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Reductions from odd to even dimensionalities (5 ! 4 or 3 ! 2), for which the effective low-energy
theory contains chiral fermions, present us with a mismatch between ultraviolet and infrared anomalies.
This applies to both local (gauge) and global currents; here we consider the latter case. We show that the
mismatch can be explained by taking into account a change in the spectral asymmetry of the massive
modes—an odd-dimensional analog of the phenomenon described by the Atiyah-Patodi-Singer theorem
in even dimensionalities. The result has phenomenological implications: we present a scenario in which a
QCD-like �-angle relaxes to zero on a certain (possibly, cosmological) time scale, despite the absence of
any light axionlike particle.
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FIG. 1. A sausagelike manifold leading to topologically trivial
vacuum and to the absence of the � problem.
I. INTRODUCTION

The nontrivial vacuum structure of non-Abelian gauge
theories [1–5] plays an important role in particle theory. It
underlies baryon-number nonconservation in electroweak
theory and the existence of �-vacua in QCD. These
�-vacua present a problem, since � � 0 leads to CP vio-
lation in strong interactions, which is severely constrained
by experiment. Because the vacuum structure depends on
topology of the gauge fields, it is sensitive to the dimen-
sionality of space-time. So, one may wonder what happens
to electroweak instantons and the �-vacua in scenarios
where the number of space-time dimensions is extended
beyond the usual four, and if perhaps a solution to the
strong-CP problem can be achieved along these lines.

Topology of gauge fields is best discussed when the
space is compact. So, in what follows, we consider only
space-times of the form

space -timed � Sd�1 � R1; (1)

where Sd�1 is a compact space, and R1 corresponds to
time. The case d � 5 is a situation that can be of phenome-
nological interest, but we also consider Abelian theories in
d � 3, which are useful models.

Several kinds of such higher-dimensional scenarios can
be considered. The simplest one (and, as far as we know,
the first invoked in connection with the strong-CP problem
[6]) is when Sd�1 has the topology of a 4-sphere but the
geometry of a 4-dimensional sausage: three dimensions
large, and one small (see Fig. 1).

Another possibility is a brane-world: let the geometry of
Sd�1 be more or less arbitrary—take a round 4-sphere, for
example—but suppose that we live on a domain wall along
the equator (see Fig. 2). Brane-world scenarios have been
quite popular recently, but not exactly the kind we envision
here—those where Sd�1 is compact. Recently, a solution
to Einstein equations with this topology was found in [7].

Finally, one can consider Sd�1 � O� Sd�2, where the
extra dimension is an interval O (see Fig. 3). In what
05=71(10)=104024(21)$23.00 104024
follows, we will often call such an interval an orbifold;
these two terms will be used interchangeably.

A question closely related to topology of gauge fields is
the existence of chiral fermions and of anomalies in the
corresponding currents. Indeed, by using an anomalous
chiral transformation, we can rotate the � angle out of
the vacuum wave function and into the mass matrix of
the fermions. This can be sometimes a very convenient
way to represent the � angle, since the �-dependence can
now be picked up by a calculation of the fermionic deter-
minant. Yet, when we try to embed this picture into a
higher-dimensional scenario, we encounter a paradox.

The lore holds that there is no anomaly in d � 3; 5 (or
any other odd dimension; in orbifold scenarios this applies
in the bulk of the orbifold, but not necessarily at the
boundary [8]). This means that the chiral transformation,
which we—from our 4-dimensional perspective—de-
cided was anomalous, is in fact anomaly free. Does that
mean that it can be used to safely rotate the phase of the
mass matrix to zero, without any extra terms appearing in
the effective action? If that were true, it would imply,
among other things, that any odd-dimensional theory sol-
ves the �-problem automatically, i.e., without any refer-
ence to the theory’s specific dynamics. On the other hand,
if we recall that at low energies our odd-dimensional
theory reduces to a 4-dimensional one, and so must share
its properties, this kind of automatic solution looks exceed-
ingly formal and suspect.

The present paper grew out of an attempt to resolve this
paradox. The solution we are going to describe reminds us
-1  2005 The American Physical Society
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FIG. 2. A manifold with the topology of a sphere and a domain
wall along the equator.
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of the Atiyah-Patodi-Singer (APS) theorem [9], in that it
emphasizes the role of high-frequency fermion modes.
Although at low energies these modes are not observable
directly, changes in their spectral asymmetry can lead to
interesting low-energy consequences. At this point,
though, the similarity with the APS theorem remains
largely qualitative; in particular, they consider an even-
dimensional Dirac operator, for which there is an anomaly,
while we consider an odd-dimensional one, for which there
is none. There is also some connection between our solu-
tion and the Callan-Harvey mechanism [10], which relates
the anomaly in, say, four dimensions to a variation of a
Chern-Simons term in five. However, the Callan-Harvey
mechanism reproduces a gauge anomaly, while we are
interested in a global (i.e., nongauge) chiral transforma-
tion. The Chern-Simons term is immune to global trans-
formations and therefore by itself will not do the job for us.

It is clear from the preceding that the paradox we are
facing does not depend very sensitively on whether we are
considering a non-Abelian gauge theory in five dimen-
sions, or an Abelian theory in three. So, in most of the
paper we concentrate on the second case as technically
the simpler. With regard to the three types of extra-
dimensional models listed above, we observe that, to our
knowledge, chiral fermions have not been obtained for
sausagelike compactifications. So, in what follows, we
confine ourselves to brane-worlds and orbifolds. These
S
d−2

O

FIG. 3. A space Sd�1 � O� Sd�2, where O is an orbifold
(interval).
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two cases have many similarities and can be treated in
parallel.

For the type of questions that we address here, the global
topology of space is essential. We consider a brane-world
for which the space is a two-sphere (will be a four-sphere
in the 5D version), with the domain wall positioned along
the equator.

The paper is organized as follows. In Sec. II, we describe
how chiral fermions appear. In Sec. III, we consider the
ultraviolet anomaly, as given by nonconservation of the
current in the odd-dimensional theory. This anomaly is
zero on a sphere, while on an orbifold it is concentrated
at the end points [8]. We show that it can be alternatively
interpreted as a flow of charge through the end points. In
Sec. IV, we compute the infrared anomaly— the depen-
dence of the fermion determinant on the phase of the
fermion mass. We find that it is nonzero and coincides, in
the low-energy limit, with the dependence computed using
the effective low-energy theory from the start. The mis-
match between the two anomalies is explained in Sec. V by
considering the change in the spectral asymmetry of mas-
sive fermion modes. Gauge-field dynamics, responsible for
existence (or nonexistence) of �-vacua, is considered in
Sec. VI. There, we find that, even though there is no true
�-vacuum on a sphere (in agreement with topological
considerations), one can have an effective, time-dependent
�-angle. On the one hand, this suggests a solution to the
strong-CP problem; on the other, it can have interesting
cosmological consequences, if the relaxation of �eff occurs
on the cosmological time scale. In Sec. VII, we briefly
discuss the case when the space is a disk, which turns out to
be similar to the case of a sphere. Section VIII is a
conclusion.

II. CHIRAL FERMIONS FROM COMPACT EXTRA
DIMENSIONS

For most of this section, we consider d � 3 (correspond-
ing to two-dimensional ‘‘observable’’ space-time).
Generalization to the realistic case d � 5 is straightfor-
ward in the case of orbifold and is expected to present only
technical difficulties in the case of a domain wall on a
sphere. Emergence of chiral fermions on an orbifold is well
known in the literature, see [11] (and also [8] and refer-
ences therein), but we nevertheless describe it here for
completeness and to fix the notations. Domain-wall fermi-
ons are well known for the case when the extra dimension
is a line [12]. Here, we are interested in the case when the
higher-dimensional space is a sphere, with the domain wall
positioned along the equator. Our analysis of this case is, as
far as we know, new.

A. Chiral fermion on orbifold

Perhaps the simplest type of compactification leading to
existence of chiral fermions is related to orbifolds.
Consider a 3D space-time of the form S1 �O� R1, where
-2
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R1 is (noncompact) time, S1 corresponds to large observ-
able dimension with size L (0< x � L), and O is a (short)
interval corresponding to extra dimension ( � R=2 � z �
R=2), L� R. The Dirac equation for the 3-dimensional
two-component fermion

	�t; x; z� �
 1

 2

� �
(2)

has the form

i�A@A		m�z�	 � 0; (3)

where m�z� is a mass term which in general depends on the
extra coordinate z. We will keep m�z� arbitrary as much as
we can but occasionally, for the sake of simplicity, will
specialize to m�z� � 0. Uppercase Latin indices scan all
the coordinates, while the Greek ones ‘‘our’’ space-time.
For this subsection it is convenient to choose the �matrices
as follows: �0 � �1; �1 � i�2 and �2 � i�3 
 i�5; �5 �
diag�1;�1�, where �i are the Pauli matrices. The signature
of the metric is �1;�1;�1�.

The boundary condition leading to existence of a left
chiral fermion is [8]

�1� �5�	��R=2� � 0; or  2��R=2� � 0: (4)

Note that since Eq. (3) is a system of two differential
equations of the first order, one needs exactly two bound-
ary conditions to specify the spectrum, as in (4). The wave
function of the chiral fermion with momentum k is simply

	�0� / e�ik�t	x�
�0

0

� �
; (5)

where k � 2�l=L with integer l because of the periodic
boundary condition 	�t; 0; z� � 	�t; L; z�, and the zero
mode is

�0 �
1

N
exp

 
�
Z z

0
m�z0�dz0

!
;

N2 �
Z R=2

�R=2
dz exp

 
�2

Z z

0
m�z0�dz0

!
:

(6)

The wave functions of the Kaluza-Klein tower of mas-
sive Dirac fermions with masses Mn (n � 1; 2; . . . ) are

	�n��z� �
�n�z�
 n�z�

� �
; (7)

where  n�z� and �n�z� are two sets of orthogonal normal-
ized functions which satisfy the equations�

�
d2

dz2
	m2�z� 	

dm
dz

�
 n�z� � M2

n n�z�;�
�
d2

dz2
	m2�z� �

dm
dz

�
�n�z� � M2

n�n�z�

(8)

with boundary conditions
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 n��R=2� � 0 and
�
d�n
dz

	m�z��n

����������R=2
� 0: (9)

The spectrum of both operators is the same, except for the
zero mode (6), as they are partner Hamiltonians from the
point of view of supersymmetric quantum mechanics [13].
The relation between  and � is given by �n �

1
Mn

�@z �
m�z�� n,  n �

1
Mn

��@z �m�z���n.
For the case m�z� � 0, the wave functions have a simple

form:

 n�z� �

				
2

R

s
sin�n

�
z
R
�

1

2

�
;

�n�z� �

				
2

R

s
cos�n

�
z
R
�

1

2

�
;

(10)

for n � 1; 2; 3; . . . and �0�z� �
1			
R

p . The fermion masses

are given by

M2
n �

�
�n
R

�
2
: (11)

The low-energy effective theory consists of a massless
left chiral fermion described by a one component spinor in
1	 1 dimensions.

