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Structure formation constraints on the Jordan-Brans-Dicke theory
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We use cosmic microwave background data from WMAP, ACBAR, VSA and CBI, and galaxy power
spectrum data from 2dF, to constrain flat cosmologies based on the Jordan-Brans-Dicke theory, using a
Markov chain Monte Carlo approach. Using a parametrization based on � � 1=4!, and performing an
exploration in the range ln� 2 ��9; 3�, we obtain a 95% marginalized probability bound of ln� <�6:2,
corresponding to a 95% marginalized probability lower bound on the Brans-Dicke parameter !> 120.
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I. INTRODUCTION

Jordan-Brans-Dicke (JBD) theory [1,2] is the simplest
extended theory of gravity, depending on one additional
parameter, the Brans-Dicke coupling !, as compared to
general relativity. As Einstein’s theory is recovered in the
limit !! 1, there will always be viable JBD theories as
long as general relativity remains so too. As such, it acts as
a laboratory for quantifying how accurately the predictions
of general relativity stand up against observational tests.
The most stringent limits are derived from radar timing
experiments within our solar system, with measurements
using the Cassini probe [3] now giving a two-sigma lower
limit !> 40 000 (improving preexisting limits [4] by an
order of magnitude).

With precision cosmological data now available, par-
ticularly on cosmic microwave background (CMB) anisot-
ropies from the Wilkinson Microwave Anisotropy Probe
(WMAP) [5], it has become feasible to obtain complemen-
tary constraints from the effect of modified gravity on the
structure formation process, as suggested in Ref. [6]. That
paper focused on the way that ! alters the Hubble scale at
matter-radiation equality, which is a scale imprinted on the
matter power spectrum, in an attempt to identify how large
an effect can be expected. Subsequently, the expected total
intensity and polarization microwave anisotropy spectra in
the JBD theory were computed, and a forecast of the
sensitivity to ! of data from the WMAP and Planck
satellites carried out exploiting a Fisher matrix approach
[7].

In this paper we make a comprehensive comparison of
predictions of the JBD theory to current observational data,
using WMAP and other CMB data plus the galaxy power
spectrum as measured by the two-degree field (2dF) galaxy
redshift survey. We define JBD models in terms of eight
parameters, which are allowed to vary simultaneously. Our
paper is closest in spirit to work by Nagata et al. [8], who
considered a more general model, the harmonic attractor
model, which includes JBD as a special case. However
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their data set compilation was restricted to the WMAP
temperature power spectrum.

The constraint we will obtain is not competitive with the
very stringent solar system bound given above (though the
analysis of Ref. [7] indicates that a limit as high as 3000
might eventually be reached by the measurements of the
Planck satellite), but it is complementary in that it applies
on a completely different length and time scale. Such
constraints can therefore still be of interest in general
scalar-tensor theories where ! is allowed to vary; for
instance Nagata et al. [8] find that in some parameter
regimes of the harmonic attractor model the cosmological
constraint is stronger than the solar system one. In that
regard, our result is most comparable to cosmological
constraints imposed on ! from nucleosynthesis, which
give only a weak lower limit of !> 32 [9].

II. FORMALISM

A. Background cosmology

The Lagrangian for the JBD theory is

L �
m2Pl
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where the Brans-Dicke coupling ! is a constant, and �	t

is the Brans-Dicke (BD) field whose present value must
give the observed gravitational coupling. We have included
factors of mPl to define � as dimensionless.

The equations for a spatially flat Friedmann universe are
[1,2,10]
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where a	t
 is the cosmological scale factor, and � and p are
the energy density and pressure summed over all types of
material in the Universe.
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FIG. 1. Evolution of the BD field from early in radiation
domination to the present. It is just possible to see the evolution
of � increase as � domination sets in. The cosmological
parameters are ! � 200, H0 � 72, and �m;0 � 0:3 in units of
the standard cosmology critical density.

