generalized supercurvature is a tensorial

2-superform, in particular we have i�X�� � 0, where i
denotes the contraction of vectors with forms and X is a
vertical superfield in P. Using the fact that @� � @=@&� is
vertical, we obtain the following supercurvature equations

�� � 0; (9a)

��� � 0; (9b)

i.e.

�� � �� ; (10a)

��� � ���: (10b)

Furthermore, the gs-valued component superfields �M,
#M, �MN , and �MN are given by

�M � �abMT
b
a ����MT

�
� ��aMPa ���MF�;

#M � #abMT
b
a � #��MT

�
� � #aMPa � #�MF�;

�MN � �a
bMNT

b
a ���

�MNT
�
� ��a

MNPa ���
MNF�;

�MN � �a
bMNT

b
a ���

�MNT
�
� ��a

MNPa ���
MNF�: (11)

According to Eqs. (10) and (11) we find

�a
b�� � �a

b��; (12a)

�a
b� � �a

b� ; (12b)

��
��� � ��

���; (12c)

��
�� � ��

�� ; (12d)

�a
� � �a

� ; (12e)

�a
� � �a

� ; (12f)

��
� � ��

� ; (12g)

��
- � ��

- : (12h)
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The components ��
MN associated to F� give the

S0;2-generalized supertorsion

��
MN � ��

MN 
��
MN: (13)

According to (12g) and (12h) supplemented with the con-
straint

��
�� � 0;

we find then that the S0;2-generalized supertorsion van-
ishes. Moreover, the potentials ��M being pure gauge, we
can then impose the following supercurvature constraint

��
MN � @M�

�
N 
 �
1�mn@N�

�
M � 0; (14)

and therefore we also have

��
MN � @M#

�
N 
 �
1�mn@N#

�
M � 0: (15)

In addition, we impose that the geometrical structure of
the principal superfiber bundle P�M;Gs� should incorpo-
rate the metric-affine structure of the spacetime M such
that for &� � 0, the components of the superfields ���

permit us to find the standard results concerning the torsion
and the curvature of metric-affine spacetime. This allows
us to have

��� � ���; (16)

and therefore

��
��� � �a

b�� � �a
�� � ��

�� � 0: (17)

Since the potentials ��M being pure gauge, we consider,
hereafter, that the components �M are gl�4;R� �
ga�4;R�-valued superfields and can be written as

� � dzM�M � dx��� � d&�.�; (18)

where

�� � �ab�T
b
a �����T�� ��a�Pa; (19a)

.� � .ab�T
b
a � .���T�� � .a�Pa: (19b)

Now, in order to derive the BRST structure of gauge-affine
gravity it is necessary to give the geometrical description
of the fields present in such theory. To this purpose, we
assign to the anticommuting coordinates &1 and &2 the
ghost numbers �
1� and ��1�, respectively, and ghost
number zero for an even quantity: either a coordinate, a
superform, or a generator. These rules permit us to deter-
mine the ghost numbers of the superfields (����, �ab�, �a�,
.ab1, .

a
b2) which are given by (0; 0; 0; 1;
1). So, the lowest

components ����j, �
a
b�j, �

a
�j, .

a
b1j, and .ab2j can be iden-

tified with the linear connection ����, the affine connection
!ab�, the vierbein ea�, the GA�4;R� ghost cab, and its anti-
ghost cab, respectively. The symbol ‘‘j’’ indicates that the
superfield is evaluated at &� � 0: Moreover, we introduce
-3
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the coordinate (diffeomorphism) ghost and antighost
superfields .�� by the following replacement

.��� � @�.
�
� �����.

�
�; (20a)

.a� � 0: (20b)

This permits us, on the one hand, to introduce the coor-
dinate ghost c� � .�1j and its antighost c� � .�2j and, on
the other hand, to justify the introduction of general linear
group double-covering GL�4;R� with generators (T��) in
the structure group Gs of the principal superfiber bundle
P�M;Gs�. Furthermore, knowing the expression of the
components of � we can determine the components of #
by using the relation (8b). Some components of � have
been determined from Eqs. (15) and (17). As trivial solu-
tions we have

#� � #�� � #a� � #ab� � #��� � 0: (21)

The determination of the other components of # such #ab�,
#���, and #a can be easily obtained from the remaining �

components. The latter, after straightforward calculations,
acquire the form

�a
b�� � .���a

b�� �D�f�ab�.
�
�g; (22a)

��
�� � 


1

2
�.��; .