Similar considerations apply to a theory defined in the
five-dimensional space-time S3 �O� R1. The only dif-
ference is that the 5D fermion has four components, while
the low-energy (4D) massless chiral fermion now has two
components.

B. Chiral fermions on S2

An alternative way to obtain chiral fermions from extra
dimensions is to consider a �2	 1�-dimensional theory for
which the space is a 2D sphere (of unit radius). The action
of a single fermionic species is

A �
Z
dt sin�d�d�L; L � i �	 @̂	����� �		;

(12)

where

@̂ � �0@0 	 �1@� 	 �2 1

sin�

�
@� 	

1

2
�1�2 cos�

�
: (13)

Here � and� are the usual polar coordinates on the sphere,
and � is a scalar field, whose dependence on � is for a
moment arbitrary, although later we will specify it to be a
domain wall localized on the equator (i.e., at � � �=2).
The field 	 is a two-component spinor: 	 � � 1;  2�

T . A
convenient choice of �-matrices for this subsection is �0 �
�3, �1 � i�1, and �2 � i�2. (Note that this is different
from the choice we made in the case of orbifold.)

The problem has translational symmetry with respect to
time and the azimuthal angle �, so we can take the spinor
to depend on these as exp��iEt	 im��, where
-3
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m � � 1
2 ; . . . is a half-integer [which should not be con-

fused with the mass m�z� we use for the orbifold theory].
We then obtain the following equations for the compo-
nents: �

@� 	
1

2
ctg �	

m
sin�

�
 2 	� 1 � E 1; (14)

�
@� 	

1

2
ctg ��

m
sin�

�
 1 	� 2 � �E 2: (15)
104024
These equations form the eigenvalue problem for the op-
erator

O �
� @� 	

1
2 ctg �	

m
sin�

��@� 	
1
2 ctg ��

m
sin�� ��

 !
;

(16)

whose square is
O 2 �
�2 � �@2� 	 ctg �@� �

m2�m cos�	1
4

sin2� � 1
4� �@��

�@�� �2 � �@2� 	 ctg �@� �
m2	m cos�	1

4

sin2� � 1
4�

0@ 1A: (17)
We now see that the problem becomes particularly simple
for � of the form of a step function (�0 > 0):

���� �
�
�0 � < �=2
��0 � > �=2:

(18)

This corresponds to the limit of an infinitely thin domain
wall. In this case, the eigenvalue equation for O2 becomes
diagonal everywhere outside the equator, while at the
equator the off-diagonal terms in O2 produce #-function
‘‘potentials.’’ We adopt this choice of the scalar-field pro-
file in what follows. We can then use solutions for constant
fermion mass �0 and match them at the equator.
Solutions for constant mass can be expressed through
hypergeometric functions, using transformations described
in Ref. [14]. In what follows, we assume that m> 0.
Solutions for m< 0 can be obtained by reflection about
the equator. Define a new coordinate variable z � cos2 �2 ,
and a new pair of functions $�z� and %�z�:

 1 � �1� x��m=2���1=4��1	 x��m=2�	�1=4�$; (19)

 2 � �1� x��m=2�	�1=4��1	 x��m=2���1=4�%; (20)

where x � cos� � 2z� 1. Then, the problem reduces to
the eigenvalue problem for the operator
z�1� z� d
2

dz2 	 �m	 3
2 � �2m	 2�z� ddz� ab ��1� z��;z

�z�;z z�1� z� d
2

dz2 	 �m	 1
2 � �2m	 2�z� ddz� ab

 !
; (21)
where

a � m	
1

2
	

																		
E2 ��2

p
; (22)

b � m	
1

2
�

																		
E2 ��2

p
: (23)

For the scalar field (18), we can construct the eigenfunc-
tions �$; %� at z � 1

2 and z � 1
2 from solutions to the hyper-

geometric equation that are regular at the north pole and
the south pole, respectively. We obtain

$ �

�
F �a; b;m	 3

2 ; z� z � 1
2

(F �a; b;m	 1
2 ; 1� z� z � 1

2 ;
(24)

and

% �

�
�)(F �a; b;m	 1

2 ; z� z � 1
2

�)F �a; b;m	 3
2 ; 1� z� z � 1

2 :
(25)

where F 
2 F1. From continuity,
( �
F �a; b;m	 3

2 ;
1
2�

F �a; b;m	 1
2 ;

1
2�
: (26)

From the jump of the derivatives on the equator, we obtain
) � �1 and the eigenvalue equation

(F 0�a; b;m	 1
2 ;

1
2� 	F 0�a; b;m	 3

2 ;
1
2�

4�0F �a; b;m	 3
2 ;

1
2�

� ) � �1;

(27)

which determines the allowed energies E.
Using the differentiation formula

F 0

�
a; b;m	

1

2
;
1

2

�
�

ab

m	 1
2

F

�
a	 1; b	 1; m	

3

2
;
1

2

�
(28)

and these formulas for special values of F [15]:
-4
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F

�
a; b;

1

2
a	

1

2
b	 1;

1

2

�
� 2

				
�

p ��12a	
1
2 b	 1�

b� a

��X�a; b� � X�b; a��;

F

�
a; b;

1

2
a	

1

2
b;

1

2

�
�

				
�

p
�
�
1

2
a	

1

2
b
�
�X�a; b�

	 X�b; a��;

where

X�a; b� �
1

��12b���
1
2a	

1
2�
; (29)

and � is Euler’s �-function, we take the eigenvalue equa-
tion (27) to the form

b� a � )�0

�
X�a; b�
X�b; a�

�
X�b; a�
X�a; b�

�
: (30)

Equation (30) can be explored in considerable detail in the
limit jaj, jbj � 1, when we can use the expansion

��12 a	
1
2�

��12 a�
�

			
a
2

r �
1�

1

4a
	

1

32a2
	O�a�3�

�
: (31)

In particular, this limit applies in the case of main interest
to us: �0 � 1 and E� �0, corresponding to a light
bound state on the domain wall. This state has ) � 1,
and for its energy we obtain

E2 � m2 	O�m2=�2
0�: (32)

We recall that m is a half-integer. In units where the radius
of the sphere is R (rather than 1), Eq. (32) gives E2 �
m2=R2, which is the dispersion law of a massless fermion
propagating along the equator.

The sign of E can be found by returning to Eqs. (14) and
(15). We find E � �m=R, which corresponds to a left-
moving, i.e., chiral fermion in �1	 1� dimensions.

The transition to the effective �1	 1� theory is achieved
by projecting the field 	 onto the massless mode, i.e., by
writing

	�z; �; t� �
1							
2�

p
X
m

eim�
$m�z�
%m�z�

� �
Am�t�; (33)

where Am is the amplitude of a single-component (chiral)
2D fermion. Note that we have indicated explicitly the
dependence of $ and % on m, which was implicit before.
Also, we now assume that the basis spinor is normalized by
the condition (no sum over m)Z

�$�m$m 	 %�
m%m� sin�d� � 1: (34)

This condition makes Am canonically normalized. Note
that the fermionic mode of an opposite chirality is singular
at the poles of a sphere and is not normalizable.

In what follows, we will consider theory with two such
chiral fermions, produced by two fields 	1 and 	2, whose
104024
interactions with the domain-wall field � have opposite
signs. If 	1 � 	 and is given by (33), then

	2�z;�; t� �
1							
2�

p
X
m

eim�
$m�z�
�%m�z�

� �
Bm�t�: (35)

The presence of two fields makes possible a mass term
- �	1	2 with a complex-. Let us see what becomes of this
mass term upon the reduction to 2D. We have

Z
�	1	2 sin�d�d� �

X
m

Ay
mBm

Z
�$�m; %

�
m��

0
$m
�%m

 !

� sin�d�: (36)

Recalling that �0 � �3 and using the normalization con-
dition (34), we see that the result is the canonical mass term
connecting two chiral 2D fermions.
III. FERMION CURRENT ON AN ORBIFOLD

As discussed in the introduction, one of the ingredients
of the paradox that motivated the present study is the
popular assertion of the absence of anomalies in odd
dimensions (d � odd). While for the case when the space
is a �d� 1�-dimensional sphere we have no reason to doubt
that assertion, for the case of an orbifold the precise state-
ment requires some care. Namely, it is known that in that
case anomalies are absent in the bulk of the orbifold but
may exist on its boundary [8]. We pause here to review this
boundary anomaly and to show that it can be interpreted as
the flow of the corresponding current through the boundary
of the orbifold.

Consider the theory of just one 3D fermion 	 with
coupling e to a gauge field AB, B � 0; 1; 2. The interpre-
tation that we are going to derive will apply also to global
currents in theories with more than one fermion species.

On the orbifold �R=2 � z � R=2, the single-fermion
theory, according to the calculation in Ref. [8], is incon-
sistent as it contains a gauge anomaly concentrated at the
end points z � �R=2. It is customary to write

@AJA �
e
4�

/-(F-(�#�z� R=2� 	 #�z	 R=2��; (37)

where JA � �	�A	. We will show here that the mathe-
matical inconsistency of this theory has a simple physical
interpretation. Namely, we will demonstrate that the limit

lim
/!	0

�J2�R=2� /� � J2��R=2	 /��

�
e
8�

/-(�F
-(��R=2� 	 F-(�	R=2�� (38)

is nonzero in the presence of background gauge field. Note
that the values J2���R=2�� are equal to zero, as this is
enforced by the boundary conditions (4). In other words,
one may either insist that the generator of the global gauge
transformation is given by
-5
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Q �
Z 	R=2

�R=2
dzd2xJ0 (39)

and is not conserved because of the anomaly (37), while
the flux through the end points of the orbifold is zero, or
one may define the charge as a limit

Q � lim
/!	0

Z 	R=2�/

�R=2	/
dzd2xJ0 (40)

and relate its nonconservation to nonzero charge flux
through the end points.

