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We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate
defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector
u� � �g��@��. It is argued that the ghost condensate in this picture approximately corresponds to a
congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a
pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to
an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate
should be negligible. The accretion rate remains very small even if effects of higher derivative terms are
taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile
the black-hole accretion with the possibility that the ghost condensate might behave like dark matter.
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I. INTRODUCTION AND SUMMARY

Gravity at long distances shows us many interesting and
mysterious phenomena: flattening galaxy rotation curves,
dimming supernovae, and so on. These phenomena have
been a strong motivation for the paradigm of dark matter
and dark energy, i.e. unknown components of the Universe
which show up only gravitationally. As we essentially do
not know what the dark matter and the dark energy are,
however, it seems a healthy attitude to consider the possi-
bility that gravity at long distances might be different from
what we think we know.

This kind of consideration has been a motivation for
attempts for IR modification of gravity, e.g. massive grav-
ity [1] and the Dvali, Gabadadze, and Porrati-brane model
[2]. However, they are known to have a macroscopic UV
scale at around 1000 km, where effective field theories
break down [3,4]. This does not necessarily mean that
these theories cannot describe the real world, but implies
that we need nontrivial assumptions about the unknown
UV completion. The recent proposal of ghost condensation
[5] at least evades this problem and can be thought to be a
step towards a consistent theory of IR modification of
general relativity.

In general, if we have scalar fields then there are many
things we can play with them. In cosmology, inflation can
be driven by the potential part of a scalar field. It is also
possible to drive inflation by the kinetic part of a scalar
field [6]. On the other hand, scalar fields play important
roles also in particle physics. A scalar field is used for
spontaneous symmetry breaking and to change force laws
in the Higgs mechanism. This is usually achieved by using
a potential whose global minimum is charged under the
gauge symmetry. The basic idea of ghost condensation is to
break a symmetry and change a force law by the kinetic
part of a scalar field. In this sense the ghost condensation
can be considered as an analog of the Higgs mechanism.
Note that modifying gravity force law via spontaneous
05=71(10)=104019(7)$23.00 104019
symmetry breaking, i.e. ghost condensation, is different
from just adding a new matter in the sense that the line-
arized gravity is modified even in Minkowski or de Sitter
background.

Since the ghost condensation modifies gravity, it is
natural to ask the question ‘‘what happens to the ghost
condensate when gravity is very strong?’’ Two such situ-
ations are in the early universe and near a black hole.
Effects of gravity in the early universe were already inves-
tigated in Refs. [5,7]. Hence, the next question would be
‘‘what happens in the other regime of strong gravity,
namely, near a black hole?’’ This is the subject of this
paper. Other interesting topics related to the ghost conden-
sate include moving sources [8,9], nonlinear dynamics
[10–12], cosmology [13–15], galaxy rotation curve [16],
spin-dependent force [17], and so on.

Before discussing the ghost condensate near a black
hole, we begin with briefly reviewing a well-known fact
about observer-dependence of gravitational force. A black-
hole horizon forms when gravity is very strong in the sense
that even the degenerate pressure due to neutrons cannot
support the implosive gravitational force. However, as is
well known, different observers feel different gravitational
forces since a force is defined by acceleration of an ob-
server’s trajectory. This is particularly notable near a black-
hole horizon. For a static observer, the closer to the horizon
the observer’s position is, the stronger the gravitational
force is. Indeed, acceleration of a static observer diverges
at the horizon. On the other hand, for a freely falling
observer, a black-hole horizon is not a special point and
actually there is nothing divergent at the horizon. Indeed,
the acceleration of a freely-falling pointlike observer van-
ishes by definition. An extended object passing through a
black-hole horizon does feel a tidal force due to the non-
zero Riemann curvature, but the tidal force is negligible for
a sufficiently large black hole.

Now a ghost condensate in general defines a
hypersurface-orthogonal timelike vector field u��
-1  2005 The American Physical Society



SHINJI MUKOHYAMA PHYSICAL REVIEW D 71, 104019 (2005)
�@��. Thus, it is possible to regard the ghost condensate
as a hypersurface-orthogonal congruence of timelike
curves, each of which has the tangent vector u�. In this
paper we shall argue that, when the ghost condensate in
this picture approximately corresponds to a congruence of
geodesics, the accretion rate of a ghost condensate into a
black hole should be negligible for a sufficiently large
black hole. The essential reason for the smallness of the
accretion rate is the same as that for the smallness of the
tidal force acted on an extended object freely falling into a
large black hole.