�
 	�

�
���; (22b)

�a
b� �

�

2.��@�.

a
b if � �  ;

0 if � �  ;
(22c)

�a
�� � .���a

�� �D�f.
�
��a�g; (22d)

�a
� � 0; (22e)

where D� � @� � ���; 	 is the ga�4;R�-valued covariant
superderivative. It is worth noting that the anholonomic
and holonomic components of the superconnection ����
and �ab� are related by the supervierbein �a� as follows

���� � ��a �@��a� ��b��ab��: (23)

Therefore, the components ��
��� can be derived from the

components �a
b�� and �a

�� as follows

��
��� � .���

�
���: (24)

However, the operational representation for an infini-
tesimal S0;2-motion in P is given by

r�&�� � 1� &�Q�; (25)

where �Q����1;2 are the differential operators representing
the S0;2-generators (F�). According to the fact that the
superconnection is a pseudotensorial 1-superform in the
adjoint representation, we have
104033
�AM�x
�; 2� � &�� � r�&���AM�x

�; 2��r
1�&��: (26)

It is straightforward to compute (26), and we find

�AM�x
�; 2� � &�� � �AM�x

�; 2�� � &��Q�;�
A
M�x

�; 2��	

�
1

2
&�& �Q ;�Q�;�

A
M�x

�; 2��		:

(27)

By expanding �AM�x
�; &�� in power series of &�, we have

���� � ���� � &�A���� �
1

2
&�& B��� �; (28a)

�ab� � !ab� � &�Ma
b�� �

1

2
&�& Nab� �; (28b)

�a� � ea� � &�Ka�� �
1

2
&�& La� �; (28c)

.ab� � cab� � &�Rab�� �
1

2
&�& Sab� �; (28d)

.�� � c�� � &�V��� �
1

2
&�& W�

� �; (28e)

where B��� �, Nab� �, La� �, Sab� �, and W�
� � are anti-

symmetric with respect to the indices � and  . Evaluating
(27) at 2� � 0 and in view of Eq. (28), we obtain

A���� � �Q�;�
�
��	 � @��

�
��j; (29a)

Ma
b�� � �Q�;!

a
b�	 � @��

a
b�j; (29b)

Ka�� � �Q�; e
a
�	 � @��

a
�j; (29c)

Rab�� � �Q�; c
a
b�	 � @�.

a
b�j; (29d)

V��� � �Q�; c
�
� 	 � @�.

�
�j: (29e)

We also obtain similar relations for the other field compo-
nents

B��� � � �Q ;�Q�;����		 � @ @�����j; (30a)

Nab� � � �Q ;�Q�;!ab�		 � @ @��ab�j; (30b)

La� � � �Q ;�Q�; ea�		 � @ @��a�j; (30c)

Sab� � � �Q ;�Q�; c
a
b�		 � @ @�.

a
b�j; (30d)

W�
� � � �Q ;�Q�; c

�
� 		 � @ @�.

�
�j: (30e)

In analogy with the Yang-Mills case [28], we remark that
the operators Q1 and Q2 represent the BRST and anti-
BRST operators Q and Q, respectively.

Evaluating (8a) at &� � 0 and using (12), (20), (22),
(28), and (29) we obtain the following geometrical BRST
transformations
-4
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�Q;����	 � ����@�c
� 
 @�@�c

� 
 ����@�c
� 
 ����@�c

� 
 c�@��
�
��;

�Q;!ab�	 � @�cab � cdb!
a
d� 
 cad!

d
b� �!ab�@�c

� � c�@�!ab�;

�Q; ea�	 � ea�@�c
� � c�@�e

a
� 
 eb�c

a
b;

�Q; cab	 � c�@�c
a
b 
 cafc

f
b;

�Q; c�	 � c�@�c
�;

�Q; cab	 � Bab;

�Q; c�	 � B�;

�Q;Bab	 � 0;

�Q;B�	 � 0;

(31)
and also the geometrical anti-BRST transformations,
which can be derived from (31) by the following rules:
X ���! X, if X � ����, !ab�, ea�; X ���! X, if X � Q, c�, cab,
B�, Bab, and X � X, where

B� � B� � c�@�c� � c�@�c�;

Bab � Bab � c�@�cab � c�@�cab 
 cadc
d
b 
 cadc

d
b:

(32)

Let us note that the obtained BRST and anti-BRST
transformations are nilpotent, i.e.