Let us now derive Eq. (38). Formulas for fermionic
propagators on the orbifold are collected in AppendixA.
For the present theory, the fermionic propagator is given by
S11 with - � 0, where S11 is defined in (A9). The value of
J2 in a background gauge field can be found from the
diagram in Fig. 4 and is given by

J2�x-; z� � e
Z
d2x0dz0/-(A-�x0; z0�

� ��@z�m�GD�x� x0;z; z0�@0(GD�x0 � x;z0; z�

� �@z	m�GN�x� x0;z; z0�@0(GN�x0 � x;z0; z�

	 @(GD�x� x0;z; z0��@0z	m�GN�x0 � x;z0; z�

� @(GN�x� x0;z; z0��@0z�m�GD�x0 � x;z0; z��;

(41)

where GN and GD are the Green functions defined by (A1)
with - � 0. With the use of (A5) this can be simplified
further to give

J2�x-; z� � 2e
Z
d2x0dz0/-(A-�x

0; z0�

� �@(GD�x� x0;z; z0��@0z	m�GN�x
0 � x;z0; z�

� @(GN�x� x0;z; z0��@0z�m�GD�x
0 � x;z0; z��:

(42)

In this section we will compute the current for a back-
ground gauge field that is independent of z; a more general
situation—a field slowly varying with z— is considered in
Appendix B.

If the background field does not depend on z, the inte-
gration in (42) over z can be performed with the help of
(A3) and orthogonality of the functions  n and �n. The
result is
J
2

A
µ

FIG. 4. The Feynman that gives a nonzero contribution to the
current through the end points of the interval.

104024
J2�x-; z� � �
e
4�

/-(F
-(3�z� (43)

where

3�z� �
X1
n�1

 n�z��n�z�
Mn

�

�
1

2
@z �m�z�

�
GD�z�

�
1

2
�4�z; R=2� � 4��R=2; z��; (44)

and 4 is defined in Eq. (A11). Formally, 3��R=2� � 0;
however, lim/!	03���R=2� /�� � 0. The flux of the
charge through the interval end points is

lim
/!	0

�J2�R=2� /� � J2��R=2	 /�� �
e
4�

/-(F-(:

(45)

This does not depend on the function m�z� and exactly
reproduces the anomaly in Eq. (37).

Equation (45) applies when the gauge field is indepen-
dent of z. In Appendix B, we consider vector potentials
slowly changing with z and show that in that case the flux
depends on the value of the gauge field at the end points
only.
IV. COMPUTATION OF THE FERMION
DETERMINANT

Now, consider two species of fermions in �2	 1� di-
mensions coupled to an external Abelian gauge field.
Dynamics of the gauge field, and, in particular, the ques-
tion of existence of a �-structure, will be the subject of the
subsequent sections. Here, we consider the determinant of
fermions in an external field and, specifically, its depen-
dence on the phase of the fermion mass. Thus, our starting
point is the following �2	 1�-dimensional Lagrangian

L	 � i �	1D̂	1 	m�z� �	1	1 	 i �	2D̂	2 �m�z� �	2	2

�- �	1	2 �-� �	2	1; (46)

where D̂ � �BDB,DB is the covariant derivative, and- �
j-jei�M is a small (complex) mass. For simplicity, we take
- to be independent of coordinates, while the 3D mass
m�z� can, at the moment, depend arbitrarily on the extra
coordinate z. We will be interested in the dependence of the
fermion determinant on the phase of -.

We consider situations when the �2	 1� theory (46)
reduces at low energies to a �1	 1�-dimensional theory.
In other words, there will be a quasizero fermionic mode,
while all other modes will be separated from it by a large
gap. This can be arranged in both of the extra-dimensional
scenarios considered in Sec. II.

The resulting �1	 1�-dimensional theory has a pair of
chiral fermions, forming a two-component Dirac spinor of
mass -. In fact, this theory is nothing but the fermionic
sector of a massive Schwinger model in 1	 1 dimensions,
with the Lagrangian
-6
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L2d � � i�-D- �- � L R �-� � R L: (47)

If we start from five dimensions and a non-Abelian gauge
group [say, SU(3)] we will similarly get the massive fer-
mions of quantum chromodynamics.

The global current of the theory (46)

JAG � �	1�A	1 � �	2�A	2 (48)

becomes, at low energies, the chiral current of the effective
�1	 1� theory:

J-5 � � �-�5 : (49)

In �1	 1�, the chiral symmetry, in addition to being broken
by the mass -, is also broken by the anomaly, which
manifests itself in a dependence of the �1	 1� determinant
on �M � arg-, a dependence that does not disappear in
the limit -! 0. A naive expectation would be that
this �M-dependence carries over to the full �2	
1�-dimensional theory. Indeed, the masses of the heavy
modes depend only weakly on -, and therefore any con-
tribution they make to the determinant should be regular in
-, i.e., independent of �M at -! 0.

In this section, we show that the naive reasoning is in
fact entirely correct (in particular, it is not affected by
ultraviolet divergences). Thus, even though the complete
�2	 1� theory has no anomaly in the (bulk) chiral current,
the low-energy manifestations of the phase �M are the
same as in the �1	 1� theory, which has such an anomaly.
On the one hand, this resolves the paradox formulated in
the introduction, but on the other, indicates that in brane-
world scenarios the breakdown of chiral symmetry is real-
ized rather nontrivially. Namely, nonconservation of the
fermion number is not simply counted by the anomaly: we
are pointed towards an additional effect, having to do with
the spectral asymmetry.

A. Fermion determinant on an orbifold

To obtain an effective �1	 1� theory that is free of a
gauge anomaly, from an orbifold compactification, we use
different boundary conditions for 	1 and 	2: for 	1, they
are those of Eq. (4) whereas for 	2 they single out the
right-handed fermion,

�1	 �5�	2��R=2� � 0: (50)

The mixing of the left-handed fermion  L in 	1 and right-
handed fermion  R in 	2 produces a Dirac fermion  with
mass -. Note that the 3D masses of 	1 and 	2 in (46) are
the same (up to a sign), which allows one to use the
eigenfunctions defined in Eq. (8).

Both the complete 3D and effective 2D theories are free
from gauge anomalies. However, the global currents (48)
and (49) are anomalous: at - � 0,

@AJ
A
G �

e
2�

/-(F
-(�#�z� R=2� 	 #�z	 R=2��; (51)
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@-J
-
5 �

e
2�

/-(F
-(; (52)

where the #-function at the boundary is defined so that its
integral over z is equal to 1=2. The covariant derivative in
this subsection is DB � @B � ieAB.

As discussed in Sec. III, the 3D anomaly (51) is con-
centrated at the boundary of the orbifold. This anomaly,
which determines nonconservation of the current, will be
referred to as the ultraviolet anomaly. We now wish to see
if it matches the ‘‘infrared’’ anomaly, which comes from
the dependence of the fermionic determinant on the phase
�M.

Consider the variation of the vacuum energy with re-
spect to �M in a slowly varying gauge-field background in
three dimensions. It is given by the diagram in Fig. 4,
which can be immediately computed with the result

@�
@�M

���������M�0
� e

Z
d2xdz/-(F-(�x; z�5�z�; (53)

where

5�z� � j-j2
Z
d2x0dz0�GN�x

0; z; z0�2 �GD�x
0; z; z0�2�:

(54)

This result is valid for arbitrary m�z� � 0. (Definitions of
various Green functions are given in Appendix A.)

With the use of the mode expansion this can be rewritten
as

5�z� � j-j2
Z d2p

�2��2
X
m�0

�m�z�2 �  m�z�2

�p2 �M2
m � j-j2�2

�
j-j2

4�
� ~GN�0; z; z� � ~GD�0; z; z��: (55)

The function 5�z� has the following important property:Z
dz5�z� �

1

4�
; (56)

which shows that for z-independent field strengths the �M
dependence of the vacuum energy is given entirely by the
‘‘ultraviolet’’ anomaly. Indeed, in this case, we can pull
F-( out of the integral over z in (53) and use (56) to obtain

@�
@�M

���������M�0
�

e
4�

Z
d2x/-(F-(: (57)

However, for arbitrary z-dependent background fields,
that is no longer true. In this case, the �M dependence is
more complicated. For example, for a theory with m�z� �
0 one finds, with the help of equations from Appendix A,
that

5�z� �
1

4�
-

sinh-R
cosh2-z; (58)

so that
-7
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@�
@�M

���������M�0
�

e
8�

 Z
d2x/-(�F

-(�x;�R=2�	F-(�x;R=2��

�
Z
d2xdz

sinh2-z
sinh-R

/-(@zF
-(�x;z�

!
: (59)

The first term is a boundary contribution that can be seen to
match the ultraviolet anomaly (51). However, the sec-
ond—bulk— term is new. It represents a mismatch be-
tween the ultraviolet and infrared anomalies for the case
of orbifold. For example, if F-( vanishes at the end points,
the ultraviolet anomaly is zero, but the bulk contribution
still persists.

B. Determinant of domain-wall fermions in infinite
flat space

Before we consider a domain wall on the equator of a
sphere, let us look at a simpler case that has all the relevant
features—a domain wall in flat space with an infinite extra
dimension. In other words, instead of Sd�1 � S2, we con-
sider

S d�1 � R1 � S1: (60)

The line R1 is the extra dimension. Such a theory holds no
promise for solving the strong-CP problem, but the struc-
ture of the fermion determinant is very similar to that on a

S. KHLEBNIKOV AND M. SHAPOSHNIKOV
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sphere. In fact, after we handle the case (60), transition to a
sphere will be relatively straightforward.

In this subsection, we absorb charge ��e� into the field
AB, so that the covariant derivative is DB � @B 	 iAB.
Also, the 3D mass in (46) is assumed to be entirely due
to the coupling with the domain-wall field �:

m�z� � ���z�: (61)

The fermion determinant produces the following contri-
bution to the effective action of the gauge field:

"A � �iTr ln iD̂�� �-
�-� iD̂	�

 !