In the rest of this paper, for simplicity we consider a
scalar field � described by the action

I �
Z
d4x

�������
�g

p
�
P�X� �

����2

2M2

�
; (1)
=const.

τ

FIG. 1. Constant-� surfaces are drawn for the Gaussian nor-
mal coordinate system (2) of Schwarzschild metric. The coor-
dinate system covers the shaded region.
where X � �@��@�� and the sign convention for the
metric is �� � � � ���. Hereafter, we assume that
P0�M4� � 0, P�M4� � 0, and P00�M4�> 0, where the first
equation just defines the scale M, the second condition
corresponds to zero cosmological constant in the Higgs
phase, and the third condition is required by the absence of
ghost in the Higgs phase. As shown in [5], P0 is set to an
extremely small value, or X ! M4 by the expansion of the
universe.

In the following we investigate a ghost condensate in-
teracting with a black hole and present an approximate
P0 � 0 solution, for which gravitational backreaction such
as accretion rate is very small. A. Frolov [18] considered
different solutions with P0 � 0, which correspond to con-
gruences of nongeodesic (namely accelerated) observers,
and obtained a large accretion rate due to the stress-energy
tensor of order M4P0. However, as the accretion proceeds,
the energy density around the black hole, which is also of
order M4P0, should decrease and P0 near the black hole
should approach to zero or a small value. Therefore, the
accretion should slow down because of shortage of energy
and the steady-state accretion claimed in Ref. [18] cannot
be established. In the following we shall obtain a much
smaller accretion rate for an approximate P0 � 0 solution.
Note that setting P0 ’ 0 is completely natural since the
expansion of the universe makes P0 extremely small.

We expect that the effects of the  term (corresponding
somehow to the tidal force for a freely falling extended
object) are small for a sufficiently large black hole. To be
more precise, for a large enough black hole, there should
be an approximate X � M4 solution for which the  term
can be treated perturbatively. Thus, we first construct an
appropriate X � M4 solution and then introduce deviation
from it due to the  term as a perturbation.

In a Gaussian normal coordinate system called Lemaitre
reference frame [19], the Schwarzschild geometry with
mass parameter m0 is written as
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ds2 � �d�2 �
d�2

a��; ��
� �2a2��; ��d�2; (2)

where

a��; �� �
�
1�

3�
4m0

�
2m0

�

�
3=2

�
2=3
: (3)

This coordinate system was originally found by Lemaitre
[20] and independently by Rylov [21] and Novikov [22].
For completeness, the coordinate transformation from the
standard coordinate system to this one is given in the
appendix. In particular the usual areal radius r is given in
this coordinate by r � �a so that the event horizon is
located at �a � 2m0. Manifestly, there is nothing bad on
the future (black-hole) horizon and the coordinate system
covers everywhere in the shaded region in Figs. 1 and 2.
The metric becomes ill only on the curvature (physical)
singularity at �a � 0. Each world line with � � const. in
Fig. 2 corresponds to an observer freely falling into the
black hole. With  � 0, � � M2� satisfies the equation of
motion and the Einstein equation since X � M4 implies
that the stress-energy tensor of � vanishes. In this sense,
this coordinate choice provides an analog of the unitary
gauge in flat spacetime. For this solution with  � 0, ��
is regular outside the horizon �a > rg:

0<
��

M3 �
3

2�aM

������
rg
�a

s
<

3

2Mrg
; (4)

where rg � 2m0 is the Schwarzschild radius. Hence, the
effect of the term �����2=2M2 in the action is sup-
pressed by the small factor

� �


M2r2g
: (5)

In Sec. II we shall perform perturbation with respect to �,
assuming that  � O�1� and that the black-hole radius rg
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FIG. 2. Constant-� surfaces are drawn for the Gaussian nor-
mal coordinate system (2) of Schwarzschild metric. The coor-
dinate system covers the shaded region.
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is sufficiently larger than the microscopic length scale����


p
=M. We shall see that the accretion rate is negligible

as expected.
As pointed out in Ref. [5], deviation from P0 � 0 in

homogeneous, isotropic cosmology behaves exactly like
dark matter. Hence, it is also interesting to estimate the
mass increase of a black hole due to the accretion of ghost
condensate with nonvanishing P0, whose value at large
distance is set by the energy density of dark matter. Since
the  term gives negligible contribution to the accretion
rate, we set  � 0 in this analysis.