Q2 � Q2 � �Q;Q	 � 0: (33)

Now, we apply the same geometrical framework to find
the BRST and anti-BRST transformations of the fields
occurring in quantum Einstein gravity. To this end, we
must reduce the general affine group double-covering
GA�4;R� to the Poincaré double-covering ISO�1; 3�. The
BRST transformations of the fields associated to Poincaré
double-covering have already be given in [32]. Reducing
GA�4;R� to ISO�1; 3� leads us to keep from (12) only

��
�� � ��

�� : (34)

On the other hand, Einstein’s theory is Riemannian, i.e.
it precludes the propagation of either torsion or nonme-
tricity. Only the coordinate metric field g�� propagates.
Here the coordinate metric field g�� is related to the
Minkowski metric .ab through the vierbein ea� as follows

g�� � .abe
a
�e

b
�; (35)

and can be written, in view of (28c), as a lowest component
of a superfield G�� which can be put in the form

G�� � g�� � &�H��� �
1

2
&�& E�� �;

where H��� and E�� � follow from (28c). This remark
permits us to find the BRST transformation of the coor-
dinate metric field g�� through the BRST transformation
of the vierbein ea�

�Q; g��	 � .ab�Q; ea�	eb� � .abea��Q; eb�	:
104033
The latter becomes

�Q; g��	 � g��@�c
� � c�@�g�� � g��@�c

�; (36)

by using (31) and the fact that cbd � 
cdb.
Moreover, according to (22b), (28e), and (34), we obtain

V��� � c��@�c
�
�; V�12 � V�21 � c�1@�c

�
2 � c�2@�c

�
1:

(37)

Therefore, making use of (29e) and keeping the same
identifications, we find the following BRST transforma-
tions [32]

�Q; c�	 � c�@�c
�; �Q; c�	 � B�; �Q;B�	 � 0:

(38)

We also obtain the geometrical anti-BRST transforma-
tions, which can be derived from (36) and (38) by the
following mirror symmetry of the ghost numbers: X ���!
X, if X � g��, X ���! X, if X � Q, c�, B�, and X ���! X.
III. GAUGE-FIXING QUANTUM ACTION

In the present section, we show how to construct a
BRST-invariant gauge-fixing quantum action for gauge-
affine gravity as the lowest component of a gauge-fixing
superaction. To this purpose, we propose starting with a
gauge-fixing superaction similar to that obtained in the
case of super-Yang-Mills theory as given in [27,28]

Ssgf �
Z
d4xLsgf;

Lsgf � �@1�2��@
���� � �@��2��@1��� � �@1�2��@1�2�:

(39)

We note first that it is the superconnection � which is
gl�4;R� � ga�4;R�-valued and represents the fields occur-
ring in quantized gauge-affine gravity. This allows us to
write the superaction Ssgf as follows

Ssgf � Stsgf � Sdsgf; (40)
-5
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where Stsgf and Sdsgf are associated to the tangent and
spacetime indices, respectively.

According to the fact that

@1�
a
b2j � Bab � �Q; cab	; @1�

a
b�j � �Q;!ab�	

and in view of (39), we can write the gauge-fixing action
associated to the tangent indices, Stgf � Stsgfj, in the fol-
lowing form

Stgf �
Z
d4xfBab@

�!ba� � @�cab�Q;!
b
a�	 � BabB

b
ag: (41)

Concerning the superaction Sdsgf we note that the antighost
c� of the general coordinate transformations and the aux-
iliary field B� are introduced through the relations (20a)
and (28e). Thus, the superaction Sdsgf can be obtained from
the prescription (39) by substituting the component super-
field ���2 with the antighost superfield (.�2 ) and using the
necessary contraction of the components ����. This gives

Sdsgf �
Z
d4x�@1.

�
2@

����� � @�.�2@1�
�
�� � @1.

�
2@1.