 �iTr lnM:

(62)

We are interested in the derivatives of this action with
respect to real and imaginary parts of - � -R 	 i-I or,
more precisely, in the dependence of these derivatives on
the gauge field A, for example,

@
@-R

"A� �. . .�A�0 � iTr
�
M�1 0 1

1 0

� �
� �. . .�A�0

�
:

(63)

We use notation ��. . .�A�0 to denote a subtraction at zero
AB.

To invert the operator M, we write
iD̂	� -
-� iD̂��

 !
M �

�iD̂	���iD̂��� � j-j2 0
0 �iD̂����iD̂	�� � j-j2

 !
(64)
and then compute

�iD̂	���iD̂��� � �DBDB �
1

2
/ABC�AFBC

	 �5�0 ��2; (65)

�iD̂����iD̂	�� � �DBDB �
1

2
/ABC�AFBC

� �5�0 ��2 (66)

(/012 � 1). We number coordinates in the way consistent
with Sec. II: the extra coordinate z corresponds to B � 1,
while our coordinate x to B � 2. In this computation we
have assumed that the scalar field � depends only on z, so
that �0 � @z�. The choice of �-matrices is the same as in
Sect. II: �0 � �3, �1 � i�1, and �2 � i�2. In addition, we
have introduced �5 � �i�1; this will be the �5 matrix of
the effective �1	 1�-dimensional theory.

We can now use (64) to express M�1 through the
inverse of the operator on the right-hand side. This operator
is diagonal in ‘‘isospin,’’ i.e., the index distinguishing the
two species, 	1 and 	2. The isospin trace can then be
found explicitly; we continue to denote the remaining spin
and coordinate trace by Tr.
We will only need the derivative (63) to the first order in
FBC. We find that to this order it can be written as a sum of
two pieces:

@
@-R

"A� �. . .�A�0 � I1 	 I2; (67)

where

I1 � iTr
�

-�

�D2 � �5�0 �M2
	

-

�D2 	 �5�0 �M2

�
� �. . .�A�0; (68)

I2 �
i
2
Tr /ABC�AFBC

�
-�

�@2 	 �5�0 	M2�2

	
-

�@2 � �5�0 	M2�2

�
; (69)

with M2 � �2 	 j-j2. We now consider these two pieces
in turn.

Calculation of I1.—This term reflects the coupling of
the gauge field to the translational motion of fermions. As
expected, no anomaly comes from this coupling; never-
-8
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theless, for completeness, we describe the calculation in
some detail.

Define PB � iDB and consider traces of various powers
of the operator

O � P2 � �5�
0 �M2: (70)

In Eq. (68) we need TrO�1 � �. . .�A�0 (and an analogous
trace with �0 ! ��0). An anomaly in I1 would corre-
spond to a nonanalytic behavior in the limit -! 0: for a
slowly varying F � F0x, we would have

Tr O�1 � �. . .�A�0 �
const

j-j2
Z
dxdtF0x�0; x; t� (71)

(assuming that the domain wall is at z � 0). Since traces of
higher powers of O�1 can be obtained by differentiating
with respect to j-j2, they would have similar singular
limits, for example,

Tr O�2 � �. . .�A�0 � �
const

j-j4
Z
dxdtF0x�0; x; t�: (72)

If we find that at least one of these traces does not have the
requisite behavior, that means that the constant in (71) is in
fact zero.

To verify the presence (or, rather, the absence) of these
singular contributions, we use the ‘‘shift’’ method de-
scribed in Ref. [16]. In the presence of a domain wall,
this method needs to be slightly generalized. In particular,
we use only shift vectors q that lie within our �1	
1�-dimensional subspace.

Consider

Tr h ln��P� q�2 � �5�
0 �M2� � �. . .�A�0

� Tr h ln�O� 2Pq	 q2� � �. . .�A�0; (73)

where q is an arbitrary constant �1	 1� vector, and h is an
operator that depends only on the z component of P and so
is immune to the shift. Expression (73), as well as the
above expressions (71) and (72), is assumed to be properly
regularized in the ultraviolet. For example, we can use a set
of Pauli-Villars regulators. Such a regularization will be
assumed in what follows, but it will not be indicated
explicitly. The final result will be ultraviolet finite.

Expanding in q to the second order, we obtain

ln�O� 2Pq	 q2� � lnO	O�1��2Pq	 q2�

�
1

2
O�1��2Pq�O�1��2Pq�

	 � � � : (74)

The idea of the shift method [16] is that, since the regular-
ized trace is independent of q, traces of the order q2 terms
in Eq. (74) should add up to zero. Averaging over direc-
tions of q, we see that this leads to
104024
Tr hO�1 � �. . .�A�0 � Tr hO�1P-O
�1P- � �. . .�A�0;

(75)

where - takes values 0 and 2. Using the commutators

�P-;O
�1� � �O�1�P-;O�O�1; (76)

and

�P-;O� � �P-; P
2� � �ifF-B; P

Bg; (77)

where the braces denote an anticommutator, we can rewrite
Eq. (75) as

�Tr hO�1 � Tr hO�2P-P-� � �. . .�A�0

� iTr hO�2fF-B; PBgO�1P-: (78)

The difference of the traces on the left-hand side can be
rewritten as

TrhO�1 �TrhO�2P-P- � TrhO�2��P2
z ��5�

0 �M2�;

(79)

so if we choose

h � ��P2
z � �5�

0 �M2��1; (80)

Eq. (78) becomes

Tr O�2 � �. . .�A�0 � iTr hO�2fF-B; P
BgO�1P-: (81)

This is to be compared to the would-be anomalous behav-
ior, Eq. (72). By inspection of the right-hand side of (81),
we find that the anomalous term is absent. We conclude
that there is no anomaly in I1.

Calculation of I2.—This term reflects the coupling of
the gauge field to the spin of fermions, which is the
coupling that usually leads to an anomaly. In our case,
the calculation of (69) in the limit of a slowly varying F
amounts to a study of the spectra of two effective one-
dimensional Hamiltonians: H1 � �@2z 	�2 � �5�

0 and
H2 � �@2z 	�2 	 �5�

0. These Hamiltonians are super-
symmetric partners, and in addition both commute with �5.
So, their spectra can be analyzed in some detail. However,
for our present purposes, we only need the infrared parts of
the spectra. In the presence of a domain wall of �, H1 and
H2 each have a zero mode, with opposite chiralities. These
are the only modes that give a singular contribution in the
limit -! 0. Therefore, in this limit, for slowly varying (in
comparison with j-j) fields, we obtain

I2 � 2i-I

Z
dxdtF0x�0; x; t�

Z d!dkx
�2��2

�
1

�!2 � k2x � j-j2 	 i/�2
; (82)

which is the anomaly.
Combining the above results for I1 and I2, we find that

the anomalous term in the effective action is
-9
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�"A�anom �
�M
2�

Z
dxdtF0x�0; x; t�; (83)

where �M � arg-. This is precisely the same anomaly that
would obtained in the effective �1	 1� theory describing
chiral fermions on the wall:

L2d � i � �-D- �-R
�  � i-I

� �5 : (84)
C. Determinant of domain-wall fermions on a sphere

On a sphere, the covariant derivative is

D̂ � �0�@0 	 iA0� 	 �1�@� 	 iA��

	 �2 1

sin�

�
@� 	

1

2
�1�2 cos�	 iA�

�
: (85)

The relevant infrared limit now is

R�1 � j-j � �0; (86)

where R � 1 is the radius of the sphere, and �0 the
magnitude of the scalar field away from the equator.
Because of the explicit dependence of D̂ on the polar angle
�, various additional terms appear in the calculation of the
determinant. Nevertheless, in the limit (86), the final an-
swer is the natural adaptation of Eq. (83):

�"A�anom �
�M
2�

Z
d�dtF0�

�
�
2
; �; t

�
: (87)
D. Limit of a thin orbifold

The orbifold and domain-wall results are related to each
other. To see that, consider the limit when the orbifold
becomes thin: j-jR� 1. Restricting ourselves to the case
m�z� � 0, for which the explicit formula (59) was ob-
tained, we see that in the limit j-jR� 1 we can approxi-
mate the sinh functions in (59) by their arguments and then
integrate over z by parts. The boundary terms cancel, and
we obtain

@�
@�M

���������M�0
�

e
4�R

Z
d2xdz/-(F-(�x; z�: (88)

This agrees with the effective action (83) of the domain-
wall scenario, with the role of F0x�0; x; t� now being played
by the average of F0x over the extra dimension. Thus, in a
sense, in the thin-orbifold limit, the entire orbifold plays
the role of a domain wall.
V. SPECTRAL ASYMMETRY

We have seen that, in all of our examples, the
�-dependence of the d-dimensional theory agrees with
that calculated using the low-energy �d� 1�-dimensional
fields alone, and disagrees with what one might expect
from the anomaly equation for the d-dimensional current.
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In other words, there is a mismatch between the ultraviolet
and infrared anomalies.

This mismatch implies that the anomalous production of
fermions is not counted correctly by the d-dimensional
anomaly. The situation is analogous to that described by
the Atiyah-Patodi-Singer theorem for a Dirac operator in
even dimensions [9], see also Ref. [17]. There, the index
of the Dirac operator is not given simply by the anomaly
equation, but includes an additional term (the %-invariant)
having to do with the change in spectral asymmetry. In this
section, we show that a similar mechanism is at work in our
odd-dimensional theories.

The argument is the simplest when the space is a two-
sphere (the total dimensionality of space-time is d � 3).
As seen from Eq. (87), in this case, the �-dependence is
activated by fluctuations that change the integral of A�
around the equator:Z

d�dtF0� �
Z
d�A��t2� �

Z
d�A��t1� � 0; (89)

where t1 and t2 are some initial and final times. For brevity,
we will refer to such fluctuations as ‘‘instantons,’’ even
though they do not have to be associated with tunneling
and may as well take place in real time.

Now, on a sphere, the integral of A� along the equator
equals the magnetic flux through the northern hemisphere:Z

d�A� �
Z
d�

Z �=2

0
b sin�d�; (90)

where

b �
1

sin�
F�� �

1

sin�
�@�A� � @�A��: (91)

It will be convenient to visualize the transport of flux as
motion of particlelike flux quanta—vortices. Flux can be
localized into vortices, for instance, by introduction of a
suitable Higgs field.