Let us first estimate the maximum volume from which a
black hole can in principle swallow the energy density of
the ghost condensate. For this purpose, suppose that a
volume with radius R at t � 0 falls into a black hole and
passes the black-hole horizon with radius rg at t � T. A
crude estimate for the relation between R and T is obtained
by considering a fiducial collapsing FRW universe filled
with dark matter: R / T2=3. The proportionality coefficient
is guessed by dimensional analysis as

R
rg

�

�
T
rg

�
2=3
: (6)

Thus, the maximum mass increase �MBH during the time
interval T is estimated as

�MBH

MBH
�
��1R3

M2
Plrg

�
��1
�tot1

�H0T�
2; (7)

where ��1 ( / a�3) is the energy density of the ghost
condensate at large distance, �tot1 �M2

PlH
2
0 is the total

energy density at large distance, and H0 is the Hubble
expansion rate today. A more systematic and detailed
calculation is given in Sec. III and the result is qualitatively
the same, provided that the mass increase is for the Misner-
Sharp energy on the black-hole horizon and that T is
replaced by the advanced time v normalized at past null
infinity. It is easy to see that the mass increase �MBH given
by (7) is not too large. Indeed, even the integration over the
age of the universe (T �H�1

0 ) gives

�MBH

MBH

��������T�H�1
0

�
��1
�tot1

< 1: (8)

The rest of this paper is organized as follows. In Sec. II
we explain the main result of this paper, the small accretion
rate for an approximate X � M4 solution. In Sec. III we
estimate the mass increase of a black hole in the case that
the ghost condensate is dark matter. Section IV is devoted
to discussions.
II. ACCRETION RATE

In this section we consider corrections to a
Schwarzschild geometry due to the ghost condensate. In
particular, we calculate corrections to the Misner-Sharp
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energy to estimate the mass increase of a black hole due
to accretion of the ghost condensate.

The variation of the action (1) is

!I �
Z
d4x

�������
�g

p
�
1

2
T��!g�� � E�!�

�
; (9)

where

T�� � 2P0@��@���
@�����@��

M2 �
@��@�����

M2

�

�
P�

����2

2M2 �
@�����@��

M2

�
g��;

E� � 2r��P0r��� �
�2�

M2 ; (10)

so that the relevant equations of motion is

M2
PlG�� � T��; E� � 0: (11)

We expect that the effects of the  term are small for a
sufficiently large black hole and is of order O���, where �
is defined by (5). Hence, we first seek a solution for  � 0
and introduce a nonzero  as a perturbation later. In order
to find a solution with  � 0, we consider Schwarzschild
spacetime,

g��dx
�dx� � �f0�r�dt

2 �
dr2

f0�r�
� r2d�2;

f0�r� � 1�
2m0

r
;

(12)

and seek a solution to the equation X � M4 in this back-
ground. This is because, with  � 0, any configurations
with X � M4 satisfy not only the�-equation of motion but
also the Einstein equation. After finding the solution with
 � 0, we shall calculate the order O��1� corrections and
see that the corrections due to the nonzero  are small
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enough and that the expansion with respect to � makes
sense.

To give an explicit solution to X � M4, let us consider
the ansatz

� � M2�t� g�r��; (13)

for which

X

M4
�

1

f0
� �@rg�2f0: (14)

Hence, X � M4 can easily be solved to give

� � �� � M2

	
t� 2m0

�
2

���������
r

2m0

s
� ln

� ���
r

p
�

���������
2m0

p���
r

p
�

���������
2m0

p

��

:

(15)

For this solution, �� is finite except at r � 0:

���

M2
� �

3

2r

���������
2m0

r

s
: (16)

Note that the � sign in (15) is appropriate for a black hole
formed by gravitational collapse since, for the � sign,
�=M2 � v � t� r� near the horizon, where v is the ad-
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vanced time and r� � r� 2m0 ln�r=2m0 � 1�. On the
other hand, the � sign is appropriate for a white hole.
Hereafter, we choose the � sign since we are interested in a
black hole.

Now let us treat the  term as a perturbation. For this
purpose we consider the spherically symmetric, time-
dependent ansatz

g��dx�dx� � �f�t; r�e�2!�t;r�dt2 �
dr2

f�t; r�
� r2d�2;

(17)

� � ���t; r� � ��t; r�; (18)

where

f�t; r� � 1�
2m�t; r�

r
; m�t; r� � m0 �m1�t; r�;

!�t; r� � 0� !1�t; r�;
(19)

and consider �, m1, and !1 as quantities of order O���,
where � is defined by (5).

