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Periodic standing-wave approximation: Nonlinear scalar fields, adapted coordinates,
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The periodic standing wave (PSW) method for the binary inspiral of black holes and neutron stars
computes exact numerical solutions for periodic standing-wave spacetimes and then extracts approximate
solutions of the physical problem, with outgoing waves. The method requires solution of a boundary-value
problem with a mixed (hyperbolic and elliptic) character. We present here a new numerical method for
such problems, based on three innovations: (i) a coordinate system adapted to the geometry of the
problem, (ii) an expansion in multipole moments of these coordinates and a filtering out of higher
moments, and (iii) the replacement of the continuum multipole moments with their analogs for a discrete
grid. We illustrate the efficiency and accuracy of this method with nonlinear scalar model problems.
Finally, we take advantage of the ability of this method to handle highly nonlinear models to demonstrate
that the outgoing approximations extracted from the standing-wave solutions are highly accurate even in

the presence of strong nonlinearities.
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L. INTRODUCTION
A. Background

The detection and interpretation of gravitational wave
signals from inspiralling black holes or neutron stars re-
quires a solution of Einstein’s equations for the late stages
of the inspiral [1-3]. Much effort is going into the develop-
ment of computer codes that will evolve solutions forward
in time. For recent progress see [4—6]. Such codes will
eventually provide the needed answers about the strong
field interaction and merger of the binary objects, but many
technical challenges of such a computation slow the devel-
opment of the needed codes. This has led us to propose, as
a near term alternative, the periodic standing wave (PSW)
approach. Elements of this approximation have been in-
troduced elsewhere [7-9], but are most thoroughly pre-
sented in a recent paper [10] that we will hereafter refer to
as “Paper 1.’ In the PSW approach, a numerical solution is
sought to Einstein’s equations, not for a spacetime geome-
try evolved from initial data, but rather for sources and
fields that rotate rigidly (i.e., with a helical Killing vector)
and that are coupled to standing waves.

Paper 1 gives the details of how to extract from this
solution an approximation to the problem of interest: a
slowly inspiralling pair of objects coupled to outgoing
waves. Paper I also describes the nature of the mathemati-
cal problem that must be solved numerically: a boundary-
value problem with “‘standing-wave boundary conditions™
on a large sphere surrounding the sources. The differential
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equations of this boundary-value problem are mixed, ellip-
tical in one region (inside a “light cylinder’’) and hyper-
bolic in another (outside).

The method of solution in Paper I was straightforward.
The differential equations and boundary conditions were
implemented with a finite difference method (FDM) in a
single patch of standard corotating spherical coordinates.
The equations were solved with Newton-Raphson iteration
of a sequence of linear approximations, and a straightfor-
ward inversion of each linear approximation. The relative
simplicity of this approach was useful to demonstrate the
basic well-posedness and solubility of the problem and to
illustrate the important issues of the PSW method, espe-
cially the “effective linearity’’ that explains the accuracy
of the PSW approximation for the physical solution. The
method, however, has severe shortcomings. Multipole mo-
ments, and hence spherical coordinates are necessary in the
wave zone for the imposition of outer boundary conditions
and for the extraction of outgoing solutions from standing-
wave solutions. Spherical, and other standard coordinates
are, however, not well suited to resolving the relatively
small sources of the binary. This is especially true if the
sources are to be represented by boundary conditions on
the outer surface of a source, rather than by explicit source
terms. The usual technique for handling such problems is
coordinate patches and interpolation. This would be par-
ticularly inconvenient for the PSW computations since
standard iterative approaches are inapplicable to mixed
equations.
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In this paper we report on an alternative approach, one
that has the disadvantage of adding some analytic com-
plexity to the problem, and some worrisome features. But it
is a method that gives both remarkably efficient results for
model problems, and a potentially useful new approach to
the coupling of moving sources to their radiation field. This
new method is based on a coordinate system that is adapted
to the local structure of the sources and to the large-scale
structure of the distant waves. Though the PSW computa-
tions have been the proximate motivation for introducing
an adapted coordinate system, the success with this
system suggests that its utility may be more broadly appli-
cable. Such coordinates, in fact, have already been ex-
ploited, even in numerical relativity. “CadeZ coordinates”
[11,12], a carefully adapted coordinate system of this type,
was used in much of the work on head-on collisions of
black holes, and has more recently found to be useful
[13,14] for initial data and apparent horizon finding. Like
the Cade? coordinates, our coordinate systems will reduce
to source-centered spherical polar coordinates in the vicin-
ity of the sources, and to rotation-centered spherical polar
coordinates far from the sources.

The core of the usefulness of the adapted coordinates is
that the field near the sources is well described by a few
multipoles in these coordinates, primarily the monopole of
the sources, and that the field far from the sources is well
described only by a few multipoles in these coordinates. A
spectral method (that is, a multipole decomposition), there-
fore, requires only a small number of multipoles. We will
demonstrate, in fact, that for mildly relativistic sources
(source velocity = 30%c), excellent results are found
when we keep only monopole and quadrupole terms.

There is, of course, a price to be paid for this. For one
thing, there is additional analytic complexity in the set of
equations. Another difficulty is the unavoidable coordinate
singularity that is a feature of coordinates adapted to the
two different limiting regions. Still, the potential useful-
ness of the method, and the success reported here have led
to us treating this approach as the main focus of our
computations in the PSW work.

B. Nonlinear model problem

The innovative features of this method present enough
new uncertainties that it is important to study this method
in the context of the simplest problem possible. We use,
therefore, the same model problem as in Paper I, a simple
scalar field theory with an adjustable nonlinearity. We will
find it quite useful to set the nonlinearity to zero for
comparison with the known solution of the linear problem,
since many features of our method are unusual even for a
linear problem.

For the description of our model problem, we start with
Euclidean space coordinatized by the usual spherical co-
ordinates r, 6, ¢, and we consider sources concentrated
near the points r = a, § = /2, in the equatorial plane,
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and moving symmetrically according to ¢ = Qrand ¢ =
Qt + 7. As in Paper I, we seek a solution of the flat-
spacetime scalar field equation

V.,.58*F + AF = V2W — ;¥ + AF = Source, (1)

where F depends nonlinearly on W. The explicit form of F
will be the same as that in Paper 1. This will allow com-
parisons with the results of the very different numerical
technique in Paper I, and, as in Paper I, allows a very useful
comparison of the near-source nonlinear solution with an
analytic limit.

We are looking for solutions to Eq. (1) with the same
helical symmetry as that of the source motions, that is,
solutions for which the Lie derivative L,V is zero for the
Killing vector § = 9, + 2d. It is useful to introduce the
auxiliary coordinate ¢ = ¢ — ()z. In terms of spacetime
coordinates ¢, r, 8, ¢ the Killing vector is simply 9, and the
symmetry condition becomes the requirement that the
scalar field W is a function only of the variables r, # and
¢@. (We are assuming, of course, that the form of the non-
linear term is compatible with the helical symmetry.) It is
useful to consider the symmetry to be equivalent to the rule

9, — —Qa, 2

for scalar functions. In terms of the r, 6, ¢ variables,
Eq. (1) for W(r, 6, ¢) takes the explicit form

19 v 1 J o
<r2 ) + (sinﬁ —)

2or\' ar) r*sinf 06 EY’
1 *w
+ <r2sin20 - Q2>a_¢2 + AF("Y, 1, 6, ¢) = Source, (3)

that was used in Paper I.

C. Outline and summary

The remainder of this paper has the following organiza-
tion, and makes the following points. In Sec. II we intro-
duce the concept of adapted coordinates, comoving
coordinates that conform to the source geometry near the
source and that become spherical comoving coordinates far
from the source. A particular system of adapted coordi-
nates, two center bipolar coordinates (TCBC), is intro-
duced in this section. Though these coordinates are not
optimal for computational accuracy, they have the advan-
tage of analytic simplicity and are the only adapted coor-
dinates explicitly used in the computations of this paper.
Though the TCBC system is relatively simple it is still
sufficiently complex that many details of the use of this
method are relegated to Appendix A.

In Sec. II we also discuss the use of these adapted
coordinates in a FDM calculation, and explain the compu-
tational difficulties we encountered in trying to find stable
solutions with this approach. These difficulties led us to use
a spectral type method with the adapted coordinates. In
Sec. III we present the fundamental ideas of expanding the
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solution in spherical harmonics of the angular adapted
coordinates. In this section we also explain why we are
not, strictly speaking, using a spectral method since we do
the angular differencing by FDM, not by relationships of
the spherical harmonics. (For background on spectral
methods, and an important recent use of spectral methods
in numerical relativity, see [15].) Furthermore, we keep
many fewer multipoles than would in principle be justified
by the number of points in our angular grid. This “multi-
pole filtering” is one of the most interesting and innovative
aspects of our method. Because the adapted coordinates in
some sense handle much of the computation analytically
only a few multipoles need be kept. In most of the results,
in fact, only monopole and quadrupole moments are kept.

To illustrate a more standard spectral method, we
present in Appendix B a standard spectral approach to
the linear PSW problem in two spatial dimensions de-
scribed in TCBC coordinates. The appendix also uses
severe multipole filtering and serves to demonstrate in a
very different, and generally simpler, numerical context the
fundamental correctness of multipole filtering.

For the problem in three spatial dimensions, we have
found that a special technique must be used for multipole
expansion and multipole filtering. A straightforward ap-
proach would use the continuum multipoles evaluated on
the angular grid. We explain in Sec. III why this method
involves unacceptably large numerical errors, and why we
introduce a second innovative numerical technique, one
that we call the “eigenspectral method.” In place of the
continuum spherical harmonics evaluated on the angular
grid, we use eigenvectors of the angular FDM Laplacian.
These eigenvectors approach the grid-evaluated continuum
spherical harmonics as the grid becomes finer but, as we
explain in this section, the small differences are very
important in the multipole expansion/filtering method.
Some of the details of the eigenspectral method are put
into Appendix C, in particular, the way the FDM angular
Laplacian can be treated as a self-adjoint operator. [Note:
After the original submission of this paper, the authors
discovered that a method that is essentially identical to
the eigenspectral method was previously used by
Nakamura [16].]

Section IV starts by presenting the details of the model
scalar field problems to which we apply the eigenspectral
method: the choice of the nonlinearity, and the justification
for this choice; the manner in which we choose data on an
inner boundary taken to be the outer surface of a source;
the outer radiative boundary conditions; the Newton-
Raphson procedure for finding solutions to nonlinear prob-
lems; and the method by which we extract approximate
nonlinear outgoing solutions from computed nonlinear
standing-wave solutions.