We will be interested in scattering of vortices off the
domain wall (positioned along the equator). Consider the
process when a vortex-antivortex pair is created from
vacuum in the southern hemisphere, and then the vortex
is transported across the equator to the northern hemi-
sphere, while the antivortex remains where it was. This
changes 1

2�

R
d�A� by one. The energetics of this process

does not concern us at present; it will be the subject of the
next section. Here we simply assume that the vortices are
light enough to be a part of our low-energy theory.

Consider first the case when the small mass in Eq. (46) is
zero, - � 0. Then, the anomaly in the �d� 1� current (49)
tells us that the scattering process should produce two
massless fermions on the equator, with the total of 2 units
of chirality. On the other hand, the corresponding current
of the d-dimensional theory, Eq. (48), is conserved exactly,
so there should be an additional contribution to the charge
balance.
-10
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To see where this additional contribution comes from,
recall that in d � 3 a vortex, in the presence of a single
massive fermion with mass M, acquires half a unit of the
fermion number [18,19]:

hJAi �
M

8�jMj
/ABCFBC; (92)

where JA is the current of that single species. This effect
occurs in the bulk of the d � 3 space-time, where the
vortex is initially positioned, and can be regarded as a
result of the polarization of the massive Dirac sea by the
field FBC.

In our Lagrangian (46), there are two species of fermi-
ons, with opposite signs of the mass. As a result, the gauge
charge of the vortex is now zero (so that in contrast to the
Callan-Harvey mechanism [10], there is no net Chern-
Simons action), but the global charge, corresponding to
the current (48), is doubled. In addition, in the presence of
a domain wall, the mass M for each fermionic species has
opposite signs in the two hemispheres. Thus, the global
charge of the vortex is now equal to �1, depending on the
hemisphere. So, as the vortex crosses the equator, it pro-
duces two units of chirality in the form of fermions bound
to the wall, but its own charge also changes, precisely by
the opposite amount. In this way, the exact conservation of
the d-dimensional current is reconciled with the anomalous
production of fermions on the equator.

Next, let us restore the small mass in Eq. (46),- � 0. In
this case, the conservation of the current (48) is no longer
exact. Instead, we have

@AJAG � 2i-� �	2	1 � 2i- �	1	2: (93)

The vortex states are no longer exact eigenstates of the
corresponding global charge,

QG �
Z
J0G sin�d�d�; (94)

but we can still consider averages of QG in these states.
Specifically, let us consider the adiabatic limit, when the
vortex crosses the equator very slowly— the time scale of
its motion is much larger than -�1. In this limit, fermions
remain, to a good accuracy, in adiabatic vacuum.
Averaging Eq. (93) over this state and integrating over
the sphere and over an interval of time, we find

hQG�t2�i � hQG�t1�i �
Z
�2i-�h �	2	1i � 2i-h �	1	2i�

� sin�d�d�dt: (95)

The averages on the right-hand side can be obtained
through the derivatives of the anomalous action (87) with
respect to - and -�. In this way, we find

hQG�t2�i � hQG�t1�i �
1

�

Z
d�dtF0��0; �; t�: (96)

The approximation sign reminds us that in the action (87)
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we have neglected terms of higher orders in-. To the same
accuracy, the average charges of the vortex before and after
the equator crossing are still determined by Eq. (92):
hQG�t1�i � �1, hQG�t2�i � 1. We see that the change in
hQGi, due to restructuring of the Dirac sea of the massive
modes, is precisely as required for Eq. (96) to hold. In fact,
the flow of information could have been reverted: we could
have used the simple counting of charges to restore the
coefficient in the effective action (87).

The fact that for - � 0 the current JAG is not exactly
conserved, and therefore vortex states are not eigenstates of
the charge, has important consequences for the realization
of the global U(1) symmetry. In �2	 1�, this U(1) is
anomaly free, and we can use it to rotate the phase �M �
arg- to zero. However, in quantum theory, this will also
transform the state vector. If we think of the vortex-
antivortex state as a superposition of components with
different values of QG, the transformation will change
the relative phases of the components. These relative
phases then become a counterpart, in the �2	 1� theory
with an nonanomalous JAG, to the vacuum �-angle in the
�1	 1� theory with an anomalous J-5 .

To summarize, for the case of a domain wall on a sphere,
the motion of vortices provides a very visual way to under-
stand the effect of spectral asymmetry. We have not devel-
oped a corresponding visual tool for the case of an orbifold,
but we expect that in that case the mismatch between the
ultraviolet and infrared anomalies can similarly be attrib-
uted to restructuring of the massive part of the fermionic
spectrum in a z-dependent field F-(.
VI. GAUGE DYNAMICS AND THETA-VACUA

The presence, for - � 0, of instanton processes that do
not produce any fermions implies a possibility to have an
observable � angle. (This is similar to how in QCD, to have
a �-vacuum, all quarks should be massive.) However, the
presence of such processes is only one necessary condition
for the existence of �. The other condition is that these
processes connect states that are degenerate, or nearly
degenerate, in energy. If instantons have to climb a high
potential ladder, they will be blocked at low energies.

Note that a description of gauge dynamics requires that
we construct scenarios where the gauge field splits into a
low-energy mode, corresponding to a �d� 1�-dimensional
gauge field, and high-energy modes separated from the
low-energy mode by a large gap. This is relatively straight-
forward to achieve on an orbifold, and somewhat less
straightforward on a sphere. We now consider these cases
in turn.

A. Theta-vacua on an orbifold

For our toy model in 2	 1 dimensions, we take an
Abelian gauge field, as it is for this theory that the vacuum
in 1	 1 dimensions has complicated structure. We con-
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sider a massless gauge field with the Lagrangian

L � �
1

4
FABFAB; (97)

where FAB � @AAB � @BAA. This massless case is some-
what degenerate, since it has no physical propagating mode
in 1	 1 dimensions: the only physical mode in a massless
1	 1 gauge theory is a uniform electric field and its
canonically conjugate coordinate given by the Wilson
line

R
dxA1�x; z�. However, it is precisely the dynamics

of this mode that is of interest to us here. Indeed, a constant
(in time) uniform electric field plays the role of a �-angle in
�1	 1� [20].

We consider this theory on an orbifold O� S1, where O
is an interval of length R, and S1 is a large circle of length
L. First, we consider the free gauge theory, defined by the
bilinear Lagrangian (97), and then add interaction with
fermions.

Variation of the action, besides the ordinary Maxwell
equations

@AFAB � 0 (98)

valid in the bulk, gives now the extra boundary terms,Z
d2x�#A-�R=2; x�F2-�R=2; x�

� #A-��R=2; x�F2-��R=2; x�� � 0; (99)

which lead to boundary conditions [21]

F-2j�R=2 � 0: (100)

assuming arbitrary variations of A- at the boundaries. Note
that since A0 plays the role of a gauge function, gauge
transformations with arbitrary continuous gauge functions
are admitted (see below for more detail).

The general solution to the free Maxwell equations (98)
with boundary conditions (100) has the form

A- �
@<�xA�
@x-

	
X1
n�0

An-�x(��n�z�; (101)

Az �
@<�xA�
@z

; (102)

where < is an arbitrary function reflecting the gauge free-
dom, fields An-�x(� satisfy the vector field equation

@-Fn-( 	M2
nA

n
( � 0; (103)

where Fn-( � @-An( � @(An-, the mass Mn is given by
Eq. (11), and �n are defined in (10). This decomposition
is valid for the 5-dimensional case as well. The low-energy
theory is just the electrodynamics in 1	 1 or 3	 1
dimensions.

In 3D, the field strengths for the solution (101) and (102)
are
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E1 � E0
1 �

X
n�1

@an�x; t�
@t

Mn�n�z�;

E2 �
X
n�1

@2an�x; t�
@t@x

 n�z�;

B �
X
n�1

�
@2an�x; t�

@x2
� an�x; t�M2

n

�
 n�z�;

(104)

where an�x; t� satisfy the Klein-Gordon equation �@-@- 	

M2
n�an�x; t� � 0. Thus, E1 includes a constant electric field

E0
1 in the x direction, which is a Lorentz scalar in 1	 1

dimensions. The fact that this constant electric field is
allowed by the 3D equations of motion and by the bound-
ary conditions is essential for discussion of � vacua on
orbifold. Note that in 1	 1 dimensional electrodynamics
the constant electric field is also a solution of equations of
motion and plays the role of a � angle [20].

We now want to address the following questions: (i)
Does the complete �2	 1�-dimensional theory have a
complicated vacuum structure characterized by a vacuum
angle �? (ii) Does the phase �M of the fermion mass -
contribute to an observable �-angle? As we will see, the
answers to both of these questions are affirmative.

We begin with constructing classical vacua, i.e., states of
minimal classical energy. Let us choose the gauge A0 � 0
and consider time-independent gauge transformations. The
group of all such transformations consists of functions <
for which exp�i<�z; x�� is continuous on O� S1. In addi-
tion to ‘‘local’’ or ‘‘small’’ gauge transformations, for
which functions <�z; x� themselves are continuous, this
condition allows for functions <�z; x� that have a jump
2�n with integer n along a line in the �x; z� plane. Such
a line can either form a closed loop or connect the opposite
points of the interval O. In the first case, the loop is
contractible, and the transformation can be continuously
deformed to a small gauge transformation, but the second
case is a noncontractible, ‘‘large’’ transformation. For n �
1, these large gauge transformations can be reduced to the
form

<�z; x� �
� 2�
L �x� x0�z�� 0 � x � x0�z�
2�
L �x� x0�z� � L� x0�z�< x � L;

(105)

where the function x0�z� defines a line (without intersec-
tions) on which < jumps by 2�. So, the N-vacuum is the
gauge-field configuration

A�N�
1 �

2�N
eL

; A�N�
2 � �

2�N
eL

@x0
@z

; (106)

which is characterized by an integer Chern-Simons number

NCS �
e
2�

Z
dxA�N�

1 �x; z� � N: (107)

Note that for the vacuum configurations NCS does not
depend on z (for an arbitrary gauge background that is
not so) and that it is invariant under small gauge trans-
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formations for any A1�x; z�. Under the large gauge trans-
formation (105), it changes by one.