VIVIANA ACQUAVIVA et al. PHYSICAL REVIEW D 71, 104025 (2005)
The Universe is assumed to contain the same ingredients
as the WMAP concordance model [5], namely, dark en-
ergy, dark matter, baryons, photons and neutrinos. We
make the simplifying assumptions of spatial flatness,
dark energy in the form of a pure cosmological constant,
and effectively massless neutrinos whose density is related
to that of photons by the usual thermal argument. The
present value of � must correctly reproduce the strength
of gravity seen in Cavendish-like experiments, which re-
quires [2]

�0 �
2!� 4

2!� 3
; (4)

where here and throughout a subscript ‘‘0‘‘ indicates
present value. We will assume that the value of �0 in our
solar system is representative of the Universe as a whole,
though this may not be absolutely accurate [11]. We also
assume that the initial perturbations are given by a power-
law adiabatic perturbation spectrum.

When the Universe is dominated by a single fluid there
are a variety of analytic solutions known [12], where � is
typically constant during a radiation era, slowly increasing
during a matter era, and then more swiftly evolving as dark
energy domination sets in. However we need solutions
spanning all three eras and so will solve the equations
numerically, for which we use the integration variable N �
lna=a0. An example of the evolution is shown in Fig. 1.

The basic parameter set we use to build our cosmologi-
cal models contains the following parameters:

!
 Brans-Dicke coupling

H
0 present Hubble parameter �km s�1 Mpc�1�

�
B baryon density

�
C cold dark matter density
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A

-2
S curvature perturbation amplitude

n
S perturbation spectral index

�
 reionization optical depth

b
 galaxy bias parameter

where b2 � Pgg=Pmm is the ratio of the (observed) galaxy
power spectrum to the (calculated) matter power spectrum.
Other parameters are fixed by the assumptions above, and
the radiation energy density is taken as fixed by the direct
observation of the CMB temperature T0 � 2:725 K [13].

An important subtlety that must be taken into account is
that the extra terms in Eq. (2), plus the Cavendish-like
correction to the present value of �, means that the usual
relation between the Hubble parameter and density, used to
define the critical density and hence density parameters, no
longer applies. Generically, the extra terms require an
increase in the present value of � to give the same expan-
sion rate, the correction being of order 1=!. Because of
this subtlety, we define the density parameters �B;C by
dividing by the critical density for the standard cosmology,
meaning that the density parameters do not quite sum to
one for a spatially flat model.

Operationally, we proceed as follows. We seek a back-
ground evolution corresponding to a particular value of
h � H0=100 and of the present physical matter density. We
can assume the initial velocity of the BD field _� is zero
deep in the radiation era, which leaves us two parameters,
the early time value of� and the value of the cosmological
constant, to adjust in order to achieve the required values.
This is a uniquely defined problem, with the necessary
values readily found via an iterative shooting method.

B. Perturbation evolution

We carry out the evolution of density perturbations using
a modified version of the code DEFAST, based on CMBFAST

[14] and originally written to study quintessence scenarios
where the dark energy scalar field is minimally [15] or
nonminimally [16] coupled to the Ricci scalar. The archi-
tecture of DEFAST is based on the version 4.0 of CMBFAST,
although there has been a progressive code fork in the
subsequent versions. DEFAST takes as input the parameter
set described in the previous subsection, and returns the
microwave anisotropy spectra (for temperature and polar-
ization) and the matter power spectrum. A dynamical and
fluctuating scalar field, playing the role of the dark energy
and/or the BD field, is included into the analysis together
with the other cosmological components, following the
existing general scheme [17].

In order to bring the model description into the formal-
ism used by DEFAST, we redefine the BD field and coupling
according to

�2 � !�
m2Pl
2	

; � �
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which brings the Lagrangian into the form



FIG. 2. Marginalized 1D posterior distributions (solid lines) on
the base parameters as listed in Sec. II. Also displayed is the
mean likelihood of the binned posterior samples (dotted lines).
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where � is now a canonical scalar field nonminimally
coupled to gravity. We implement the cosmological con-
stant in the code by giving � a constant potential energy.