This is followed, in Sec. V, by a presentation of numeri-
cal results that demonstrate convergence of the method.
These results show that the numerical methods are quite
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accurate despite the inclusion of only a very minimal
number of multipoles. In addition, the power of the nu-
merical method allows us to compute models with much
stronger nonlinearity than could be handled with the
straightforward FDM of Paper 1. For these highly nonlinear
models we confirm the “‘effective linearity’’ that was dem-
onstrated in Paper I with less dramatic models: the out-
going solution extracted from a standing-wave solution is
an excellent approximation to the true outgoing solution,
even for very strong nonlinearity. Conclusions are briefly
summarized in Sec. VL

Throughout this paper we follow the notation of Paper I
[10]. (A few changes from the notation and choices of
Paper I are made to correct minor errors of Paper I: (i)
the point source delta function is now divided by a Lorentz
v factor, as explained following Eq. (47). (ii) The nonline-
arity parameter A was used with inconsistent dimension-
ality in Paper I. Here A is consistently treated as a
dimensionless parameter, requiring the insertion of a factor
1/a? in the model nonlinearity of Eq. (48).

II. ADAPTED COORDINATES

A. General adapted coordinates

For the definition of the adapted coordinates it is useful
to introduce several Cartesian coordinate systems. We shall
use the notation x, y, 7 to denote inertial Cartesian systems
related to r, 0, ¢ in the usual way (e.g., z is the rotation
axis, one of the source points moves as x = a cos({)r), y =
asin({)r), and so forth). We now introduce a comoving
Cartesian system X ; 7 by

7 = rcosf X = rsinf cos(¢p — Q1)

~ o “
y = rsinf sin(¢ — Q).

In this system, as in the inertial x, y, z system, the 7 axis is
the azimuthal axis. We next define the comoving system

X=y Y=7 Z=%Xls-o 6))
in which the azimuthal Z axis is not the rotation axis, but
rather is the line through the source points, as shown in
Fig. 1.

QUL ggal now ii to introguchf: new comoving coordinates
xX,Y,2),0(X,Y, Z), D(X, Y, Z) that are better suited to a
description of the physical problem, and that allow for
more efficient computation. We will assume that the coor-
dinate transformation is invertible, except at a ﬁ~nitNe num-
ber of discrete points, so that we may write X, Y, Z, or
X, y, z as functions of y, ©, ®.

In terms of the comoving Cartesian coordinates, the
helical symmetry rule in Eq. (2) takes the form

~d D ~d o~
dy dx X 7

Our nonlinear scalar field equation of Eq. (1) can then be
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FIG. 1. Two sets of comoving Cartesian coordinates.

written, for helical symmetry, as
PR SR AR
x> oY 07
~ d d
- 92<Z—N - —~> ¥+ AF
X 0Z
= Source. (7

LWV + \F =

This field equation can be expressed completely in terms of
adapted coordinates in the form

LA 9*w
db T x5 acbz

ERA\)

92
LY+ AF=A + A
®®8®

XX aXZ
9> 0>
42—
axo0 X9 vod

F oy LY g W A
95000 Yoy 200

+24,6

+ B ow + AF
9D
= Sources. (8)

It is straightforward to show that the A;; and B; coef-
ficients here are given by

Ay =Vx-Vx—Q24,, 9)
Ape = VO - VO — 02444 (10)
App = VO - VD — 02Apq (11)
Ao =Vx VO - Q%44 (12)
A =Vy Vb — Q24,4 (13)
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Aoy = VO - VO — 02Agq (14)
B, =V2y— Q2B (15)
Be = V20 — 2B, (16)
By = V2D — 2B, (17)

Here the gradients, Laplacians and dot products are to be

~N ~NA~

taken treating the X,Y,Z as Cartesian coordinates, so that,
for example,
> > Ay 00 9y 90 9y 00
Vy Ve =287 L X7 L IXTZ s
0X 0X 09Y oY 9Z 9Z
The form of the A;; and B; terms in Egs. (9)—(17) are given,
for general adapted coordinates, in Eqs. (A17)—(A27).

B. A specific adapted coordinate system: TCBC

Before discussing general features of an adapted coor-
dinate system, it will be useful to give a specific example.
For that example, we choose a coordinate system y, 0, ®
that is particularly simple in form, though (as we shall
discuss below) not the choice that is numerically most
efficient. The chosen coordinates are most easily under-
stood by starting with the distances r; and r, from the
source points, and with the angles 6, 6, shown in Fig. 2.
The formal definitions of the adapted coordinates are

rir;
LZ + a)? + X + P/
(19)

—{[Z-a?+X +7°

1 ZZV 24 Y
= 7(01 + 02) = Etanfl(,\,z ~> ~2> (20)

Z —a-X -Y

® = tan~ ' (X/7). Q1)

This choice is sometimes called ““‘two center bipolar coor-
dinates” [17], hereafter TCBC, and is equivalent to the
zero-order coordinates used by Cade” [11,12].

An attractive feature of this particular choice of adapted
coordinates is that the above relationships can be inverted

— 2a

FIG. 2. Geometric basis for the TCBC adapted coordinates.
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in simple closed form to give

~ N
Z = \/5 [a®> + x?cos20 + \/(a4 + 2a%x? cos20 + xY)1.

(22)

~ 1
X = \/2[—a2 — x%cos20 + \/(a4 +2a%x* c0s20 + x*)]

X cosP. (23)

~ 1
Y = \/E[—a2 — x?co0s20 + \/(a4 + 2ax?c0s20 + x*)]

X sind®. 24)

The meaning of the , ® coordinates in the X, y plane (the

Z, X plane) is shown on the left in Fig. 3; a picture of three-
dimensional y, ®, and ® surfaces is shown on the right.

The geometrical definition inherent in Fig. 2 suggests
that the adapted coordinate surfaces have the correct limit
far from the sources. This is confirmed by the limiting
forms Eqgs. (22)—(24) for y > a. Aside from fractional
corrections of order a?/ x? the relations are

Z— x cos® X — x sin® cos®
(25)

Y — xsin® sin®.
Near the source point at Z = *a, the limiting forms, aside

from fractional corrections of order XZ / a?, are

2

~ X ~ X
Z— *a+ 2 cos(20) X — Z—5in(20) cos®
2a 2a

~ X
Y — Z— sin(20) sin®. (26)
2a

P

FIG. 3.

/6 a2 Y
. HIH T PR Tk
=0 fsesSSess
;7 SRS SSSseiasy o
X, - NNl s
r=1.1a == SAC
=27 N
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These limits, and Fig. 2, show that near the source point at

Z = a the expression y?/2a plays the role of radial dis-
tance, and 20 plays the role of polar coordinate. (Near the
source point at Z = —a, the expression y?/2a again plays
the role of radius, but the polar angle is 77 — 20.) Notice
that both for the near and the far limit, the polar angle is

defined with respect to the line through the sources, the Z
axis, not with respect to the rotational Z axis.

It is clear that our new system has a coordinate singu-
larity at the origin. Indeed, there must be a coordinate
singularity in any such adapted coordinate system. The
switch from the small- y coordinate surfaces, disjoint 2-
spheres around the sources, to the large- y single 2-sphere
cannot avoid a singularity.

The remaining specification needed is the outer bound-
ary conditions on some large approximately spherical sur-
face Y = XYmax- FOr the monopole moment of the field this
condition is simply that the field dies off as 1/y. For the
radiative part of the field we use the usual Sommerfeld
outgoing outer boundary condition 9,4/ = — 9,4, approxi-
mated as 9,4y = —d . The fractional error introduced by
this substitution is of order a?/y?. The Sommerfeld con-
dition itself is accurate only up to order (wavelength/r).
Since the wavelength is larger than a, our substitution r —
X in the outer boundary condition introduces negligibly
small errors. To apply the helical symmetry we use the
replacement rule in Eq. (6) and the outgoing boundary
condition becomes

AT L
- (z— - x—>

Ix X oz
ov v o
=Qr®——+r1®_—+T¥— 2
( 90 P a)(>’ @7)

where the I's are given explicitly in Appendix A. At large y

Adapted coordinates in the X, ; plane, and three-dimensional coordinate surfaces.
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the outgoing condition can be written

ow oV cos®
°T 0 Pl —
Ix (COS 40  sin®

sin® gg)(l + 0(a?/ x?)).
(28)

The correction on the right is higher-order at the outer
boundary Y = ymax and can be ignored. The ingoing
boundary condition follows by changing the sign of the
right hand side of Eq. (27) or (28).

The problem of Egs. (8) and (28) is a well-posed
boundary-value problem analogous to that in Paper I
[10]. As in Paper I, this problem can be numerically
implemented using the finite difference method (FDM)
of discretizing derivatives. The difference between such a
computation and that of Paper I is, in principle, only in the
coordinate dependence of the coefficients (A, Agg, * " *)
that appear in the differential equation and (I'®, - - - ) in the
outer boundary condition.

C. Requirements for adapted coordinates

For the scalar problem, there are obvious advantages of
the coordinate system pictured in Fig. 3. First, the surfaces
of constant y approximate the surfaces of constant W near
the sources, where field gradients are largest, and where
numerical difficulties are therefore expected. Since the
variation with respect to ® and @ is small on these sur-
faces, finite differencing of ® and ® derivatives should
have small truncation error. The steep gradients in Y,
furthermore, can be dealt with in principle by a reparamet-
rization of y to pack more grid zones near the source
points. An additional, independent advantage to the way
the coordinates are adapted to the source region is that
these coordinates are well suited for the specification of
inner boundary conditions on a constant ) surface.
Because of these advantages we shall reserve the term
“adapted” to a coordinate system for which constant y
surfaces near the source approximate spheres concentric
with the source.

A second feature of the TCBC coordinates that we shall
also require in general, is that in the region far from the
sources, x,®,® asymptotically approach spherical coordi-
nates, the coordinates best suited for describing the radia-
tion field. If the approach to spherical coordinates is
second-order in a/r, then the outgoing boundary condi-
tions will be that in Eq. (28).

There are practical considerations that also apply to the
choice of adapted coordinates. The coefficients of the rota-
tional terms in the equation (i.e. , those involving A; ;and B;
in Egs. (9)—(17)) require computing second derivatives of
the transformation from Cartesian to adapted coordinates.
If those relationships are only known numerically, these
second derivatives will tend to be noisy. For that reason, a
desirable and perhaps necessary feature of the adapted
coordinates is that closed form expressions exist for
x(x,7,2), and O(X, y,Z). (The expression for ®, the azi-
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muthal angle about the line through the source points, is
trivial.) It is possible in principle, of course, to have the
adapted coordinates defined without respect to the
Cartesians. In the scalar model problem, the coordinates
could be defined by giving the form of the flat-spacetime
metric in these coordinates. The nature of the helical
Killing symmetry, analogous to Eq. (6) would still have
to be specified of course. The choice of adapted coordi-
nates becomes a much richer subject in the case of the
gauge-fixed general relativity problem that is the ultimate
goal of the work; see Ref. [18].