�
2 �:

(42)

Using the fact that

@1.
�
2j � B� � �Q; c�	

and

@1�
�
��j � �Q;����	;

we obtain

Sdsgfj � Sdgf

�
Z
d4x�B�@����� � @�c��Q;����	 � B�B��:

(43)

Then, it is quite easy to show that the gauge-fixing action,

Sgf � Stgf � Sdgf; (44)

is invariant with respect to the geometrical BRST trans-
formations. In fact, we have

�Q; Stgf	 �
Z
d4x�Bab�Q; @

�!ba�	 � �Q; @�cab	�Q;!
b
a�	�;

�Q; Sdgf	 �
Z
d4x�B��Q; @�����	 � �Q; @�c�	�Q;����	�;

(45)

and using the fact that the geometrical BRST operator Q
commutes with the differential operator we get

�Q; Sgf	 �
Z
d4xf@��Bab�Q;!

b
a�	 � B��Q;����	�g: (46)

From this, it follows that the Q invariance of Sgf is
guaranteed modulo a total divergence. So we have con-
structed the Q-invariant gauge-fixing action for gauge-
affine gravity theory [17,20].
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Furthermore, it is also interesting to construct the gauge-
fixing action for quantum Einstein gravity in analogy with
what is realized in super-Yang-Mills theory [27,28]. Let us
first remark that the expression (41) corresponds to the
gauge-fixing action Stgf associated to the tangent ISO�1; 3�
group where we should consider the BRST transformation
�Q;!ba�	 as in (31), see also Ref. [32]. To determine the
gauge-fixing action Sdgf associated to the diffeomorphisms
group, we proceed as below but we should substitute in
(39) the superfield components of the superconnection by
the dynamic fields occurring in quantum Einstein gravity,
namely, the antighost c� and the metric g�� which is
introduced by eg�� �

�������

g

p
g��, where g is the determinant

of g��, we obtain

Sdgf �
Z
d4x�B�@�eg�� � @�c��Q; eg��	 � B�B��; (47)

where the BRST transformation of the field eg�� is given by

�Q; eg��	 � @��c
�eg��� � eg��@�c� � eg��@�c�: (48)

In fact, knowing that eg�� �
�������

g

p
g��, we have

�Q; eg��	 � �Q;
�������

g

p
	g�� �

�������

g

p
�Q; g��	:

Then by using the fact that

�Q;
�������

g

p
	 �


1

2
�������

g

p �Q; g	;

�Q; g	 � gg���Q; g��	 � 2g@�c
� � c�@�g;

we have

�Q;
�������

g

p
	 � @��c

� �������

g

p
�;

and so we can easily derive the relation (48). Finally the
BRST-invariant gauge-fixing action Sdgf associated to the
diffeomorphisms group can be written as follows [32]

Sdgf �
Z
d4xfB�@�eg�� � @�c��@��c

�eg��� � eg��@�c�
� eg��@�c�� � B�B�g:

(49)

IV. CONCLUSION

In the present paper a geometric formulation of quan-
tized gauge-affine gravity has been provided using a super-
fiber bundle formalism with base space simply the metric-
affine spacetime and a structure group the direct product of
the general linear group double-coveringGL�4;R� with the
general affine group double-covering GA�4;R� as well the
two-dimensional old translation group S0;2. In this geomet-
rical framework, the gauge fields and their associated ghost
and antighost fields occurring in quantized gauge-affine
gravity have been described through a GL�4;R� �

GA�4;R�-superconnection. Furthermore, in order to realize
-6



QUANTIZED GAUGE-AFFINE GRAVITY IN THE . . . PHYSICAL REVIEW D 71, 104033 (2005)
supercurvature constraints we introduce over a principal
superfiber bundle an even pseudotensorial 1-superform
which permits us to introduce a generalized superconnec-
tion, and by applying the exterior covariant superdifferen-
tial this gives the generalized supercurvature. Then the
supercurvature constraints are determined by the fact that
the generalized supercurvature is an even tensorial 2-
superform which leads to the determination of the gauge-
affine gravity BRST and anti-BRST transformations. The
obtained BRST transformations are nilpotent and equiva-
lent to those given in [18,20,25]. Reducing the four-
dimensional general affine group double-covering
GA�4;R� to the Poincaré group double-covering
ISO�1; 3� we have also found the BRST and anti-BRST
transformations of the fields present in quantum Einstein
gravity. Moreover, we have shown how to construct the
gauge-fixing superaction for gauge-affine gravity in anal-
ogy with what is realized in super-Yang-Mills theory
104033
[27,28]. Its lowest component represents the gauge-fixing
action and is invariant under the geometrical BRST trans-
formations. By using the fact that the dynamic field occur-
ring in Einstein’s gravity is represented by the tensor
metric g�� and following the same spirit of construction
of the superaction as in [27,28] we have found the gauge-
fixing action for quantum Einstein gravity recovering then
the standard results [32].

ACKNOWLEDGMENTS

M. T. acknowledges support from the Alexander von
Humboldt Stiftung. He thanks Professor W. Rühl
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