This construction of the classical N-vacua on the orbi-
fold is almost identical to the similar construction in �1	
1� dimensions. As we now go to quantum theory, we
construct a �-vacuum as a linear superposition of states
built near these classical vacua [4,5]. The functional inte-
gral for vacuum-vacuum transitions can be written as

Z
DAB exp

 
iA3 � i

e�vac
4�

Z
d2x/-(F

-(�z; x�

!
; (108)

where A3 is the complete three-dimensional action to-
gether with the necessary gauge fixing and ghost terms.
Note that Z

d2x/-(F-(�z; x� (109)

is z-independent for the vacuum-vacuum transitions. Thus,
the vacuum of a U(1) gauge theory on orbifold is charac-
terized by an angle �, exactly in the same way as in the
effective �1	 1�-dimensional theory. Clearly, this is re-
lated to the topology of the orbifold: the mapping O�
S1 ! U�1� is nontrivial and characterized by an integer Z,
just as the mapping S1 ! U�1� is in the low-energy theory.
A similar argument applies to 5D non-Abelian theories, for
which the space O� S3 has a nontrivial mapping to the
group SU(2).

To detect a �-angle, we need to have charged particles.
So, let us include interaction of the gauge field with two
species of fermions, such as those described in Sec. IV. The
fermions can be integrated out, and for small and slowly
varying FAB, their main contribution to the effective action
is given by Eq. (57). So, in this approximation, the effective
action still has the form (108) but with �vac replaced by

�tot � �vac 	 �M; (110)

where �M is the phase of the fermion mass -.

B. Vacuum structure on a sphere

We have seen that in this case instanton fluctuations,
which activate the �M dependence, correspond to scatter-
ing of vortices on the domain wall. The essential difference
with the case of the orbifold is that such a fluctuation now
does not connect two vacuum states. Rather, it connects the
vacuum to a state with a vortex in the northern hemisphere
and an antivortex in southern (or vice versa). This is con-
sistent with topological considerations: the mapping from
S2 to U(1) is trivial, so there are no large gauge trans-
formations and no degenerate N-vacua.

The question we want to address in this subsection is if
there can nevertheless be an effective �-angle, due to
existence of vortex states that are nearly degenerate with
the vacuum. This question needs to be answered within a
scenario where the effective low-energy theory is that of a
104024
�1	 1�-dimensional gauge field, while all other gauge
modes have a large gap.

To construct such a scenario, we consider a family of
Abelian theories with a coupling constant dependent on the
spherical angle �:

L � �
1

4

			
g

p 1

h���
gABgCDFACFBD

�
sin�
2h

�
F2
0� 	

1

sin2�
F2
0� �

1

sin2�
F2
��

�
; (111)

where gAB � diag�1;�1;�sin2�� is the metric. The
�-dependent coupling h���> 0 will be referred to as the
warp factor. Such space-dependent couplings arise natu-
rally in brane-world scenarios [22–24].

Magnetic field b has been defined in Eq. (91): b �

F��= sin�. The time derivative of this expression gives
Faraday’s law on the sphere:

_b �
1

sin�
�@� _A� � @� _A�� �

1

sin�
�@�F0� � @�F0��:

(112)

Equation (112) shows that the total magnetic flux through
the sphere is conserved:

B �
Z
d�

Z �

0
b sin�d� � const: (113)

In what follows, we restrict ourselves to the sector with
zero flux,

B � 0; (114)

i.e., we assume that there is no monopole inside the sphere.
Equations of motion following from (111) are

@0

�
sin�
h
F0�

�
� @�

�
1

h sin�
F��

�
� 0; (115)

@0

�
1

h sin�
F0�

�
� @�

�
1

h sin�
F��

�
� 0; (116)

@�

�
sin�
h
F�0

�
	 @�

�
1

h sin�
F�0

�
� 0: (117)

Consider first solutions for which all FAB are time inde-
pendent. Then, the first two of the equations of motion
reduce to @�b � 0 and @��b=h� � 0, which are solved by

b � c1h; (118)

where c1 is an arbitrary space- and time-independent co-
efficient. This is the monopole solution characterized, for
c1 � 0, by a nonzero total flux. We have projected it away
by imposing the zero-flux condition (114).

Next, consider solutions for which all FAB depend on
time as e�i!t with ! � 0. Then, the electric fields are
-13



S. KHLEBNIKOV AND M. SHAPOSHNIKOV PHYSICAL REVIEW D 71, 104024 (2005)
F0� �
@�b

i! sin�
; (119)

F0� � �
h sin�
i!

@��b=h�: (120)

Substituting these expressions into Eq. (112) and expand-
ing in the eigenstates of the angular momentum, we obtain
a closed equation for component of b with angular mo-
mentum m (m � integer):

�
1

sin�
@��h sin�@��b=h�� 	

m2

sin2�
b � !2b: (121)

Defining B � b=h and H � h sin�, we can rewrite this
equation as

@��H@�B� � ��!2 �m2=sin2��HB: (122)

Setting B � �=
					
H

p
and H � ef, we rewrite it further as a

Schrödinger equation,

�00 �

�
1

2
f00 	

1

4
�f0�2

�
� � ��!2 �m2=sin2���: (123)

Primes denote derivatives with respect to �. The ground
state of this Schrödinger problem is � /

					
H

p
. This coin-

cides with the monopole solution (118), which we have
projected out. We are interested in the lowest-energy mode
satisfying the condition (114).

Let us consider the case when all modes are concen-
trated mostly in small regions near the poles. A simple
choice of the warp factor that leads to such an arrangement
is

H � C exp
�
�
1

2
52sin2�

�
; (124)

where C is a constant. Taking 5� 1 and considering only
a vicinity of the north pole, �� 1, we see that in this case
the potential in (123) is approximately that of a harmonic
oscillator:

V��� �
1

2
f00 	

1

4
�f0�2 �

1

4
54�2 �

1

2
52: (125)

Upon replacement �! �� �, we obtain a corresponding
expression near the south pole. The ground states of these
oscillators comprise the low-energy subspace of our sys-
tem. Because of the (exponentially small) overlap at the
equator, these ground states form symmetric and antisym-
metric linear combinations. The symmetric combination,
which is the true ground state of the system, is once again
the monopole solution (118). The antisymmetric combina-
tion is the state we are interested in: it has zero total flux
and, if suitably populated, corresponds to a vortex at the
north pole and an antivortex at the south pole. The fields in
this state oscillate at exponentially small frequency

!1 � 5 exp��const� 52R2�; (126)
104024
where we have restored the radius R of the sphere. All
other modes are separated from this one by the gap
!2

2 � 52.
The above spectrum is reminiscent of the one that occurs

in models that use a warped gauge coupling as a means to
obtain light vector bosons [25]. The crucial difference is
that in our case the exponentially light mode occurs only
for angular momentum m � 0. So, it does not correspond
to a vector particle propagating along the domain wall.
Rather, it is the counterpart of the ‘‘topological’’ mode, for
which A� and F0� are constant along our dimension. If that
mode were constant in time, it would correspond to a
conventional �-angle, just as in �1	 1� dimensions or in
the case of orbifold. We see, however, that on the sphere
this mode acquires a small but nonzero frequency, resulting
in a variation of the effective �-angle with time.

In a static universe, the case for which the above results
have been obtained, the dynamics of the topological mode
is oscillatory. In an expanding universe, we expect this
mode to be damped by the expansion. Furthermore, if !1

is not particularly small, and the gauge field interacts with
light matter, the oscillations of the topological mode can
decay into matter particles. For QCD in 4D, either of these
scenarios constitutes a solution to the strong-CP problem.

If !1 is, in fact, small (as in the above example, where it
is suppressed exponentially by the size of our dimensions),
!�1

1 may well be a cosmological time scale, so the relaxa-
tion of the effective �-angle and of the associated vacuum
energy will occur relatively late in the cosmological
history.

C. Effective Lagrangian for a time-dependent �

As follows from Eq. (120), the topological mode, oscil-
lating at frequency !1, corresponds to an oscillating (in
time) and uniform (in �) electric field on the equator. We
know that in �1	 1� dimensions or in the case of orbifold a
constant electric field is the classical counterpart of a
�-angle [20]. In quantum theory on the orbifold, the
� dependence can be described by the effective
Lagrangian appearing in Eq. (108). One may expect that
a similar description, but with an effective, time-dependent
�-angle, exists in the case of a sphere.

Such a description is provided by the following dimen-
sionally reduced action for the fields on the equator:

A � A2 	
1

2!2
1

Z
dt
�
da
dt

�
2
	

1							
2�

p
Z
dtd�a�t�F�2�

0�;

(127)

where A2 is the action for the theory on a circle, and F�2�
0�

is the canonically normalized field strength of that theory.
The quantum-mechanical variable a�t� depends only on
time but not on space: it is a dual representation of the
topological mode of the gauge field; !1 is the frequency of
that mode, Eq. (126).
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If the action A2 contains fermions, we integrate them
out and, for small, slowly changing field strengths, obtain
as the leading terms the anomalous action (87), propor-
tional to the phase �M of the fermion mass. We see,
however, that in the present case this anomalous action
can be absorbed by a shift in the variable a. In other words,
it only changes the initial conditions for a�t�. The same
applies to any term of the form

A 0
3 �

Z
dtd�d�u���F0�; (128)

which we might have added by hand to the original 3D
action (u is some function). This is because at low energies
F0� projects onto the topological mode, so (128) becomes
of the same form as the last term in (127). So, in what
follows we assume that a in (127) already includes the
effect of �M and of any term such as (128), i.e., we set
�M � 0 and u � 0. [Strictly speaking, this requires that the
combined a�t� is sufficiently small to prevent the decay of
the uniform electric field, Eq. (129) below, into fermion
pairs, cf. Ref. [20].]

Now, integrating out the uniform component of A�2�
� , we

obtain

hF�2�
0�i � �

1							
2�

p a�t� (129)

and a simple oscillatory Lagrangian for a�t�:

La �
1

2!2
1

�
da
dt

�
2
�

1

2
a2: (130)

We see that in the limit !1 ! 0, the inertia of a grows
indefinitely. Formally setting !1 � 0 would convert a into
a conventional time-independent �-angle.

The condition that F�2�
0� is slowly varying implies that

!1 � j-j, where - is the fermion mass. For large enough
!1, the oscillating a can efficiently decay into fermions,
and Eq. (130) is no longer applicable. (A single quantum of
a can decay into fermions when !1 > 2j-j, two such
quanta will be required when j-j<!1 � 2j-j, etc.)