The TCBC system satisfies all the practical requirements
of an adapted coordinate system. In particular, the func-
tions x(X, y,7), and O(X, , 7), as well as their inverses, are
all explicitly known in terms of elementary functions.
Though the TCBC coordinates are therefore convenient,
in addition to being well suited to the problem in Eq. (1),
they are not optimal. The perfect coordinates would be
those for which the constant y surfaces agree exactly with
the constant ¥ surfaces. This of course is impossible in
practice (and, in addition, would not be compatible with
the requirement that the coordinates go asymptotically to
spherical coordinates). We should therefore modify the
criterion for the “perfect coordinates” to that of having
W constant on constant y surfaces for no rotation (2 = 0).
The TCBC coordinate system, in fact, does satisfy that
requirement for the version of the problem of Eq. (1) in two
spatial dimensions with no nonlinearity, as detailed in
Appendix B. Because of this “near perfection” of the
TCBC coordinates for the linear two-dimensional problem
we found that we were able to achieve very good accuracy
for that case with moderate rates of rotation.

These considerations suggest that we could achieve an
improvement over the TCBC coordinates, by choosing y to
be proportional to solutions of the nonrotating case of
Eq. (1) in three spatial dimensions. Since the nonlinear
case would result in a solution that is known only numeri-
cally, we can follow the pattern of the two-dimensional
case and choose y simply to be proportional to the solution
of the linear nonrotating three-dimensional problem. The
O coordinate that is orthogonal to this y would have to be
found numerically, and would therefore be troublesome.
But there is no need for ® and y to be orthogonal. We
could, therefore, use the TCBC definition of ® in Eq. (20).
An improved set of adapted coordinates, then, would seem
to be

1/1 1 1
X:,(f+f) O=_(6,+6,) (29
2\r1 2

where r;, ; are the distances and angles shown Fig. 2.

In this paper, we shall report only numerical results from
the simplest adapted coordinate system to implement, the
TCBC coordinates. There are two reasons for this. The first
is the obvious advantages of working with the simplicity of
the TCBC case, and the advantage of having simple ex-
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plicit expressions for all coefficients in Eq. (8). The second
reason that we do not use the apparently superior adapted
coordinate in Eq. (29), is that we do not expect there to be
an equivalent for the general relativity problem. In that
case there will be several different unknown fields to solve
for, and there is no reason to think that the optimal coor-
dinate system for one of the fields will be the same for the
others.

III. SPECTRAL METHODS WITH ADAPTED
COORDINATES

The wave equation in Eq. (8), along with the boundary
conditions Eq. (28), can in principle be solved by imposing
a x, 0, ® grid and by using FDM. In practice, numerical
problems hinder a straightforward finite difference compu-
tation. Evidence for this is shown in Fig. 4, in which the
error (the difference between the computed solution and
the analytic solution) for the linear outgoing problem is
plotted for different locations of the outer boundary X ax-
As Fig. 4 shows, the quality of our solutions was highly
sensitive to small changes in grid parameters, such as the
location of the outer boundary. We attribute these difficul-
ties to the orientation of the finite difference grid at large
distance from the source. Loosely speaking, the spherical
polar grid is ““aligned” with the solutions, and errors are

0006 { L { L { 17T { L L

T o elgenspec 1

e FDE |

.. 0.004 - -
O

~ L i
-
()
g

E. = -

= 0.002 [~ -

- 0OCO00CC0000CC0OaCEEEONIOCORIOEC0NRAS

O ‘ L1 ‘ L1 ‘ I — ‘ L1 ‘ L1 ‘

40 42 44 46 48 50

Xmax

FIG. 4. Error in the computed outgoing linear solution as a
function of the location of the outer boundary. Results are shown
both for straightforward FDM in adapted coordinates and for the
eigenspectral method, explained in the text, with only monopole
and quadrupole terms kept.
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distributed evenly on the grid. Adapted coordinates be-
come spherical polar at large distances, but the polar axis
is aligned with the sources, not with the rotation axis. The
result may be a nonuniform distribution of errors, which
effectively excites spurious modes analogous to modes
excited inside a resonant cavity.

An attractive alternative to FDM is to expand W in a
complete set of functions of the angular coordinates ® and
®. Since one of our goals is to describe the radiation in the
weak wave zone, and since ® and ® approach comoving
spherical coordinates in the weak wave zone, the natural
set of basis functions is the spherical harmonics Y, (®, ®).
In terms of these we would look for a solution of Eq. (8) in
the form

V= > > am0)¥u (0, P). (30)

even{ m

(The odd €’s are omitted due to the symmetry of the
problem.)

The possibility of such a spectral method has been
introduced in Paper I as a potentially powerful way of
dealing with radiation from moving sources. The reason
for this is that near the source points the field is nearly
spherically symmetric, and hence can be described with
very few multipoles. Far from the source, the contribution
from multipoles of order € scale as (a(2), so the radiation
field is dominated by the monopole and quadrupole, and
again can be described with very few multipoles. It is,
therefore, plausible that with very few multipoles—per-
haps only the monopole and quadrupole—the fields every-
were can be described with reasonable accuracy.

In the multipole method, the expansion in Eq. (30) is
substituted in Eq. (8) to give

d*ay,
LV = Zd—gz[A)(,YY&n] + afm(/\/)
{m X

0%Y,
X [A@GWZ’" + App—sr + 24
Y o
00

day, ¢, Y,
iy [ZAX@ ot Aot BXYM}

3D

The next step is to project out ordinary differential
equations. This is most naturally done by multiplying by
some weight function W(y, ) and by Y,,, and by inte-
grating over all ® and ®. The result is our multipole
equations

+ Bo

+ Bgp

+

d*ag,(x)
Za€’m’€m d€m2 + Bf’m’€ma€m(/\/)
tm X

dafm(/\/)

= Sem (32
dX {m ( )

+ Yem'em
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where S, is the multipole of the source term, and where

21 T
Xl em = L dq)j(; d®W(X’ ®)

X Yy (0, DA, Y, (0, D)
2 T
B = f dD f dOW(y, O)Y:, (6, )
0 0
%Y, %Y, 0%Y,
X | Age —" + A —— m
[ 007502 T TP H9? 9 5000
+B 8Y€m+B aY€m
° 90 " 7® acb}
2T T
Yemton = ﬁ) 4D ﬁ dOW(x, O)Y, (O, d)
Y, Yy,
X | 240 — + 24 ¢ —" 4+ B Y, |. (33
|: X0 00 x® oD X €mi| (33)

The problem with this straightforward approach to mul-
tipole decomposition is that the angular integrals needed
for the projection are very computationally intensive, and
the solutions of the differential equations in y are very
sensitive to the values of the a’s, B’s, and 7v’s, that are
computed by these projection integrals. These shortcom-
ings do not apply to the 2-dimensional version of the
helically symmetric wave equation. In that case the pro-
jection integrals involve only a single integration variable,
and it proves to be fairly easy to compute accurate angular
integrals. We present the straightforward 2-dimensional
multipole expansion in Appendix B. This is meant to
illustrate the multipole expansion in a particularly simple
context, but more important it demonstrates a crucial point,
that we can get excellent accuracy by keeping only two
multipoles. This 2-dimensional computation also illus-
trates the alternative definiton of standing waves, that of
minimum wave amplitude, as sketched in Paper I.

It turns out that for the 3-dimensional problem, even
with only a small number of multipoles, there are two
classes of severe computational difficulties. First, the pro-
jection integrals in Eq. (33) are very computationally in-
tensive, especially due to the singularity at ® = 7/2 for
x/a = 1, a singularity that must be canceled in the pro-
jection integrals by the choice of the weight function
W(x, ©). In trials with the linear problem, and in compari-
sons with the known exact answer, we have found that
accuracy of the computed field is poor unless the integrals
are done very precisely. A second, quite distinct, difficulty
is related to the projection at the outer boundary. An out-
going boundary condition is applied to ay,,, for £ > 0. The
radiative moments, however, are much smaller than the
monopole moment ag,. Projection of a a,, moment with
€ > 0 will be contaminated by the much larger monopole
moment agyy, due to small numerical inaccuracies in the
projection. We have found this to be a problem even in the
simplest (static linear) models.
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We have used an alternative approach to multipole de-
composition and multipole filtering, an approach that gives
excellent results for the nonlinear scalar models and prom-
ises to be similarly useful in gravitational models.
Underlying this approach is the concept that the angular
nature of the multipole components of the radiation field is
determined by FDM operations, in particular, by the FDM
implementation of the Laplacian. The properties of the
spherical harmonics that make them useful in the contin-
uum description of radiation is taken over, in FDM com-
putations, by the eigenvectors of the FDM Laplacian.

To implement this idea we start by viewing the grid
values of the scalar field ¥ on a constant-y surface as a
vector ¥ whose components are most conveniently ex-
pressed with a double index

Here ©; and ®; are the values on the O, ® grid with
spacings A® and A®. It follows that V¥ is a vector in a
space of dimension N = ng X ng.

In the ®, ® continuum, the angular part of the Laplacian
at y/a > 1 is the operator

1 9 ] 1 02
2 =_ - : B
Ving sin® 90 |:s1n® 8®:| (sin®)? 92’

In a FDM this is replaced by an operator in the
N-dimensional space of angular grid values. Our eigens-
pectral method is based on finding the eigenvectors of this
N-dimensional operator.

The i, j component of the eigenvector will have the form

(35)

Y(f) which should be a good approximation to some

1l

Y4, (0, ®)), ie., to some continuum spherical harmonic
evaluated at grid points. (In practice we work only with real
eigenvectors that are approximations to normalized real
and imaginary parts of the grid-evaluated spherical har-
monics.) In Fig. 5 continuum spherical harmonics are
compared to the eigenvectors found for a grid with ng X
ne = 16 X 32 on an angular domain 0 = 0 < 77/2, 0 <
® = 77. As might be expected, the agreement between
eigenvector and continuum function is quite good when
the scale for change of the continuum function is long
compared to the spacing between grid points.

The eigenvalues found for the discrete and continuum
angular Laplacians are in good agreement for small eigen-
values. For the discrete problem we define an effective
multipole index € in the obvious way, by setting —€(€ +
1) equal to the eigenvalue for each eigenvector. A com-
parison is given in Fig. 6 of the integer continuum values of
€ and those found for a 16 X 32 grid on the region 0 =
0 =< 77/2, 0 = ® < 7. (Unlike the spherical harmonics,
the eigenvectors are not degenerate, so there is a small
range of € values of the eigenspectral method correspond-
ing to each € of the continuum problem.) For the discrete
operator the eigenvectors) For our problem the other an-
gular regions are related by symmetry. These symmetries
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FIG. 5 (color online).
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amplitude

f(radians)

The eigenvectors for a 16 X 32 grid compared to the corresponding continuum eigenfunctions, the spherical

harmonics. The continuous curves show the spherical harmonics; the data points are the components of the eigenvectors.

also eliminate the odd values of € omitted from Fig. 6.
The figure shows that for small € there is good agreement
between the discrete and continuum eigenvalues. Because
of this we can refer to monopole, quadrupole, hexadeca-
pole, .. .eigenvectors without ambiguity.