Our calculations include the effect of perturbations, with
the initial perturbations in � fixed by the requirement of
adiabaticity. The correction to the background expansion
rate from the dynamics of � is the most relevant effect on
the CMB power spectrum, appearing as a projection plus a
correction to the integrated Sachs-Wolfe (ISW) effect, as
discussed in detail in Ref. [16].

C. Data analysis

The data we use are taken from WMAP [18] and the 2dF
galaxy redshift survey expressed as 32 bandpowers in the
range 0:02< k< 0:15h�1 Mpc [19]. In order to incorpo-
rate the 2dF data, the galaxy bias parameter b is taken to be
a free parameter for which the analytic marginalization
scheme of Ref. [20] can be applied. We also consider the
effect of including the high-‘ CMB data from the Very
Small Array (VSA) [21], the Cosmic Background Imager
(CBI) [22], and the Arcminute Cosmology Bolometer
Array Receiver (ACBAR) [23].

Our present analysis does not include supernovae data.
Inclusion of the modification to the luminosity distance
from!would be straightforward. However the variation of
the gravitational coupling G means that supernovae can no
longer be assumed to be standard candles, and Ref. [24]
suggests that the effect from varying G dominates. Further,
inclusion of supernovae data may be particularly suscep-
tible to the possibility that the local value of � in the
vicinity of the supernova may not match the global cos-
mological value [11]. Nevertheless, it would be interesting
to investigate robust methods for including such data, also
in connection with alternative observational strategies [25].

We carry out the data analysis using the now-standard
Markov chain Monte Carlo (MCMC) posterior sampling
technique, by modifying the June 2004 version of the
COSMOMC program [26] to call DEFAST to obtain the spec-
tra. COSMOMC computes the likelihood of the returned
model and assembles a set of samples from the posterior
distribution. We take full advantage of COSMOMC’s parallel
architecture by running the code across 19 Sun V60x Xeon
2.8GHz processors. The Metropolis-Hastings algorithm is
run at a temperature of 1.3 in order to better sample the
non-Gaussian direction of our posterior distribution which
results from the degeneracy between H0 and ln�, both of
which have a strong effect on the angular diameter dis-
tance. The final chains are then cooled and importance
sampled [26]. It can be noted that for the purposes of
posterior sampling, we have parametrized the JBD cosmol-
ogy using ln� � � ln4! simply because it is more
straightforward to obtain the samples we need, while si-
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multaneously suppressing the possibility of jumping to
regions with !< 1. Specifically, we use a flat prior on
ln� 2 ��9;�3� where the lower cutoff has been adjusted
to the point where the likelihood function is no longer
sensitive to the effect of varying the Brans-Dicke parame-
ter and the �CDM model is thereby recovered. As usual,
this Jeffreys prior, which is defined here as a flat prior on
the logarithm of a parameter of unknown scale, has the
interesting property of invariance under scale reparametri-
zations [27]. For this reason it serves as a reasonable
substitute for working with a more desirable physical
parameter which could be identified to isolate and give a
linear response in the ISW effect, mainly responsible for
the upper bound on ln�.

The optical depth � is parametrized using Z �

exp��2��, where Z1=2 is the fraction of photons that
remain unscattered through reionization, since the combi-
nation ASZ is well constrained by the CMB.

The results that we present are based on around 100 000
raw posterior samples, and while the basic constraints can
be derived with significantly fewer samples, this large
number assures more robust constraints on the derived
parameter ! when we use importance sampling in order
to adjust for the change in prior density [26].

III. OBSERVATIONAL CONSTRAINTS

Turning first to the constraints on the basic parameter
set, from Fig. 2 we note the overall consistency of our
results with the current observational picture (see, for
example, Ref. [5] and a work by two of the current authors
of Ref. [28]), finding the 99% marginalized probability
regions to be
-3
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0:021<�Bh
2 < 0:027; 0:10<�Ch

2 < 0:15;

61<H0 < 80; 0:57<Z< 0:97;

0:92< nS < 1:07; 19< AS < 33:

(7)

Note that part of our allowed region lies outside the priors
assumed by Nagata et al. [8]. As usual for joint analyses of
CMB and galaxy power spectrum data, it is unnecessary to
impose a further constraint on H0.