In the order O���, the Einstein equation becomes
@rm1 � 2m0F
0�r�@tm1 � �

9M2

8M2
Pl

�
1�

m0

r

�
; @r!1 � �

1� 2m0=r
r�1� 2m0=r�

@rm1 �
9M2m0�3� 2m0=r�

8M2
Plr

2�1� 2m0=r�
;

���������
2m0

r

s
�@r�� 2m0F

0�r�@t�� �
M2!1

1� 2m0=r
�

�1� 2m0=r�M2
Pl

2P00
0M

6r2
@rm1 �

M2�1� 2m0=r�

r�1� 2m0=r�
2 m1 �

9m0�1� 2m0=r�

16M4P00
0r

3 ;

(20)
where P00
0 � P00�M4� and

F�r� �

���������
r

2m0

s
r� 6m0

3m0
� ln

� ���
r

p
�

���������
2m0

p���
r

p
�

���������
2m0

p

�
;

F0�r� �
1

2m0

���������
r

2m0

s
1

1� 2m0=r
:

(21)

The solution to the first equation is

m1

m0
�

9M2

4M2
Pl

�
�

r
2m0

�
1

2
ln
�
r

2m0

�
� C�x��

�
; (22)

where

x� � F�r� �
t

2m0
; (23)

and C�x�� is an arbitrary function of x�. Note that the
x� � const. hypersurface is timelike and that x� �
v=2m0 � �5=3� 2 ln2� near the horizon, where v � t�
r� is the advanced time normalized at past null infinity, and
r� � r� 2m0 ln�r=2m0 � 1�. The finiteness of m1 in the
limit r! 1 with initial, finite t requires that the leading
asymptotic behavior of C�x�� for large positive x� should
be
C�x�� �
�
3

2
x�

�
2=3
: (24)

This implies that the leading asymptotic behavior of m1 on
the black-hole horizon for large positive v is

m1

m0
�

9M2

4M2
Pl

�
3v
4m0

�
2=3
: (25)

This formula shows that the accretion rate @vm1 is very
small at late time. Indeed, the accretion rate is suppressed
by the factor M2=M2

Pl, reflecting the fact that there is no
gravitational backreaction in the decoupling limit M2

Pl !
1.

For M� 10 MeV, the Hubble expansion rate today H0

is rewritten as M3=M2
Pl. Thus, the formula (25) at v � H�1

0
is

m1

m0

��������v�H�1
0

�

�
MPl

MBH

�
2=3

� 1; (26)

where the black-hole mass MBH is assumed to be much
larger than the Planck massMPl and we have set  � O�1�.
This result says that the accretion of ghost condensate is
negligible even if it is integrated over the age of the
universe.
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III. ACCRETION WITH P0 � 0

We have obtained a negligible accretion rate, assuming
that P0 � 0 in the lowest order in the �-expansion. This
assumption is natural since the expansion of the universe
makes P0 extremely small, P0 / a�3 ! 0 (a ! 1).

On the other hand, it is also interesting to consider
nonzero P0 by its own since the energy density associated
with homogeneous, nonvanishing P0 behaves exactly like
dark matter. The linear perturbation on top of the homoge-
neous background also behaves like dark matter, but its
nonlinear behavior remains to be seen [12]. In this section
104019
we analyze how nonzero P0 changes the accretion of the
ghost condensate to a black hole.

Technically speaking, what we shall do in this section is
the analysis of spherically symmetric, time-dependent per-
turbation of the Schwarzschild solution (12) with (15).
Throughout this section we set  � 0 since we have al-
ready seen in the previous section that the accretion due to
nonzero  is negligibly small. We consider the spherically
symmetric, time-dependent ansatz (17) with (18) and con-
sider �, m1, and !1 as first-order quantities.

The perturbed Einstein equation is
@rm1 � 2m0F0�r�@tm1 � 0; @r!1 � �
1� 2m0=r
r�1� 2m0=r�

@rm1;���������
2m0

r

s
�@r�� 2m0F0�r�@t�� �

M2!1

1� 2m0=r
�
M2�1� 2m0=r�

r�1� 2m0=r�
2 m1 �

�1� 2m0=r�M
2
Pl

2P00
0M

6r2
@rm1;

(27)
where F�r� is defined by (21). The solution to the first
equation is

m1 � ~m1�x��; (28)

where ~m1 is an arbitrary function and x� is defined by (23).
What we would like to know is the asymptotic behavior

of m1 � ~m1�x�� for large v on the black-hole horizon,
where v is the advanced time. For this purpose we just
have to specify a boundary condition at large r with initial
(finite) t since x� � v=2m0 on the horizon and x� �

�2=3� � �r=2m0�
3=2 for large r with finite t. For this purpose

we give a formula relating the perturbation X1 of X around
M4 to @tm1:

X1 � 2M2

	
�

���������
2m0

r

s
�@r�� 2m0F

0�r�@t�� �
M2!1

1� 2m0=r

�
M2�1� 2m0=r�
1� 2m0=r

m1



;

�
�1� 2m0=r�M2

Pl

P00
0M

4r2
@rm1;

�
M2

Pl���������
2m0

p
P00
0M

4

@tm1

r3=2
:

(29)

We have used the last equation in (27) to obtain the second
line and used the first equation in (27) to obtain the last
line. This formula can be rewritten as a relation between
~m0
1�x�� and the energy density of � excitation ��:

�� � 2M4P00
0X1 �

2M2
Pl���������

2m0

p
r3=2

@tm1 �
2M2

Pl���������
2m0

p
r3=2

~m0
1�x��
2m0

;

(30)
or

~m0
1�x��
2m0

�

���������
2m0

p
r3=2

2M2
Pl

��: (31)

Now let us estimate the right-hand side (r.h.s.) of (31) at
large r with initial (finite) t. This gives the asymptotic
behavior of ~m0

1�x�� for large x� as

~m0
1�x��
2m0

�
3m2

0x�
M2

Pl

��1 for x� � 1; (32)

where ��1 is the energy density of � excitation at large r
with initial (finite) t. The left-hand side of this equation is
actually equal to @vm1 on the black-hole horizon because
of (28). Thus,

@vm1

m0

��������r�2m0

�
3��1v

2M2
Pl

forv � 2m0; (33)

and integration with respect to v gives

m1

m0

��������r�2m0

’
3��1v

2

4M2
Pl

�
9

4

��1
�tot1

�H0v�2 forv � 2m0;

(34)

where �tot1 � 3M2
PlH

2
0 is the total energy density at large

distance and H0 is the present Hubble expansion rate. This
formula agrees with (7) except for the O�1�-factor 9=4,
provided that the advanced time v is replaced by the
fiducial cosmic time T.

IV. DISCUSSIONS

A tachyon is considered to be sick in the context of
particle mechanics, but in field theory just indicates insta-
bility of a background. We have considered a similar
possibility called ghost condensation [5] that a ghost field
-5
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might be just an indication of instability of a background
and that it can condense to form a different background
around which there is no ghost.

We have considered the question ‘‘what happens to the
ghost condensate near a black hole?’’ We have argued that
the ghost condensate in this picture approximately corre-
sponds to a congruence of geodesics. In other words, the
ghost condensate accretes into a black hole just like a
pressureless dust. Correspondingly, if the energy density
of the ghost condensate at large distance is set to an
extremely small value by cosmic expansion then the late-
time accretion rate of the ghost condensate should be
negligible. The accretion rate remains very small even if
effects of higher derivative terms are taken into account,
provided that the black hole is sufficiently large. This has
been explicitly confirmed by a detailed calculation based
on the perturbative expansion with respect to a higher
derivative term. The essential reason for the smallness of
the accretion rate due to the higher derivative term is the
same as that for the smallness of the tidal force acted on an
extended object freely falling into a large black hole. We
have also given an estimate of the mass increase of a black
hole in the case that the ghost condensate is dark matter and
have shown that the accretion is still slow.

In Ref. [18] A. Frolov previously argued that the accre-
tion rate is huge, contrary to our result. One of the reasons
for the difference is that, while we have consistently taken
into account gravitational backreaction in the present pa-
per, he neglected gravitational backreaction. In Ref. [18],
by using solutions of the equation of motion for the scalar
field in a fixed geometry, a part of the stress-energy tensor
is calculated to give the accretion rate via a part of the
Einstein equation. However, this treatment neglects the
remaining components of the Einstein equation, which
could completely change both the geometry and the be-
havior of the scalar field. The large accretion rate is due to
large P0, but P0 near the black hole should decrease and
approach zero since the energy density, which is of order
M4P0, decreases due to the accretion. Therefore, the ac-
cretion should slow down because of shortage of energy
and the steady-state accretion claimed in Ref. [18] cannot
be established.