@@

discrete

l

continuum

FIG. 6 (color online). The ¢ values of the discrete angular
Laplacian on a 16 X 32 grid compared with the integer € values
of the continuum angular Laplacian. The eigenvectors of the
discrete angular Laplacian are not degenerate, so a cluster of
several ¢ values of the eigenspectral method corresponds to a
single ¢ value of the continuum problem.

In the mathematics of the grid space, two vectors F;; and
G;; are taken to have an inner product

i G;;sin(0,)AGAD. (36)

|||
i [\/]g

With some care, detailed in Appendix C, we can construct
the FDM angular Laplacian to be self-adjoint with respect
to the inner product in Eq. (36). This guarantees that the
eigenvectors can be chosen to be orthogonal. We complete
the analogy to the spherical harmonics by choosing the
eigenvectors to be normalized, so that we have

ne ng
> Z YY) sin(0,)AOAD = 5y (37)

(This normalization has been used for the eigenvectors
shown in Fig. 5.) With these definitions we can now write
a multipole expansion as

V(x, 0, @) =S a®()y?, (38)
k
with
ne ng
a0 =3 3 Wlx. 6, )7} sin(0)A04®,  (39)
i=1j=

The multipole filtering that was the motivation for the
introduction of the spectral decomposition is implemented
simply by limiting the terms included in the sum in
Eq. (38). Rather than include all eigenvectors, only those
with € < €,,,« are included. Since the discrete €’s are never
larger than the continuum €’s, a choice €,,,, = 5 means
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that the monopole, quadrupole and octupole terms, with
€ = 0,2,4 are included. The effect of the eigenspectral
method and multipole filtering are the suppression of the
large FDM boundary-related errors, as illustrated in Fig. 4.
In this method the k£ summation in Eq. (38) stops at some
maximum value governed by €., and the equations to be
solved are the following modifications of Egs. (32):

d?a®(x)
Ak —F 5
3 dx*

da®(y)
+ Buka®(x) + yiw TX = Sy
X
(40)
In place of Eq. (33) the coefficients in this sum are now
evaluated from

ap, =Y -4 YO (41)
a2y 92y a2y
w=Y®|A + App —— + 2409 ——
Bk [ 00 5?2 PO 3 00 3550
ay® ay®w
+ By ———+ By —— 42
9790 ® ad)} (42)
. ay® ay®
Yer = Y(")[ZAX@ o 2AX<DH + BXYem} (43)

where it is understood that the angular derivatives are
computed by finite differencing. In the effective source
term,

Sy =—Ay® . F(Z a® Y<k>), (44)

only the nonlinearity appears. There is no “‘true” source
term since we solve only outside the source and introduce
the properties of the source through boundary conditions.

Our method is clearly spectral in flavor, but it is worth
pointing out explicitly that this method is not a spectral
method according to the meaning usually given to that term
in numerical analysis. If it were a spectral, or pseudospec-
tral (collocation) method, then angular derivatives in the
field equations and boundary conditions would be taken
using properties of the spectral functions. (If the decom-
position were done into continuum spherical harmonics,
for example, a spectral method would evaluate W /9 ® by
using relations among the spherical harmonics.) In our
method, angular derivatives are taken by finite differenc-
ing, not by relations among the eigenvectors and their
angular derivatives. We could, in principle, convert our
method to one that meets the ““spectral method” (actually
pseudospectral) definition. We could use finite differencing
to compute, once and for all, relations among the eigen-
vectors and their derivatives. These relations could then
be used to replace any derivative by a linear combination
of eigenvectors. We have, however, not explored this
approach.
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Some comment must be made about a subtle but funda-
mental point in our spectral method. For a given y < a,
the angular specification O = 7/2 refers to a single point
on the Z axis; the value of ® is irrelevant. On the other
hand, the function Y,,,(7/2, ®), for even € and m # 0
is, in general, not a single value. There are, then, terms
in Eq. (30) that in principle are multivalued at
x < a,® = /2. We can, of course, delete the value ® =
7r/2 from our grid. (And we, in fact, delete this value for
several reasons, such as the requirement that the FDM
Laplacian be self-adjoint; see Appendix C.) We still have
the problem that the variation of these awkward terms
diverges as A® — 0 and the grid converges to the contin-
uum. In principle, for any A ® the summation in Eq. (30) at
any grid point will approach (in the mean) the correct
answer if we include enough multipoles.

In practice, we include very few multipoles. We must
therefore ask whether the summation will give a highly
inaccurate answer in the region of the y < a grid near @ =
ar/2. We avoid this problem by fhoosing source structures
that are symmetric about the Z axis. This means that at
some inner boundary y,,;,, We set the nonaxisymmetric a*
to zero. The radial equations, the FDM eigenspectral ver-
sions of Eq. (32), do mix the a®, so the nonaxisymmetric
a™® will be generated. But the mixing of the multipoles is
small until y is on the order of a. As a consequence, the
nonaxisymmetric a® can play their needed role in the
wave region without generating large errors in the near-
source region.

0.05

9 0
[e]
)
5
£
©
\
£
©  -0.05

-0.1

FIG. 7 (color online).

The y dependence of the eigenspectral
mode coefficients. The solid curve shows the coefficient of the
mode Y, that is symmetric about the Z axis; the dashed curve
shows the real part of Y,,. In both cases the plot shows the
coefficients divided by the monopole coefficient.
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This behavior of the coefficients is illustrated in Fig. 7
for an outgoing linear wave. The solid curve shows, as a
function of y, the eigenspectral coefficient a®) correspond-
ing to the € = 2 mode that is symmetric about the source

axis Z, that is, the mode corresponding to Y,,(®, ®); the
dashed curve shows the eigenspectral mode corresponding
to the real part of Y5,(0, ®@). In both cases, the value of the
coefficient is divided by the value of the monopole coeffi-
cient to give a better idea of the relative importance of the
mode in determining the overall angular behavior. The
Y50(0, D) mode, which does not involve multivalued be-
havior on the Z axis has a non-negligible coefficient at
small y. By contrast the Y,,(®, ®), which is multivalued,
has a very small coefficient, one that is 2 orders of magni-
tude smaller than the monopole, up to y = 1. For larger y
this mode gets ““turned on,” as it must, since it is part of the
radiation.

IV. MODELS AND METHODS

A. Nonlinear scalar models

The model problem of Paper I, in the original comoving
spherical coordinate system is

L(V) = oexV], (45)

with £ taken to be

1 9 d 1 d d
L=— (P2 )+ — [ sind—
r? 8r<r 8r> r* sinf 80<Sm 80)

1,79
+[7a Q} (46)

r*sin? dp?’

and with the effective source terms
o[ V] = point source — AF. 47)

In Paper I an explicit delta function term was used in o to
represent the point source. Here we compute only outside
the source and include source effects by the inner boundary
conditions described below.

Our choice of the nonlinearity function F' is

1 P
F a* Wi+ v (48)
in which W is an adjustable parameter that we set to 0.15
or 0.01 in the numerical results to be reported. As detailed
in Paper I, this choice of F allows us to make useful
estimates of the action of the nonlinearity. We briefly
review this feature here.

We define R to mean distance from a source point, and
we identify R}, as the characteristic distance separating the
|W| > |W,| near-source nonlinear region, and the | V| <
|W,| distant region in which nonlinear effects are negli-
gible. In the nonlinear region near a source of strength Q/a
the solution approximately has the Yukawa form

PHYSICAL REVIEW D 71, 104017 (2005)

o~ g e—\[——AR/a

P W near source pt. (49)

We can estimate Rj;, by taking it to be the value of R at
which the expression in Eq. (49) is equal to Wy:

0 e—\/—_/\Rlin/ﬂ

o dnR.Ja = V,. (50)

If Ry, is significantly less than a, which it is for most of the
models we consider, then we can approximate W as having
the Yukawa form in Eq. (49) out to Ry;,. For R > Ry;, the
linear Coulombic form should apply. We can therefore
view exp(—~/— ARy;,/a) as a factor by which the strength
of the source is reduced. Since the waves are generated at
distances from the source much greater than Ry;,, the wave
amplitude as well as the monopole moment of the source
should be reduced by this factor. We saw in Paper I that
these estimates were in reasonably good agreement with
the results of computation, good enough to give confidence
of the fundamental correctness of the picture on which the
estimate is based. We therefore use this picture in the
present paper in interpreting some of the computational
results.

B. Boundary conditions
In Paper I the source was taken to be two unit point
charges moving at radius a

S(r

S=y"! a—_")aw - m/2[8(g) + 8¢ — m]. (51)

2
Here 7 is the Lorentz factor 1/+/1 — a?Q?. This factor is
necessary if the source is to correspond to points of unit
strength as measured in a frame comoving with the source
points. (This factor was inadvertently omitted from the
source in Paper I. In that paper only the case a{) = 0.3
was studied, so we may consider the point sources in Paper
I not to have been unit scalar charges, but source points
with charges y = 1.048.) In the present paper we specify
inner boundary conditions on some surface Y, rather
than an explicit source term as in Paper I. Our standard
choice for the inner boundary conditions will be those that
correspond to the point sources of Eq. (51). For this choice
of source and for y;, < a and < (—A)~"*a, we can use
an approximation for a single source point.
In notation appropriate to the 3D case we have

R? =27+ y(X — B> + 1* (52)
Now we use the transformations of Eq. (22)—(24) to get

x

R? =
4

+(y* = DX = B1)* + O(x°)

4
= %[1 + (2 — 1)sin2@cos>®] (53)
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For a unit strength source at position 1, the field near
position 1, due to source 1, should be

11 1 2 1
b=z~ (54)

The outer boundary condition in our computation is
based on the Sommerfeld condition in Eq. (28); the ingoing
condition is identical except for a change of sign. These
radiative boundary conditions should be applied only to the
radiative part of the wave. This is done by applying the
conditions to the sum on the right side of Eq. (38) with the
monopole mode omitted. The multipole components of
this outer boundary condition are then projected out. The
monopole moment, of course, is nonradiative. Since it falls
off at large distances as 1/ y, the outer boundary condition
is taken to be

0) 0)
da” a7\ (55)
d
X X/ Xnax

C. Extraction of an outgoing approximation

In Paper I, we explained how to extract a good approxi-
mation of the outgoing solution from the computed
standing-wave solution. That explanation started with the
solution of the linearized problem

q”smdcomp = Z Z @ (1Y (6, @). (56)

even{ m=0,+2,+4..

We keep that notation here, but understand that (i) the role
of the continuum spherical harmonics is played by appro-
priate linear combinations the eigenvectors, that (ii) the
role of the coefficients ay,, is played by appropriate linear
combinations of the coefficients a¥'(y), and that (iii) the
summations only extend up to €.