The primary focus of our study has been to derive
constraints on the BD parameter for which, from the outset,
we have expected only to find a one-sided bound; the
situation can only become more interesting when both
the angular diameter distance and the recombination his-
tory become much better probed by the CMB. This expec-
tation is indeed confirmed by the data, as shown in Fig. 3 in
which we display the region of highest posterior density.
The lower panel detailing the posterior constraint on ! has
been obtained by importance sampling to correct for the
change in prior density when changing parameters from
−9 −8.5 −8 −7.5 −7 −6.5 −6 −5.5 −5
ln ξ

50 100 150 200 250 300 350 400 450 500
ω

FIG. 3. Marginalized 1D posterior distributions (solid lines) on
the BD parameter ln� (upper panel). Also displayed are the
derived importance sampled constraints (correcting for the
change in prior density) on the more familiar ! (lower panel,
no smoothing). We obtain a 95% marginalized probability bound
of ln� >�6:2, corresponding to a bound on the BD parameter
!> 120.
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ln� to ! (we note that the mean likelihood of the binned
posterior obtained from sampling ln� performs well for
putting a bound on !, demonstrating less sensitivity to the
details of the prior density).

We calculate the marginalized probability upper bound
and the main result of this paper to be

ln� <�6:2; 95%; ln� <�5:7; 99%: (8)

The corresponding marginalized probability lower bounds
on the BD parameter are found to be

!> 120; 95%; ! > 80; 99%: (9)

This bound is nicely consistent with the expectation for
WMAP given by the Fisher matrix analysis of Ref. [7].

We present in Fig. 4 the 2D posterior constraints in the
ln�-H0 plane, in order to demonstrate the degeneracy and
covariance between these two parameters. In a more re-
fined analysis, one could replace H0 with the dimension-
less parameter rs=DA more appropriate to the study of the
CMB, where rs is the sound horizon at recombination
and DA is the angular diameter distance to the last-
scattering surface [29]. Finally, in Fig. 5 we display two
models, our best-fit �CDM model with parameters $ �
f�Bh2; �Ch2; H0; Z; nS; 1010AS; !g � f0:023; 0:12; 66;
0:79; 0:96; 23:2;1g, and a best-fit JBD model with parame-
ters $ � f0:024; 0:13; 79; 0:80; 1:03; 24; 70g, in order to il-
lustrate how the observables change at finite !. Here the
JBD model lies in the vicinity the contour enclosing 99%
of the posterior probability distribution and was selected by
running a short Monte Carlo exploration at fixed ! � 70.
Note that although in principle the parameter ln� could be
extended to �1, whereby the bulk of the parameter space
would be composed of the �CDM model, in practice it is
reasonable to adjust the lower cutoff to the point where the
H
0

ln
 ξ
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FIG. 4 (color online). Marginalized 2D posterior distribution
in the ln�-H0 plane. The solid lines enclose 95% and 99% of the
probability. Under this parametrization there is clearly a geo-
metrical degeneracy.
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FIG. 5. A comparison between a �CDM model (solid line)
and a JBD �CDM model with ! � 70 (dashed line). The data
are the 2dF galaxy power spectrum and the models the matter
power spectrum convolved with the 2dF window functions, and
whose overall amplitude is left as a free parameter. Detailed
parameters are given in Sec. III.

1Our analysis used 2dF data from Percival et al. [19], preced-
ing the more recent 2dF data analysis which shows evidence of
baryon oscillations [30]. We would not expect inclusion of this
new data to significantly change our results.
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likelihood function loses sensitivity to the variation of ln�
so that the Brans-Dicke model alone is explored by the
MCMC. Consequently, the probability contours can rea-
sonably be interpreted to describe the most credible region
of the Brans-Dicke model parameter space.