It is also interesting to notice that different scalar fields
can behave very differently near a black hole. We have
found that the ghost condensate near P0 � 0, i.e. within the
validity of the low energy effective field theory, accretes
into a black hole just like a pressureless dust. On the other
hand, Frolov and Kofman [23] showed that a rolling (usual)
scalar field behaves like radiation near a black hole. It
seems interesting to classify the behaviors of different
kinds of scalar fields near a black hole and understand their
behavior in more systematic way.

We have included the homogeneous component of the
energy density (in other words, cosmological energy den-
sity) of � in the formula (33). For a black hole in a galaxy,
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one might think that ��1 should be replaced by some
fraction of the energy density of dark halo if the ghost
condensate behaves as dark matter in galaxies. In this case
the mass increase in the unit of the initial mass would
become order unity within the galaxy dynamical time.
However, because of the following reason, we expect that
accretion should be slower. What makes the local density
of � in a galaxy higher than the cosmological value should
be nonlinear dynamics. In Ref. [12] it is argued that
caustics should form within the Kepler time1 and that the
ghost condensate should be described by a patchwork of
regular solutions. The size of each patchwork domain can
be much smaller than the size of the galaxy, depending on
the dynamics. This means that the ghost condensate aver-
aged over galactic scales should have effective rotation, i.e.
angular momentum, around a black hole located in the
galaxy unless the initial condition is extremely fine-tuned.
(Without the patchwork, � should be regular everywhere
and there would be no rotation: @��@��� � 0.) The fine-
tuning required to make the effective rotation vanish is
expected to be very severe in the case of a tiny ratio of the
black hole size to the dark halo size. With the effective
rotation, it is not easy for the ghost condensate to fall into a
black hole straightforwardly. Thus, even if the ghost con-
densate contributes to the dark halo significantly, we ex-
pect that the dark halo component cannot accrete to a black
hole efficiently. On the other hand, the cosmological en-
ergy density of the excitation of the ghost condensate can
smoothly fall into a black hole because of the absence of
rotation. Therefore, the accretion rate for a black hole in a
galaxy should be between the one given in (33) and the one
which would be obtained by setting ��1 to the energy
density of dark matter in the galaxy. In other words, for a
black hole in a galaxy, the mass increase in the unit of the
initial mass should become order unity in a time scale
between the galaxy dynamical time and the age of the
universe. It is worthwhile to analyze this issue in more
detail.
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APPENDIX: GAUSSIAN NORMAL COORDINATE

We can find a Gaussian normal coordinate system mo-
tivated by the analysis in Sec. II. First, let us consider ��

and x� as time and space coordinates. We can calculate
metric components as
-6
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@���@��� � �M4; @�x�@�x� �
r

�2m0�
3 ;

@���@�x� � 0:
(A1)

Thus, the Schwarzschild metric is expressed as

ds2 � �
d�2

�

M4 �
�2m0�

3

r���; x��
dx2� � r2���; x��d�

2;

(A2)

where

r���; x�� � 2m0

�
3

2

�
x� �

��

2m0M
2

��
2=3
: (A3)

This coordinate system is nice in the sense that it covers
everywhere in the region v >�1 (namely, the relevant
half of the Kruskal extension) including the inside of the
future (black-hole) horizon. However, it is not manifest
how to deform this metric continuously to the flat metric.

Hence, let us do one more coordinate transformation
���; x�� ! ��; ��, where

� �
��

M2 ; � � 2m0

�
3

2
x�

�
2=3
;

� < �max��� �
4m0

3

�
�

2m0

�
3=2
:

(A4)

In this new coordinate system, the Schwarzschild solution
is
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ds2 � �d�2 �
d�2

a��; ��
� �2a2��; ��d�2; � � M2�;

(A5)

where

a��; �� �
�
1�

3�
4m0

�
2m0

�

�
3=2

�
2=3
: (A6)

This coordinate choice is an analog of the unitary gauge in
flat spacetime. Actually, the metric becomes the flat metric
in the m0 ! 0 limit. The unbroken shift symmetry is

� ! ��M2�0; � ! �� �0;�
�

2m0

�
3=2

!

�
�

2m0

�
3=2

�
3�0
4m0

:
(A7)

There is nothing bad on the future (black-hole) horizon
and the coordinate system covers everywhere in the region
v >�1 (the shaded region in Figs. 1 and 2). The metric
becomes ill only on the curvature (physical) singularity at
�a � 0. As a consistency check it is easy to calculate the
Ricci tensor R�� and the Misner-Sharp energyMMS for this
metric as

R�� � 0; MMS �
�a
2

�1� @���a�@���a�� � m0:

(A8)
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