As in Paper I, this form of the computed standing-wave
solution is compared with a general homogeneous linear
(A = 0) standing-wave (equal magnitude in- and outgoing
waves) solution of, with the symmetry of two equal and
opposite sources:

1
Vintin = " Venlb 9)] 3 Cenl m2)

even{,m

+ %c* hi;z)(mQr)} (57)

tm
A fitting, in the weak-field zone, of this form of the
standing-wave multipole to the computed function
ae,(r) gives the value of Cy,,.
By viewing the linear solution as half-ingoing and half-
outgoing we define the extracted outgoing solution to be

lIIexout = Z z

event m=0,+2,+4..

Yen (0, ©)Conh(mQr).  (58)

Since this extracted solution was fitted to the computed
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solution assuming only that linearity applied, it will be a
good approximation except in the strong-field region. In
the problems of interest, the strong-fields should be con-
fined to a region near the sources. In those regions, small
compared to a wavelength, the field will essentially be that
of a static source, and will be insensitive to the distant
radiative boundary conditions. As explained in Paper I, the
solutions in this region will be essentially the same for the
ingoing, outgoing, and standing-wave problem. In this
inner region then, we take our extracted outgoing solution
simply to be the computed standing-wave solution, so that

WV _ {Z Yo C(mh(el) weak field outer region

t . . . .
exou W indcomp strong field inner region

(59)

The transition between a strong-field inner region and
weak-field outer region can be considered to occur in some
range of y. The maximum Y in this range must be small
compared to the wavelength 1/}, and the minimum y
must correspond to a distance from the source larger than
our estimate of R};,. [See Eq. (50)]. For distances R from
the source that are of order a or less, y = +/2aR so the
minimum Y in the transition region should be larger than
X = \2aRy,.

In order for the extracted solution to be smooth at this
boundary, we construct our extracted solution by using a
blending of the strong-field inner solution and the weak-
field outer solution over a range from X4y tO Xpign- In this
range we take

q’exout = B(X) Z Yé’mC(fth{l) + [1 - B(X)]\Pstndcomp

(60)

Here

_ 2 — 3
,B(X) = 3|: X — Xiow :| _ 2|: X — Xiow :| ) (61)
Xhigh — Xlow Xhigh — Xlow

so that B(y) goes from 0 at y = x|, to unity at y = Xhigh
and has a vanishing y-derivative at both ends. In principle
we should choose y = xpign to depend on the location of
the wave zone, and hence on (), and in principle we should
choose Y = xjow to depend on the nature of the nonline-
arity, and hence on A and W, In practice we have found it
to be adequate to choose xpign = 2a and xpjen = 3a for all
models.

D. Nonlinear iteration

The computational problem of finding a solution W
consists of finding a set of coefficients a®)(y) that satisfy
the field equation Egs. (40) along with the inner and outer
boundary conditions. The operations on the left-hand side
of Egs. (40) are linear on the a¥(y), as are the boundary
conditions, so the problem of finding the a®(y) can be
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written as

> Lia® = Fu(a)), (62)
k

where L, is a linear differential operator on the a®(y),
and where F,({a'?}, containing the nonlinearity in the
model, is nonlinear in the a®(y).

For different boundary conditions (outgoing or ingoing)
the linear operator L/, has different forms, but in either
form we can invert to get the outgoing or ingoing Green
functions £, 11 *“and L, ]i “** 1In principle we can then find
solutions by direct iteration

a%), o= Z oy Fulallud),
a®), . Zﬁggvi“(ﬂ({ai{’ﬁl})), (63)
Ay oa = Z AL+ L Foalla)

In Paper I it was pointed out that this kind of direct
iteration converges only for weak nonlinearity. More gen-
erally we use Newton-Raphson iteration and solve

aFw 4®) ()
;[ﬁk’k m a511>:| n+1 :Fk’({a })
0Fw (k)
2 | et 9

This Newton-Raphson approach can be applied to find
outgoing, ingoing and standing-wave solutions analogous
to those in Eqs. (63). It has been applied with an error
measure

= J Z Z(aifll(xi) —a® ()2 (65)

maan k=11

Iteration was halted when this error measure fell below
~107%. Note that for strongly nonlinear models, conver-
gence sometimes required that the iteration described in
Eq. (64), had to be somewhat modified. The last term on
the right in Eq. (64), had to be weighted by a factor less
than unity, at least until the iteration got close to the true
solution.

V. NUMERICAL RESULTS

If numerical results are to be trusted they must converge,
or at least be stable, as computational parameters (grid
size, etc.) change, and there must be evidence that the
result is the correct answer to the physical problem. A
complication in demonstrating this is that at the same
time we are making two different classes of approxima-
tions: (i) we use values on a grid in place of the continuum
mathematics, (ii) we are keeping only low order multi-
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poles. In addition, to represent point sources we use ap-
proximations for inner boundary data that are exact only
for Ymin — 0. Our outer boundary conditions in Eq. (55)
also add an error, in principle one of order (a/ x>, but
we have found that this error is negligible compared to that
of our other approximations. (Moving the boudary outward
has no discernible effect on results.) Here we present
results of varying the grid resolution, the number of multi-
poles kept, and the inner surface x,;, on which inner
Dirichlet data is set.

Error is most easily measured for solutions to the linear
problem since there exists an exact series solution for
comparison. Figure 8 shows a comparison of this series
solution with computed solutions for two different source
speeds a{). The qualitative features of these plots agree
with what should be expected: the eigenspectral/multipole
filtering technique is more accurate at lower source speed,
and is more accurate when more multipoles are allowed to
pass through the “filter.” (Of course, there will be a point
of diminishing returns. If we let too many modes through
then we are no longer filtering, and we experience the
difficulties that plagued the FDM method for adapted
coordinates.)

An obvious unwelcome feature of the results with
€max = 5 is the phase error in the hexadecapole mode.
This error is especially noticeable in the a{} = 0.5 plot
where it causes an artifact fine structure at the positive peak
of the waves. We are investigating the source of this phase
error which we suspect is a result of truncation error in
angular differencing and/or in the computation of the
eigenvectors. We have anecdotal evidence that the phase
error decreases as the angular grid is refined.

The reliability of the eigenspectral method for a wider
variety of linear models is presented in Table I. In this
table, the measure of error is the value of Q., the mono-
pole moment computed near the outer boundary for the
“charge,” i.e., the monopole moment of the two sources
each with scalar charge Q/a = 1. Though the monopole
moment would seem to be less interesting than features of
the radiation, we have found in essentially all computations
that the largest error is in the monopole. For example, the
majority of the error in the computed amplitude of radia-
tion could be understood to be due to the error in the
monopole. The error in the ratio of radiation amplitude to
monopole was several times smaller than the raw errors in
either quantity by itself. For simplicity we use this one
measurement to characterize convergence and correctness.

To show that the computed solution is accurate it is
convenient to consider first the linear outgoing problem
for two unit point charges, since the solution for this case is
known to be Q. = 1/v, where vy, the Lorentz factor, is
1/4/1 — a*>Q?. (The complete solution for W in this case is
given as Eq. (10) of Paper I, though the series solution must
be multiplied by 1/7y since we are now considering unit
charges.)
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FIG. 8 (color online).
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Comparison of exact and eigenspectral linear outgoing solutions. The solid curve shows the exact solution, in

the wave region, computed from an infinite series. The other curves show the result of computation with a grid with n,, X ng X ng =
12001 X 16 X 32 and ¥min/a@ = 0.2, Xmax/a = 75. Results are shown with €,,,, = 3 (monopole and quadrupole modes kept) and
€ nax = 5 (monopole, quadrupole and hexadecapole). The results are shown at @ = 0 as a function of r, the distance from the center of

the configuration.

Table 1 presents results for linear (A = 0), rotating
(aQ) = 0.3) models, for scalar source points with unit
charge. For all models the inner boundary conditions
were those of the small-y point approximation given in
Eq. (54) at some X,,- The number of multipoles kept is
specified by the parameter €,,,,. Choosing €, = 3 means
that modes corresponding to monopole and quadrupole
were kept; €.« = 5 means that in addition the hexadeca-
pole was kept; and so forth. The accuracy criterion used is

TABLE I. Convergence for rotating linear models. All models
have a{) = 0.3, A = 0, and use outgoing boundary conditions at
Xmax = 30a. The computed monopole to source strength index,
YO/ Q, is unity in the exact solution. The *“‘two-region”
computation retains all multipoles for y < 3a.

n, ne ne Xmin/a emax erff/Q two region

1001 8 16 0.2 3 1.0116

2001 16 32 0.2 3 1.0246

4001 16 32 0.2 3 1.0275

8001 16 32 0.2 3 1.0282

16001 32 64 0.2 3 1.0284

8001 16 32 0.2 3 1.0282 cee
8001 16 32 0.2 5 1.0036 1.0035
8001 16 32 0.2 7 0.9968 0.9966
8001 16 32 0.2 9 0.9934 0.9928
16001 16 32 0.2 5 1.0037

16001 16 32 0.1 5 1.0036

16001 16 32 0.05 5 1.0032

16001 16 32 0.025 5 1.0007

the quantity yQ./Q, the value of which is unity in the
exact solution.

The results in the table are divided into three sections. In
the first section the number of grid points n,, ng, and ng,
was varied, while the values of y, and €. are kept
fixed. The results show 3% accuracy, and demonstrate that,
for the parameters of this computation there is no advan-
tage to grid size larger than 8001 X 16 X 32. Note that
simple considerations of truncation error do not apply,
since the angular grid is not used in a straightforward
finite differencing, but rather to establish the angular
eigenvectors.

In the second section the results show that increasing
€ max» for an adequately large grid, improves accuracy, and
results come within a fraction of a percent of the correct
answer. Note that using all the eigenvectors is equivalent to
no multipole filtering. In that case we would be simply
doing finite differencing in the multipole basis, and we
would be plagued by the problems described at the start of
Sec. III. Accuracy must, therefore, drop off when €, is
increased past some optimal value. The results in the table
suggest that the optimal value for this model and this grid
size may be €, = 5. Larger values of ¢, ,, are more
difficult computationally, and appear to give no improve-
ment in accuracy.

In the third section of the table the value of x,;, is
decreased and, for a fairly large grid and for €,,, = 5 the
results show that the errors in the inner Dirichlet data were
the dominant source of error. More important, the results
show that very high accuracy can be achieved with the
eigenspectral method using a small number of multipoles.
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TABLE II.
models have aQ) = 0.3, A = =25, ¥, = 0.15, and all use out-
going boundary conditions at Yy.x = 50a. The ‘“‘two-region”

method retains all multipoles for y < 3a.