The variable a�t� can be viewed as a ‘‘global axion,’’ in
the sense that it couples to the topological density in a way
similar to how the usual axion [26,27] does. However,
since a only depends on time, and not on space, it does
not correspond to a new particle. In fact, it is not even an
additional degree of freedom, external to the original 3D
theory: as Eq. (129) shows, it is simply a different repre-
sentation of the time-dependent uniform electric field.

Clearly, existence of such a variable would not be pos-
sible in a perfectly Lorentz-invariant theory but, of course,
the 2D Lorentz invariance is not exact in our brane-world
scenario.

Finally, we note that, although Eq. (129) is specific to a
3D U�1� gauge theory, the general structure of Eq. (127) is
not. For a 5D non-Abelian theory (with Sd�1 � S4), we
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would replace (127) with

Z
DAB exp

(
iA4 	 i

1

2!2
1

Z
dt
�
da
dt

�
2

	 iv
Z
d4xa�t�F-( ~F

-(

)
; (131)

where A4 is the conventional 4D action, and v is a
suitably chosen constant.

VII. THEORY ON A DISK

Our results on chiral fermions and the vacuum structure
on a sphere are related to the topology, rather than geome-
try, of the spatial manifold. Similar results are valid for a
simpler, flat geometry. Simply cut a sphere along the
equator, choose a hemisphere, and make it flat by replacing
it with a disk. Then, substitute the domain wall by a
suitable boundary condition. In this subsection we present
the corresponding equations. We will call the boundary of
the disk the brane and its interior the bulk.

A. Fermions on a disk

Introduce Cartesian coordinates x and y with origin at
the center of the disk. Three-dimensional �-matrices used
in this subsection are �0 � �3; �1 � i�1; �2 � i�2. Note
that these matrices are associated with the Cartesian coor-
dinates. Then, the Dirac equation i�-@-	�M	 � 0,
where M> 0 is a constant fermion mass in the bulk, can
be written in polar coordinates (x � r cos�; y � r sin�) in
the form of a Schrödinger equation i @	@t � H	 with the
Hamiltonian

H �
M e�i���@r 	

i
r @��

ei��@r 	
i
r @�� �M

 !
; (132)

leading to the energy eigenvalue problem H	 � E	. The
regular at r � 0 solutions are

 1

 2

� �
�

ein�Jn�kr�E	

�ei�n	1��Jn	1�kr�E�

� �
; (133)

for E2 >M2, and

 1

 2

� �
�

ein�In�kr�E	

ei�n	1��In	1�kr�E�

� �
; (134)

for E2 <M2. Here E	 �
																		
jE	Mj

p
; E� �																		

jE�Mj
p

; k �
																						
jE2 �M2j

p
, Jn, and In are the Bessel

and modified Bessel functions, n is an integer.
A boundary condition that produces a left chiral fermion

on the brane and is consistent with the Hermiticity of the
Hamiltonian is

�1� �5����	jr�R � 0; or  2 � ei� 1; (135)

where �5��� � �i��1 cos�	 �2 sin�� is a chirality ma-
trix in polar coordinates. Equation (135) leads to the ei-
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genvalue equations

In�kR�E	 � In	1�kR�E�; E2 <M2; (136)

Jn�kR�E	 � �Jn	1�kR�E�; E2 >M2; (137)

where R is the radius of the disk. The solution to Eq. (136),
at MR� 1 gives a chiral mode with dispersion relation
E � ��n	 1

2�=R, exactly as we have obtained for a sphere.
This mode is localized at the boundary of the disk, with an
exponential wave function �e�M�R�r� for �R� r�=R� 1.
Solutions to Eq. (137) lead to massive bulk modes with
energies greater than M.

A right-handed fermion can be derived in a similar
manner, by choosing the negative mass parameter M< 0
and by changing the boundary condition (135) to �1	
�5����	jr�R � 0.

A massive (with mass -), Dirac fermion living on the
boundary of the disk can be introduced exactly in the way it
has been done for the orbifold or a sphere, namely, by
including two fermions, the first one (	1) producing the
left one and the second (	2) producing the right fermion,
with the mixing mass term - �	1	2.

B. Gauge fields on a disk

Similarly to the case of a sphere, a gauge field that has a
�1	 1�-like low-energy mode, while other modes are sepa-
rated by a large gap, can be introduced through Lagrangian

L � �
1

4
"�r�FABFAB; (138)

where the warp factor "�r� is of order one in a small
vicinity of the disk boundary and goes to zero at r! 0.
A typical model for "�r� could be

"�r� �
�
r
R

�
2
e�M�R�r�: (139)

As for the orbifold case, the boundary condition to the
gauge field is

Fr�jr�R � Fr0jr�R � 0: (140)

However, in contrast to the orbifold case, the vacuum is
topologically trivial, as follows from the fact that the
boundary of the disk is a simply connected manifold.
Namely, allowed gauge functions may contain a 2�n
jump along a closed loop on the disk or along a line
connecting two points at the boundary. All these trans-
formations can be continuously transformed into trivial
gauge transformations.

The absence of a conventional �-angle on a disk still
leaves us with the possibility to have an effective �-angle,
due to transitions that connect the vacuum to a vortex state.
The only difference with the sphere in this regard is that the
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total magnetic flux through the disk is not conserved. But
this is in fact necessary for a candidate vortex state to be
connected to the vacuum: the disk is analogous to a hemi-
sphere, rather than the entire sphere in our previous ex-
ample. For a suitable warp factor in (138), the lowest-
energy vortex state can be light enough to produce a slowly
changing �eff�t�.

C. Scalar fields on a disk

Scalar fields can be localized on the boundary of a disk
similarly to fermions. In this subsection, we consider a real
scalar field as a prototype for a (complex) field that could
give rise to the Higgs mechanism.

We start from the standard Lagrangian

L �
1

2
�@-’�

2 �
M2

2
’2: (141)

The regular at r � 0 (in polar coordinates) solutions to the
equations of motion are

’ � e�iEt�in�
�
In�kr� E2 <M2

Jn�kr� E2 >M2:
(142)

The boundary condition�
@’
@r

�
																			
M2 �m2

p
’
���������R

� 0; (143)

where m2 � M2, leads to the following dispersion rela-
tions:

1

2
�In	1�kR� 	 In�1�kR�� �

																			
M2 �m2

M2 � E2

s
In�kR�;

E2 <M2;

(144)

1

2
�Jn�1�kR� � Jn	1�kR�� �

																			
M2 �m2

E2 �M2

s
Jn�kR�;

E2 >M2;

(145)

which single out a light mode with dispersion relation (in
the physically interesting limit R! 1; n! 1; n=R �
const, with m and M fixed)

E2 �

�
n
R

�
2
	m2 (146)

and a wave function localized on the brane. Other, bulk
modes, have large masses and are nonobservable at small
energies.

VIII. DISCUSSION AND CONCLUSIONS

Results of this paper are twofold. First, we have shown
how conservation of a global current in odd dimensional-
-16



BRANE-WORLDS AND THETA VACUA PHYSICAL REVIEW D 71, 104024 (2005)
ities can be reconciled with the presence of an anomaly in
the reduced, even-dimensional theory. The central obser-
vation here is the presence of an additional contribution to
the charge balance, due to restructuring of the massive
fermion modes.

Second, we have presented a brane-world scenario that
leads to a time-dependent effective �-angle. In this sce-
nario, the space is a sphere, and a domain wall is positioned
along the equator. Since the mapping from the sphere to the
gauge group is trivial, the usual, time-independent �-angle
is absent. However, the requirement that the low-energy
limit is a dimensionally reduced gauge theory automati-
cally brings in an effective �-angle.

We have discussed this scenario in detail for the case of a
U(1) gauge field in a �2	 1� ! �1	 1� compactification
(see Fig. 2). In this case, a simple picture of the effective
�-angle can be obtained, based on tracking the motion of
flux between the two hemispheres. For a free gauge field
(but with a warped action), when exact results can be
obtained, the dynamics of �eff turns out to be oscillatory.
We expect that when the gauge field interacts with light
matter or in a nonstatic universe these oscillations will be
damped, so that �eff relaxes to zero. We also expect that a
similar relaxation dynamics will obtain for the �4	 1� !
�3	 1� compactification of a non-Abelian theory, thus
providing a solution to the strong-CP problem.

The idea that the vacuum structure of a gauge theory can
be modified in the presence of extra dimensions is by itself
not new. Indeed, already quite a while ago [6] we pointed
out that, if the higher-dimensional theory is defined on a
space manifold Sd�1, which is compact and obeys the
property �3�Sd�1� � 1, the vacuum is topologically trivial
and that this can be a basis for a solution to the strong-CP
problem.

Let us compare the structure of the manifolds of Ref. [6]
and of the present work. We start from the 2	 1 ! 1	 1
compactification. In both cases the topology of the space is
that of a 2-sphere. In Ref. [6], we proposed that the low-
energy theory is 1	 1 dimensional because the manifold
has the form of a sausage, with L� R, see Fig. 1.

In this setup, there is no complete translational invari-
ance along our dimensions because of the presence of two
highly curved regions, where our space ‘‘ends.’’ Never-
theless, if an observer resides far from these regions, the
low-energy physics looks 1	 1 dimensional, as the size of
extra dimension R is assumed to be small. This setup solves
the � problem in the following way. First, the topology of
space is such that no nontrivial gauge transformations
exist. Second, the determinant of the fermionic mass ma-
trix is always real, because the fermions are vectorlike. The
generalization of this picture to 4	 1 dimensions has
qualitatively the same features.

Note that compactness of the higher-dimensional space
is essential: only in this case the topological argument is
unambiguous. (Thus, for instance, a recent proposal [28]
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for solving the strong-CP problem with a noncompact
manifold will not work.) The easiest way to see the role
of compactness is to step back to the 3D ! 2D case. In this
case, the �-angle corresponds to a time-independent elec-
tric field [20]. On a noncompact manifold, there is always a
choice of boundary conditions at infinity for which such a
time-independent solution can be found. As long as no a
priori way to reject these boundary conditions is proposed,
the � problem is not solved.

Disadvantages of a sausagelike manifold are quite ob-
vious: it breaks the translational invariance in a very pecu-
liar way, and it is far from being obvious that a structure
like this can arise as a solution of the Einstein equations
when gravity is incorporated. Moreover, one cannot
include chiral fermions, and therefore possibility of con-
struction of a phenomenologically acceptable electroweak
theory is doubtful.