Our current analysis leaves the bias parameter free, and
so constrains only the shape of the matter power spectrum.
We note however that the JBD model has a significantly
higher amplitude, indeed requiring a modest antibias b ’
0:98, which at least in part is due to the more rapid
perturbation growth (% / a1�1=! during matter domination
[6]) in the JBD theory. For comparison the �CDM model
has a best-fit bias b � 1:2. This suggests that precision
measures of the present-day matter spectrum amplitude, as
for instance may become available via gravitational lens-
ing, could significantly tighten constraints. We also note
that there is a shift in the location of the baryon oscillations
in the matter power spectrum as compared to the �CDM
104025
model; these are mostly erased by the 2dF window func-
tion,1 but future high-precision measurements of those may
also assist in constraining !.

We have carried out the same analysis including also the
data from VSA, CBI and ACBAR in the multipole range
600< ‘< 2000. These high-‘ data lead to a slightly
tighter bound on the Brans-Dicke parameter, ln� <�6:4
corresponding to !> 177 at 95% marginalized probabil-
ity. However, at the same time inclusion of this new data
leads to an unexpectedly large shift in the spectral index, to
0:90< nS < 1:00 at 95% marginalized probability, so that
the Harrison-Zel’dovich spectrum is only just included
(this statement remains true in the general relativity limit).
Whether this points to some emerging tension in the com-
bined data set, a harmless statistical fluctuation, or a hint of
the breaking of scale invariance, can be addressed only in
the light of the next round of CMB observations. While our
constraint on ln� marginalizes over nS, in the interests of
quoting a robust bound we have given as our main result
the weaker limit obtained without including the high-‘
data.

Our ultimate constraint !> 120 can be compared with
that of Nagata et al. [8], who quote results corresponding to
!> 1000 at two-sigma and !> 50 at four-sigma. The
former constraint is much stronger than projected in
Ref. [7], and stronger than one would expect from a naive
assessment that the corrections to observables should be of
order 1=!. If we plotted a model with ! � 1000 in our
Fig. 5, it would lie practically on top of the �CDMmodel.
However their latter constraint is in reasonable agreement
with ours, and they do highlight that it is this constraint
which corresponds to a sharp ridge of deteriorating chi-
squared in their analysis, indicating that their constraint
should conservatively be taken as !> 50.
IV. CONCLUSIONS

We have derived a constraint on Jordan-Brans-Dicke
gravity from current cosmological observations, including
CMB anisotropy data and the galaxy power spectrum data.
Our main result is to obtain a 95% marginalized probability
lower bound on the Brans-Dicke parameter !> 120. This
result is complementary to the very strong solar system
limit provided by Cassini,!> 40 000, as it probes entirely
different length and time scales. Our analysis is based on a
Markov chain Monte Carlo technique varying the basic
cosmological parameters and !.

At the present precision level, the greatest part of the
constraining power comes from the shape of the CMB
acoustic peaks, in particular, from the first-year observa-
tions of WMAP. Therefore, assuming an extension to four
-5
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years of the WMAP observations, we expect some further
improvement on the limit on ! from cosmology. Further
help is also expected from other structure formation data,
as they improve quality and precision in coming years. In
particular we have highlighted that an accurate measure of
the present-day matter power spectrum amplitude, for in-
stance from gravitational lensing, may be powerfully con-
straining when compared to the primordial amplitude from
the CMB.

A leap forward in this and other contexts is expected
from the observations of the Planck Surveyor probe, to be
launched in 2007. Those observations are expected to be
cosmic variance limited for the whole spectrum of CMB
temperature anisotropy down to the damping tail, and to
provide an accurate measurement of the gradient mode of
the CMB polarization and its correlation with total inten-
sity up to the sixth acoustic peak [31]. According to the
forecasts of Chen and Kamionkowski [7], the limit on !
from Planck should be around an order of magnitude
stronger than that from WMAP, and hence vastly stronger
104025
than the nucleosynthesis constraint. Whether that improve-
ment can be realized from actual Planck data, of course,
remains to be seen.
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