Convergence for rotating nonlinear models. All

ny ne ne Xmin/a emax Qeff/Q two region

1001 8 16 0.2 3 0.3440

2001 16 32 0.2 3 0.3450

4001 16 32 0.2 3 0.3452

8001 16 32 0.2 3 0.3452

16001 32 64 0.2 3 0.3452

8001 16 32 0.2 3 0.3452 cee
8001 16 32 0.2 5 0.3431 0.3424
8001 16 32 0.2 7 0.3421 0.3415
8001 16 32 0.2 9 0.3417 0.3410
16001 16 32 0.2 5 0.3230

16001 16 32 0.1 5 03213

16001 16 32 0.05 5 0.3198

16001 16 32 0.025 5 0.3192

In the last column of Table I several results are given of a
“two-region” method of computation. The motivation for
this method is that severe multipole truncation is really
necessary only in the wave zone. Closer to the source more
mutlipoles can be kept and more precise computation can
be carried out. For the results in the last column, all multi-
poles up to €., were kept for grid points with y < 3a; for
X > 3a only the monopole and quadrupole eigenmodes
were used. The results show no increase in error compared
with standard method, but the error in any case is domi-
nated by the inner boundary data, not by truncation.

For nonlinear models, with A = —25 and ¥, = 0.15,
Table II gives results roughly equivalent to the linear-

100 —————rrr — ———g
C Q= 03, ¥, = 0.15 1
10 ¢ E
L A= =50 i
g 1 B —
- F A= —-500 E

0.1 E numerical

L - ——- Yukawa
\
0.01 Ll P E S W
0.01 0.1 1
R/a

FIG. 9 (color online).
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model results in Table I. Now there is no a priori correct
answer known, so we look only for convergence of the
value of the monopole moment Q.. (Because of the
effects of the nonlinearity, this value can be reduced well
below unity.) The computational results in the table show
few differences from those in Table I. Again, the answer is
shown to be stable for moderate grid size, and there is no
evidence of a strong dependence on €,,,,. The two-region
computations converged more quickly than those with a
uniform multipole cutoff, and give results in good agree-
ment with those of the uniform cutoff standard approach.
This two-region technique, therefore, can be considered a
computational tool that may prove useful in more difficult
problems.

Though there is no a priori known general solution for
the nonlinear problem, we do know one useful limit of the
solution. As argued in Sec. IV, and in Paper I, ¥ should
have an approximately Yukawa form for a range of small
Xx- Evidence of this in the results is presented in Fig. 9,
which gives computed nonlinear outgoing solutions near
the sources. The computations start with the boundjlry

conditions of Eq. (54). The variable R in the figure is Z —
a along a line through the sources, that is, the radial
distance from a source. A straight line in the log-log plots
of the figure indicate that W is falling off approximately as
1/47R; the downard deviation from a straight line is a
manifestation of the nonlinearity. According to the analysis
following Eq. (49), the radius Ry, at which nonlinear
effects become significant, decreases with increasing |A|
and with decreasing W,,. Results for our standard choice
V¥, = 0.15 are shown on the left. The nonlinear effects
become important for R/a = Ry;,/a on the order a few
tenths. In this case W is comparable to W, when nonlinear
effects become important, and the Yukawa form is not

T T L R L | T T T T T

Q= 0.3, A= =25

T T

¥

0.1

T T T

numerical

- ——. Yukawa

T

Near-source fields for nonlinear models.
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distinguishable from a 1/R falloff. For more convincing
evidence of the working of the nonlinearity we change
W, to 0.01. The results, shown on the right in Fig. 9 for
A = —25 shows the excellent agreement of the computed
solution to the Yukawa form in the range R/a = 0.1 to
around 0.4.

Paper I used Eq. (50) as the basis of an estimate of the
nonlinear solution. That estimate was applied to the radia-
tion “reduction factor,” the factor by which the radiation
amplitude is reduced for a nonlinear model as compared
with a model with the same parameters, but with A = 0.
This provides us with a convenient comparison of the
nonlinear results in Paper I and with the present eigens-
pectral method. In Table III we give those Paper I results
again, along with eigenspectral computations of the same
models. We present additional models, since the standard
coordinate/finite differencing method of Paper I was lim-
ited in the size of A for which Newton-Raphson runs
converged; with the eigenspectral method we can give
results for much larger values of —A. The last column in
Table III gives the computed reduction factor computed
with the eigenspectral method keeping only the monopole
and quadrupole terms. (Note: In Paper I the factor 1/y =
1/1.048 was mistakenly omitted from the delta function
source. Here we choose to treat that as a source of strength
1.048, rather than unity. Our eigenspectral computations
therefore used this enhanced source. The estimates of Rj;,
were also slightly in error in Paper I since they assumed a
unit source strength. They have been recomputed and are
slightly different from the estimates presented in Paper 1.)

The agreement of the computed results with the simple
estimate is gratifying, as it was in Paper 1. More important,
the comparison of the second and third columns of
Table IIT shows that the eigenspectral method with only
two multipoles gives 1% agreement of the computed ra-
diation with the very different and much more computa-
tionally intensive finite difference method.

TABLE III. The radiation reduction factor due to the nonline-
arity. For all cases, ¥, = 0.15, and a{) = 0.3 . The second
column refers to Eq. (50). The third column gives the reduction
factors presented in Paper 1. The last column gives the results of
the eigenspectral computation with y.;, = 0.3a, with outgoing
boundary conditions at ym.. = 504, €. = 3, and a grid with
n, = 8001, ng = 16, ng = 32.

A Estimate Paper 1 Eigenspec
—1 69% 78% 77.0%
-2 62% 68% 68.1%
=5 53% 55% 55.7%
—10 46% 47% 46.4%
=25 37% 35% 35.5%
—50 25.6% s 28.5%
—100 19.5% 22.7%

PHYSICAL REVIEW D 71, 104017 (2005)

We have argued that the details of the higher moments of
the source are not important in determining the radiation.
Some numerical justification for this is given in Fig. 10,
which shows computed results for nonlinear models with
the standard parameters. The solid curve uses the point
source initial data of Eq. (54) as inner Dirichlet data at
Xmin = 0.2a. For these inner boundary conditions the mul-
tipole moments at y,i, = 0.2a are ag = —13.90, a,y =
0.11045. The coefficient corresponding to the real part of
Y5, is 0.1920; the coefficient corresponding to the imagi-
nary part is zero. We first compute the outgoing linear
solution for these inner Dirichlet data. Next we, somewhat
arbitrarily, set all the quadrupole components to —2.209,
which is 20 times the original value of a,,, and calculate
the outgoing linear radiation. The results in Fig. 10 show
that the effect on the radiation is of order 10%. Some
interpretation is needed to connect this result to multipoles
of sources, especially because the effect on the radiation of
a physically plausible source quadrupole depends on the
size of the source.

If we had a source with a surface at y = 0.2a the
computed result tells us that a rather large deformation,
with |a,;/ag] ~ 0.16 will have a 10% effect on the radia-
tion as compared with a source with a negligible quadru-
pole. With a simple argument, we can apply this 10% effect
to sources of other size. Mathematically the conditions at
Xmin = 0.2a can be ascribed to a source with a surface at
Xsurf # 0.2a. Quadrupole moments fall off as 1/R3, where
R is the distance (small compared to a) from the source
point, and monopole moments fall off as 1/R. The quad-
rupole to monopole ratio, therefore, falls off as 1/R?, or
1/x*. Since the 10% effect corresponds to |a,;/ag| = 0.16

000l ———F—F——F——"—+—F T

0.0005

monopole

V-

—-0.0005 ’ point source —

- 20x quads

ooop L 1

FIG. 10 (color online). For outgoing nonlinear waves, the
sensitivity of the radiation to details of source multipole
structure.
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Comparison of a computed outgoing nonlinear solution (continuous curve), and an approximation to the

outgoing solution extracted from the standing-wave solution (data type points). Results are shown for a typical nonlinear scalar model,

with parameters () = 0.3, A = =25, ¥, = 0.15, ¥min/a =

0.05, Xmax/a =

200, for a grid with n), X ng X ne=12001 X 16 X 32.

Results are shown along the Z axis. The solution is plotted as a function of Z the distance, from the origin, along the axis through the
source. The extracted points in the wave zone are a result of treating the waves as linear. The small-distance plot shows the blending
region and the inner region in which the standing-wave solution is used as an approximation for the outgoing solution.

at xeut = 0.2a, it also applies, to 0.16 X (1/2)* = 0.01 at
Xsuf = 0.4a, and to 0.16 X (2)* = 2.6 at yes = 0.la.
This means that the radiation generated is reasonably
sensitive to a mild quadrupole deformation of a source
that is comparable to the size of the binary system, but
for small sources unphysically large deformations are re-
quired to have any effect on the radiation. (See also the
related discussion of the two-dimensional case in
Appendix B.)

Figure 11 shows the central result of our method, the
accuracy of the outgoing approximation, for a model with
Q) =0.3 and A = —25, one of the models presented in
Paper I [10]. A measure of the strength of the nonlinearity
is the fact that the nonlinearity reduces the amplitude of the
waves to 35% of those for A = 0 in the same model (i.e.,
the same () and inner boundary data and outgoing bound-
ary conditions). The figure shows that the extracted solu-
tion is in remarkably good agreement with the computed
nonlinear solution in the three regions of the extraction
protocol described in Sec. IV: (i) the wave region in which
the solution is treated as a half-outgoing and half-ingoing
superposition, (ii) the inner region in which the outgoing
solution is taken to be well approximated by the standing-
wave solution since the radiative boundary conditions are
irrelevant close to the source, and (iii) the blending region
described in Egs. (60) and (61).

The excellent agreement between the computed out-
going solution and the extracted approximation should
not be confused with agreement with the exact solution.

As we have seen in the comparisons of exact and computed
linear solutions, e.g. in Fig. 8, the mutlipole filtering does
entail an inaccuracy of a percent or so. Figure 11, then, is
not a demonstration of the accuracy of the eigenspectral
method, but rather a powerful statement about effective
linearity, the accuracy of the process of extracting an out-
going approximation from a standing-wave solution.

In Table IV, we present a broad overview of the validity
of effective linearity for a range of nonlinear strengths in
aQ) = 0.3 models. As in Table III, we give the nonlinear
“reduction factor,” the reduction in wave amplitude due to
nonlinear effects. Here we present a comparison of those
factors for computed outgoing solutions and for the ap-
proximate outgoing solution extracted from the standing-
wave solution. It is clear that judged by the criterion of
reduction factor (and limited to a{) = 0.3 models), effec-
tive linearity is highly accurate, within a percent or so, for
models with extremely strong nonlinear effects. In the
Y, =0.01, A = —100 model, the nonlinearity reduces
the wave amplitude by a factor of 40, but effective linearity
appears to be accurate to better than 1%. It should be noted
that the agreement of the computed outgoing solution and
the extracted outgoing solution is excellent even for mod-
els (e.g., ¥y = 0.01 and small A) for which the strong
nonlinear effects are not confined to a small region around
the source points. This is evidence that effective linearity
does not require such confinement; it only requires that the
nonlinearity falls off before outer boundary effects are
important, i.e., in the induction and wave zones.
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TABLE IV.  The reduction factors for nonlinear outgoing waves (the decrease in amplitude
due to nonlinear effects). For a{) = 0.3 models, the factors are compared for the directly
computed outgoing solutions and for outgoing solutions extracted from nonlinear standing
waves solutions. The A = 0 results indicate linear models in which the reduction factor is unity
by definition. The value 1.0064 found for the extracted solution gives an indication of the
numerical accuracy of the extraction procedure. All results were computed with €, = 3,
Xmin = 0.2a, and yy,x = 50a on a grid with n,, X ng X ng = 8001 X 16 X 32. The reduction
factor was computed by taking the ratio of the quadrupole components. Also listed are the
estimated values of Ry;,, the distance from the sources beyond which the nonlinear effects are
suppressed, and estimates of the reduction factors based on the estimates of Ry;,. [See Eq. (50)]
For consistency with Table III the source strength has been taken to be 1.048.