In the present paper, we have proposed another structure,
which solves the above-mentioned problems. First, the
manifold of the type shown in Fig. 2, where the standard-
model fields are localized on a brane, leads to physics that
is translationally invariant in our dimensions (i.e., along the
equator). There is a trivial breaking of the Lorentz invari-
ance, since our space is compact, but this is suppressed by
the size of our dimensions. Moreover, a similar geometry
can be obtained as a solution to the Einstein equations, as
was demonstrated in Ref. [7]. In that solution, two slices of
anti-de Sitter space are glued together along a three-
dimensional sphere representing the observable space.
Finally, the presence of a domain wall leads naturally to
chiral fermions and thus to possibility to construct a real-
istic theory.

A convenient way to visualize the dynamics of the low-
energy mode that plays the role of an effective �-angle in
this setup is through its dual— the ‘‘global’’ axion intro-
duced in Eqs. (127) and (131). This ‘‘global axion’’ is very
different from the usual axion in that it does not depend on
space and therefore does not correspond to a new particle.
Such a global axion is not subject to any astrophysical
constraints, as it cannot be excited in stars, whereas the
cosmological constrains for it may remain in force.

The time scale of changes in �eff is controlled by the size
of extra dimensions and can easily be very much larger
than the inverse of the QCD mass scale (QCD. In this case,
all the standard QCD dynamics—except for the strong-CP
problem—remains intact. In particular, the mechanism
that gives mass to the %0 meson is unaffected by the
presence of the global axion, regardless of whether one
associated this mechanism with instantons or any other
nonperturbative fluctuations in the QCD vacuum.

Such a global axion may look bizarre from the point of
view of relativistic field theory, but as we have shown in
this paper it may be quite natural in higher-dimensional
theories. Thus, the absence of strong-CP violation may
indicate that the number of spatial dimensions in our world
-17
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is greater than three, and moreover that the space has
certain topological properties and is compact.
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APPENDIX A: GREEN FUNCTIONS ON THE
ORBIFOLD

The computation of anomalies requires computation of
several Feynman diagrams. In this appendix we construct
the relevant fermionic propagators for the theory defined
by Lagrangian (46).

Let us define for this end two scalar propagators,
GD�x

-; z; z0� and GN�x
-; z; z0� which satisfy the equations

�
@(@

( �
d2

dz2
	m2�z� 	

dm
dz

	 j-j2
�
GD�x

-; z; z0�

� #2�x�#�z� z0�;�
@(@( �

d2

dz2
	m2�z� �

dm
dz

	 j-j2
�
GN�x-; z; z0�

� #2�x�#�z� z0�

(A1)

and boundary conditions

GD�x-;�R=2; z0� � 0;�
d
dz

	m�z�
�
GN�x

-; z; z0�j�R=2 � 0:
(A2)

They can be expressed through the orthogonal sets of
functions  n and �n defined in (8) as follows:

GD�x-; z; z0� �
Z d2k

�2��2
eikx ~GD�k; z; z0�;

~GD�k; z; z0� �
X1
m�1

 m�z� m�z
0�

�k2 	M2
m 	 j-j2

;

GN�x
-; z; z0� �

Z d2k

�2��2
eikx ~GN�k; z; z

0�;

~GN�k; z; z0� �
X1
m�0

�m�z��m�z0�

�k2 	M2
m 	 j-j2

:

(A3)

The Green functions in Fourier space GD�k; z; z0� and
GN�k; z; z0� satisfy the equation
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�
�
d2

dz2
	m2�z� 	

dm
dz

	 j-j2 � k2
�
GD;N�x

-; z; z0�

� #�z� z0� (A4)

and boundary conditions following from (A2).
A helpful relation between the two functions is

�@z �m�GD�x
-; z; z0� � ��@0z �m�GN�x

-; z; z0�: (A5)

In five-dimensional theory one simply replaces d2k
�2��2

!
d4k
�2��4

. The integral over spatial components of momentum

should be understood as a sum over Fourier harmonics
since we work on a compact torus.

The free fermion propagator

S �
S11 S12
S21 S22

� �
; (A6)

obeys the equation

i�A@A 	m�z� �-
�-� i�A@A �m�z�

� �
S � #2�x�#�z� z0�

(A7)

and the boundary conditions

PLS1ijz��R=2 � 0; PRS2ijz��R=2 � 0; i � 1; 2:

(A8)

It is easy to check that it can be expressed through scalar
propagators GD and GN as

S11 � ��i�A@A �m�z���PLGD 	 PRGN�;

S21 � -��PLGD 	 PRGN�;

S22 � ��i�A@A 	m�z���PLGN 	 PRGD�;

S12 � -�PLGN 	 PRGD�;

(A9)

where PL � 1
2 �1	 �5� and PR � 1

2 �1� �5� are the chi-
rality projectors.

Now we construct explicitly the Green function
~GD�k; z; z0�jk�0;-�0 
 GD�z; z0� needed for a number of
applications. It satisfies the equation�

�
d2

dz2
	m2�z� 	

dm
dz

�
GD�z; z0� � #�z� z0� (A10)

and the boundary conditions GD��R=2; z0� � 0.
Let us define the function

4�a; b� �
Z b

a
�0�z�2dz; (A11)

where �0�z� is the zero mode defined in (6). The obvious
properties of the function 4�a; b� are 4��R=2; R=2� �
1; 4�a; a� � 0. Then one can easily check that the function
-18
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GD�z; z0� �
1

2�0�z��0�z
0�
�4��R=2; z�4�z0; R=2���z0 � z�

	 4��R=2; z0�4�z; R=2���z� z0�� (A12)

satisfies Eq. (A10) and the boundary conditions.
Another function we will need is

GD�z� 
 GD�z; z� �
4��R=2; z�4�z; R=2�

�0�z�2
: (A13)

Now, we give the explicit expressions for the Green
functions ~GD and ~GN in a theory with m�z� � 0:

~GD�0; z; z0� �
1

- sinh-R

� �sinh-�z	 R=2� sinh-�z0 � R=2�

� ��z0 � z� 	 sinh-�z� R=2�

� sinh-�z0 	 R=2���z� z0�� (A14)

~GN�0; z; z
0� � �

1

- sinh-R

� �cosh-�z	 R=2� cosh-�z0 � R=2�

� ��z0 � z� 	 cosh-�z� R=2�

� cosh-�z0 	 R=2���z� z0��: (A15)
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Finally, we construct the Green function GD�k; z; z
0� for

a sharp domain wall residing in an infinite space-time. For
this we put in (A4)

m�z� � m0/�z� (A16)

and define a function

��z� � ��z�e�E�k�z 	 ���z�
�
e�E�k�z �

m0

m0 	 E�k�
eE�k�z

�
;

(A17)

where

E�k� �
																														
m2

0 	-2 � k2
q

: (A18)

Then

GD�k; z; z0� � ��z� z0���z����z0�

	 ��z0 � z���z0����z�: (A19)

APPENDIX B: DERIVATION OF EQ. (38)

In this appendix we will show that the flux of the gauge
current depends on the value of the gauge field at the end
points of interval only. Note that in 3D no regularization is
needed as all integrals are convergent.

For slowly varying in x- gauge fields the expression for
the current can be written as
J2�x-; z� �
e
2

Z
d2x0dz0/-(F-(�x0; z0�x0<�@<GD�x0; z; z0��@0z 	m�GN�x0; z0; z� � @<GN�x0; z; z0��@0z �m�GD�x0; z0; z��:

(B1)

The integral over x0 can be performed (going first to momentum space) to give

J2�x-; z� �
e
2�

Z
dz0

X
m�0

X
n�1

Gmn�z; z
0�MnF�Mm;Mn�/-(F

-(�x; z0�; (B2)

where

Gmn�z; z0� � ��m�z��m�z0��n�z0� n�z� 	  m�z� m�z0� n�z0��n�z�� (B3)

and

F�Mm;Mn� �
1

�M2
m �M2

n�
2

�
M2
n �M2

m 	M2
m log

�
M2
m

M2
n

��
: (B4)

Now, if one puts z � �R=2 directly in (B1) one gets zero because the expression for the current contains  n�z� which is
zero at the end points because of the boundary conditions. Nevertheless, the limit lim/!	0J

2���R=2� /�� is not equal to
zero. The reason is that in spite of the fact that the sum in (B2) converges for any z; z0, its derivative with respect to z does
not converge at z � �R=2. As this is an ultraviolet effect which involves infinite sums, the limit of small / can be
computed in a theory without mass term m�z�: the wave functions  n and �n approach their limit (10) for large n.

With this in mind we have
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"J 
 J2�x-; R=2� /� � J2�x-;�R=2	 /�

�
e
2�

Z
dz0/-(F

-(�x; z0�
4

R2

X
m	n�even

sin
�n/
R

�
cos��n�m�

�
z0

R
�

1

2

�
Fs�Mm;Mn�

	 cos��n	m�
�
z0

R
�

1

2

�
Fa�Mm;Mn�

�
; (B5)
where

Fs;a�Mm;Mn� �
1

Mn �Mm

�
1�

MmMn

M2
n �M2

m
log

M2
n

M2
m

�
(B6)

are symmetric (s) and antisymmetric (a) functions,
respectively.

The gauge field A- can be expanded over a complete set
of orthogonal functions on the interval as follows:

e
2�

/-(F
-(�x; z0� �

X
k�0

Bk�x� cos2�k
�
z0

R
�

1

2

�

	
X
k�1

Ck�x� sin2�k
�
z0

R
�

1

2

�
(B7)

so that

"J �
2

R

X
k�0

Bk�x�

"X1
n�2k

sin
�n/
R

Fs�Mn�2k;Mn�

	
X2k
n�0

sin
�n/
R

Fa�M2k�n;Mn�

#
: (B8)
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For any fixed finite k the limit of the second term is equal to
zero as the sum over n contains a finite number of terms.
On the contrary,
lim
/!0

X1
n�2k

sin
�n/
R

Fs�Mn�2k;Mn� � lim
/!0

X1
n�2k

sin
�n/
R

1

Mn
�
R
2

(B9)
since the sum over n can be replaced by an integral for
small /. Finally,
"J �
X1
k�0

Bk�x� �
e
4�

/-(�F
-(�x; R=2� 	 F-(�x;�R=2��:

(B10)
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