Y, =0.15 VY, = 0.01

A Ry,/a estimate true extract Rj,/a  estimate true extract

0 1 1.0064 1 1.0064
—1 0355 0.7012  0.7695 0.7740 1.574 02072  0.1745  0.1728
-2 0321  0.6348 0.6813 0.6852 1.266  0.1668  0.1323  0.1315
=5 0274  0.5417 05565 0.5597 0936  0.1233  0.09121 0.09109
-10 0.238 04707 04643 0.4669 0.737  0.09711 0.06764 0.06771
—25 0.193 03811 03548 0.3569 0.532  0.0700  0.04453 0.04466
—50 0.162  0.3191 02849 0.2865 0412 0.05427 0.03231 0.03244
—100 0.133  0.2635 02265 0.2278 0.317 0.0418 0.02368 0.02380
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VI. CONCLUSIONS

The fundamental concepts of the PSW method were
introduced in Paper 1. In the current paper we concentrate
on efficient numerical methods for solving the mixed PDEs
of the PSW method. The innovative method we present
here is a mixture of adapted coordinates, multipole filter-
ing, and the use of eigenvectors in place of continuum
multipoles. This method seems to meet the needs of the
problem remarkably well. The method requires relatively
little machine memory, and runs very quickly on work-
stations. The power of the method has allowed us to run
nonlinear scalar field models with larger velocity and much
larger nonlinearity than was possible with the method of
Paper 1.

We have shown that the method is convergent and
reliable in a number of senses: (i) For a linear problem,
the computed solution converges to the known analytic
solution as the computational grid becomes finer and the
number of retained multipoles increases. (i) For a non-
linear model the Newton-Raphson iteration stably and
reliably gives a solution to outgoing or standing-wave
problem. We have confirmed that our solutions agree, to
the expected accuracy, with the results presented in Paper 1.

In addition to the role they play in the efficient compu-
tation, the adapted coordinates are very well suited to the
specifications of inner boundary conditions, rather than to
the specification of actual source terms. We have con-
firmed that there is low sensitivity to the details of the
inner boundary conditions. The solution in the wave zone
has a sensitivity to these conditions that is compatible with
physical intuition; there is no excess sensitivity that is an
artifact of the numerical method.

Two major points are worth emphasizing. First, we have
confirmed that excellent results can be obtained for mod-
erate source velocities with computations that keep only
the monopole and the quadrupole moments of the adapted
coordinates. This allows an enormous decrease in the
computational intensity of a solution. The cost is only a
moderate increase in analytic complexity. A second and
even more important point concerns ‘‘effective linearity,”
the approximate validity of superposing half-ingoing and
half-outgoing nonlinear solutions. We have been able to
verify effective linearity for a wider range of nonlinear
models than in Paper I, including models with extremely
strong nonlinearity.
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APPENDIX A: COEFFICIENTS FOR ADAPTED
COORDINATES

The inner products 6/\/ VO, 6/\/ -V, and VO - VO,
vanish since the adapted coordinates are orthogonal (with

~N~N A~

respect to a Cartesian metric on X,Y,Z). The other inner
products and Laplacians are evaluated with the explicit
transformations in Egs. (19)—(24), from which we find
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2+
vy =120 (A1)
X
V20 — VO + a® + x*cos(20) (Q — a?) (A2)
VO — a®> — x*cos(20) x*
V2P =0 (A3)
Vy-Vy = % (Ad)
X
VO -V = % (AS)
X
> > 0+ a® + x*cos(20)
Vb -VP =2 A
x*sin?(20) (A6)
where Q is the function
Q = \Ja* + 2a2x* cos(20) + x*. (A7)

In general, the A and B terms are computed from the
following:

- d x\2 dx\2 d d
AXX = ZZ<7X> + X2<—X> — 2X2<l><l> (A8)
X Z X /\oZ
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Ao =2 <2g><aX> X (Z(;)(az)
(2N () s

- 9? 9? 9’
B, = 22(~X) + x2(SX) — 2xz( X
oxX 0z 0XaZ

- X(a—X> - Z(a—X> (A14)
0X 9Z
2 2 2
5o = 2(00) + x(L2) - 2x7( o0}
aX 0z IX9Z
-(i)-(2)
aX 9z
. , (9D ,(0*D 2P
B(D=Z<—2> x( 2) zxz( )
aX 0z IX0Z
- x(ﬁ) - z(@). (A16)
aX 9z

In the case of the TCBC coordinates defined in
Egs. (19)—(24), the explicit forms of the coefficients are

- 90)\2 d0\2 a0 42 2
Age = zz<§> + X2<ﬁ> - 2xz<ax>< > (A9) i, - a’sin (2)((?)cos @ (A17)
App = 22<6(D> X2<aq)> XZ(M)XM)) 2H[12 + 42 2
be ox oz ax \oz A go = OB + a7cos20)] (A18)
(A10) X
_ »(9x\(2© - ) 0 + a*> + x*cos(20)
Ao=7 ax) x) + X ( >< ) Ruw = sintd s — L (A19)
()G ()] e
i a’[x* + a*cos(20)]sin(20)cos’ P (A20)
2( X (IPY | 4o ¥ X
W—Z(a @) 2 (2)5)
x\/0D T a’[Q + a* + x?cos(20)]sin® cos®
(GG F@)] @ A v 21
|
- _ sin(®) cos(P)[a® + x% cos(20) + Q] x* + a? cos(20)]
Aov x*sin(20) (A22)
a2 20002 212 2, 2
B, = a*[cos*(D){3a*cos*(20) — O — 2a +3X cos(20)} + O + a* + y*cos(20)] (A23)

X
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_(Bo+ a’ + x?cos20) sin(P) cos(d)

B A24
¢ Q — a* — x*cos20 (A24)
_ +a’ + x?
Beo = VO + @ + X" cos(20) (ccos*® + d) (A25)
X0 — a® — x*cos(20)
where
c = a’x*cos(20) + 2a*x* + 4a° cos(20)
+ 4a*x*(cos(20))> — 4a*Q cos(20)
—2a*0x* — x° (A26)
d = x*(a’? cos(20) + x?). (A27)

The coefficients needed in the Sommerfeld boundary
condition Eq. (27) are

_ x? + d*cos20

re 5 cos® = cos®(1 + O(a>/x?))
X
(A28)
0 + a*> + x*cos(20) .
L)) I
d \/Q —a* — x*cos(20) sin®
= —cot® sin®(1 + O(a?/ x?)) (A29)

P =yl + @ + P cosRO)IQ —  — x*cos26)]

_ 2sin20

(1 + O(a/x?)). (A30)

APPENDIX B: THE STANDARD SPECTRAL
METHOD FOR THE 2+1 DIMENSIONAL LINEAR
SCALAR FIELD

Here we consider the 2 + 1 dimensional version of our
helical problem, one equivalent to the 3 + 1 problem witlg
line sources that are infinitely long in the 7 (equivalently ¥
) direction. We choose to set A = 0, i.e., to make the
problem linear, since that will turn out to allow a very
efficient method of multipole projection. The 2 + 1 dimen-
sional version of Egs. (3) and (51) is

2
li r@ + l_QZ g
ror\ ar r? dp?
., 0(r
=Y

2 D5(0) + (0 — m)

(BI)

Here ¢ = ¢ — (0t where ¢ is the usual polar angle
tan~!(y/X) in the X, y plane.

The 2 + 1 dimensional forms of the adapted coordinates
of Sec. II are

¥ = i = {E - @ + FPIE +af + P B2)
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; (B3)
X—a-—y

0= %(01 + 0, = %tan”(iN2 25y ~2>.
With these coordinates the 2 + 1 dimensional version of
Eq. (1) takes a form like that of Eq. (8). As in the 3-
dimensional case we use only the homogeneous form of
Eq. (B1), since the effect of the source will be introduced
through inner boundary conditions.
In working with the sourceless linear 2 + 1 dimensional
problem, it turns out to be convenient to divide the original
wave equation by Q/ x?, where

0 =\Ja* + 2a2x? cos(20) + x*. (B4)

The result is

LW =20 (V2 — Q232)W

=A82\P+B(92\P+2C ik -l-Dﬂ-f-Eﬂ
x> 00?2 dx00 dx 00’
(B5)
where
432
A—1_2dsin (20) (B6)
0
2 2\2
B=%[1—Qz(a cos(2®)~|—)()} B7)
X Q
2 2 2
c—_2? sin(20)(a? cos(20) + x?) (BS)
Ox
2(_ 2 22 2
D :l[l _ (—a* + 3a*cos*(20) + 2y cos(2®))}
X 0
(B9)
2(9 2 +12) i
e 402 2a*(2a* cos(20) + x )sm(2®). (B10)

ox*

By dividing through by O we have put the wave equation in
a form in which the coefficients are ®-independent in the
Q) — 0 limit. With the standard method, used below, for
projecting out multipole components of the wave equation,
this property of the coefficients means that the mixing of
the multipoles can be directly ascribed to the rotation.
We now expand the standing-wave solution W(y, @) as

N

Y(y, ©) = Z a,(x) cosn®,

n=0,2,4...

(B11)

and our equation becomes
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N 2
Z [Adai"(;\/) — n’Ba,(y) + Dda"—(X):| cosn®
n=024... dx dx
- [2ncd“c;(") + nEan()()} sinn®. (B12)

Projecting with [37sinm® - - - d®, gives zero by symme-
try; projecting with [3™ cosm® - - - d©, gives
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5 4 (n/2
By = —n*— [ cosm® cosn®[B(y, 0)]dO
T Jo

_a f "2 cosm® sinn®[E(y, ®)]d®  (B15)
T Jo

/2
Yo = % f / cosm® cosn®[D(y, ©)]dO
0

4 [(=/2
N &a,(y) da,(x) Wt f cosm® sinn®[C(y, ©)]dO.  (BI6)
amn 2 + anan()() + 7mn = O w 0
n=024.. dx dx
” When the explicit expressions for A—F, in Eqgs. (B6)—
m=0,24... (B13)  (B10), are used in Egs. (B14)—(B16), the results are
where 4 (=2 in>(20
4 (=2 Wpp = €y — Qa— [ cosm® cosn@wdﬁ)
T, o
Ay = - j;) cosm® cosn®[A(y, ©)]dO (B14) 0 B17)
|
2 4 02 /2 2cos(20) + x?)?
Bun = —%emn +—— nzf cosm® cosn®(a cos20) + x°) do®
X m X 0 0
/2 2a%(2a® cos(20) + x?)sin(20
- nj cosm® sinn® -2 (247 cos(20) + x7) sin( ):| (B18)
0 0
1 4 a*Q)? /2 —a” + 3a%cos?(20) + 2x? cos(20
Yon = — €Emn T — a —[ cosm® cosn®( a a’cos’(26) X c0s20)) do®
X T X 0 0
/2 in(20)(a” 20) + x?
+2n f cosm® sinn@ SN2 CZS( )+ x )d®} (B19)
0
|
where where
2 ifm=n=20 2ax
Emn55m+n0+5mn:{1 ifm=n+#0. (B20) k= 11,2 (B23)
: , . a* + x
0 ifm+#*n

The integrals needed in Egs. (B17)—(B19) are all of the
form

do

. /w/z cos(2P0) sin(2/0) (B21)

0 0(x, 0)
where P and J are integers. With trigonometric identities,

and with the substitution x = sin®, such integrals can all
be expressed in terms of integrals of the form

N

— 1 X
Howlb) = ﬁ NN

(B22)

LPMIOM + 1) — M + 2)(1 + KA)x + M + 3)k2x*] I

For the integrals in Eq. (B21) only even values of N are
needed for Jy. All such integrals can be evaluated in
terms of the complete elliptic integrals [19],

1 1
Kk) = d
® ﬁ V1= 31— «2 ! B24)
E(k) = 17V1_k2x2dx
o V1—-x

To use the elliptic integrals to evaluate the Ky (k), for
even N, we start with the relationship (for M = 0)

(B25)

_ [ M1 — 1221 — 2ldx =
0 /O(d/d)["”\/l 2x2V1 — x2)d [

0

This gives us the recursion relation

QM + 1) Koy (k) — M + 2)(1 + k2 Koy 12 (k) + M + 32 Ky 1 4(k) = 0.

V1 — 221 — &2

(B26)
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We know that
Ko(k) = K(k),

and we can easily show that
1
XKo(k) = 5K (k) — E(K)]

so all values of K,,,(k) follow from the recursion relation.

Very efficient computation follows from the results
above. At a given value of y, only two integral evaluations
must be done, those for K(k) and E(k). All values of
K (k) then follow from the recursion relation, and hence
all values of «a,,,, B Ymns» can be found at negligible
computational expense.

Here we use this method only to illustrate important
general issues. To make this illustration as clear as pos-
sible, we take the simplest nontrivial case of the multipole
expansion: we keep only the n = 0 and n = 2 terms[20],
so that

V(y, ©) = ay(y) + a,(x) cos20. (B27)

The equations in Eq. (B13), then describe the interaction of
the monopole ay(y) and quadrupole a,(y) terms. For
x/a < 1 and y/a > 1 the terms that mix the multipoles
die off; it is only in the transaction region, y/a ~ 1 that
there is strong mixing of the multipoles, a mixing that for
our problem is quadratic in the source velocity a{). The
process of the generation of radiation can be viewed as the
growth of a, from the small-y near-source region to the
large- y radiation region.

In principle, the linear standing-wave problem could be
solved by including a term a, sin(20), leading to an addi-
tional second-order differential equation. At some inner
boundary y, < a the values could be specified for all
multipoles, and at some outer boundary y,, >> a, a fall-
off condition could be specified for a,. Ingoing or outgoing
conditions could be used to relate a, and a;.

It is easier, and more instructive, to use another approach
to finding the standing-wave solution, the minimum-
amplitude method presented in Paper 1. For the linear
problem it is straightforward to show[8] that of all solu-
tions that (i) have the form of Eq. (B11), and (ii) correctly
couple to the source, the solution with the minimum wave
amplitude in each multipole is the standing-wave solution,
i.e., the solution that is half-ingoing and half-outgoing. In
principle, the minimum-amplitude criterion can be used as
a definition of standing waves in a nonlinear problem. Here
we are dealing with a linear problem, so we are simply
exploiting a known property of the solutions.

In this minimum-amplitude method we specify a,
day/dy, a, and da,/dy at Y., then shoot outward. The
choice of ay and day/dy, at ym, are those for unit point
charges. The value of aj at y, sets the scale of the linear
solution. The value of day/dy can be approximated as
1/97 X min- In principle this starting value can be adjusted so
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that at large y the results for a satisfy the fall-off condi-
tion dag/dy = ay/xlogy. In practice, the overall result
(after the minimization described below) is very insensitive
to the choice of day/dy at X pin-

The choices for ay and dag/dy at y.,;, are determined
by the form of W very close to 1 of the unit point charges.
Some care is necessary in taking this limit. In the x, y frame
comoving with one of the unit point charges the value of ¥
due only to that charge is log[ (x> + y?)/a?]/4. We must
now transform this result to the “lab’ frame of our calcu-
lation in which we use coordinates X, ; t. The Lorentz
transformation is

x=X y=7 (B28)
(The last relation follows since y is in a coordinate frame
that comoves with the point source, but which is related to
the lab frame by a simple translation by vt.) Since ¥ is a
Lorentz invariant we have ¥ = log(r?/a®)/4m where r? =

%% + y*y?, expressed in adopted coordinates, is

4 1 2
)(2[1 5 X cos(2®)}

a2

4 2
+(y2 — 1)3@&(2@)%[1 - % cosZ@} (B29)

and V¥ is therefore

= %T (10g[4)(_;} + logl1 + (2 — 1)sin2(2®)]>

= L(log[%} + ZIOgF/THD + O(cos(40))

+ O(x/a)* (B30)

The last relationship is meant to emphasize that in the y —
0 limit ¥ has no cos(20) component. This comes from the
fact that the Lorentzian pancaking of the source field has
the nature of a local quadrupole deformation, while the
cos(20) term represents a local dipole. (As defined in
Eq. (B3), ® = 0/2 or (6§ + m)/2 near the source points,
so the cos(20) dependence near the source point corre-
sponds to the dipole field of the source.)

The contribution, near y = 0, due to the distant point
can be approximated with r = 2a so that at y = y,;, the
appropriate starting conditions for unit point charges are

1 4 +1
ag = E(log[%} + 2log|:yT:| + 10g4>
(B31)

dag 1 0
dap _ 1 a =
dxy mx 2 dx

daz _

While da,/dy at y — 0 vanishes in principle, in the
numerical computation, da,/dy plays a more delicate
role. It is chosen to minimize the wave amplitude at large
x. It is actually the values of a, and da,/dy, at ymi, that
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FIG. 12 (color online).
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Comparison of the analytic waves and the computed waves for a{) = 0.5, yin = 0.05a and ypn.« = 704,

and a, = 0 at y,;;, = 0. The monopole is subtracted in the figure on the right to allow for a comparison of computed and analytic wave

amplitudes.

determine the radiation field at large y, and determine
whether there is any a, radiation except the radiation
coupled to the source. To minimize that radiation (and
suppress radiation that is not coupled to the source) we
fix a, and vary da,/dy. (We could just as well fix da,/dy
and vary a,.) Minimization is taken to mean the minimum
value of the amplitude defined by

1 /da a,\2
= 12 g2 + — £ + =2 .
Amp <(X/a) \/az 4QZ<dX 2)() > (B32)

For the expected large distance form of the waves
r~ Y2 cos(2Qr + 8), the quantity inside the angle brackets
is expected to be nearly y-independent; this is confirmed
by the numerical results. The angle brackets denote an
average over a wavelength, resulting in a quantity that is
x independent to high accuracy at large y. In our minimi-
zation procedure we vary da,/dy at Y, to minimize
Amp. The meaningfulness of this minimization procedure,
of course, depends on its insensitivity to the details of how
a, and da,/dy are chosen at yp,. This is discussed below.

For the source speed a{) = 0.5, results, for ® = 0, of
our computation are shown in Fig. 12, and are compared
with the analytic solution for two point sources each of unit
strength

- m[{% In(r/a) for r> a}

0 forr<a
>
m=2,4,6...

Jm(mQr<)Nm(mQr>)cos(m@)} (B33)

(where r-, r— indicate, respectively, the greater and lesser
of r, a). For our more typical choice a{) = 0.3, the differ-
ence of the computed and analytic solution are too small to
show up well in a plot. The plot on the left shows the

comparison for the whole range of the computation.
Dividing the analytic solution by 1.039 brings it into nearly
perfect alignment with the computed solution; we therefore
characterize the overall error in the computed solution as
3.9%. Overall errors for several values of a{) are listed in
Table V.

The plot on the right in Fig. 12 focuses on the oscilla-
tions in the far zone by removing effective monopole
terms. For the analytic result this is done by sub-

tracting the asymptotic monopole solution V1 — a?Q? X
log(x?/2a?)/ . For the computed solution this is done by
plotting only a,(y). The comparison shows two effects.
First, there is a 1.2% difference in peak-to-peak amplitude.
Errors of this type are tabulated for different values of a{}
in Table V. A second and more interesting effect, apparent
in the waves of Fig. 12, is the difference in shapes. Since
the computed wave contains only the quadrupole compo-
nent it has a nearly perfect sinusoidal form. The analytic
solution, on the other hand, shows a rapid rise and a slow
fall off due to the contribution of the hexadecapole and
higher modes. For small a{) the amplitude of a cos(m®)

TABLE V. The errors (differences from analytic solution) of
the monopole + quadrupole approximation for different values
of the source speed a{). The overall error is the difference of the
computational and analytic solution at y.x = 70a; the wave
error is the difference of the computational and analytic peak-to-
peak amplitudes.

al) Overall Error Wave Error
0.1 0.08% 0.14%
03 1.0% 0.1%

0.5 3.9% 1.2%

0.7 13% 3%
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component depends on a{) approximately according to
(aQ)™ 93 so the contributions from m =4, 6,8 ... de-
crease quickly with (0.

We now want to use the accuracy of the linear 2 + 1
dimensional model to make an important point about the
role played by the source structure in generating radiation.
To do this in our monopole + quadrupole computational
models we depart from considering ““point”” sources and
we vary the choice of a,(xmin). In each case the specifica-
tion of da,/dy at (xmi,) is fine-tuned to get a minimum
wave amplitude at y,... For this investigation to have
physical relevance we need to ask what a “‘reasonable’
value is for a,(Ymin)-

If xqur specified the (approximately spherical) location
of the outer surface of the source, then we can write

a (Xsurf) = KaO(/\/surf)r (B34)

where « indicates the relative quadrupole strength of the
source. We expect k to be small for realistic sources and of
order unity only for highly distorted sources.

In our computational models we take yi,/a to be very
small, typically 0.05. It is useful, however, to consider the
computed results applying to larger sources, sources with
Xsurf Significantly larger than y,;,. To do this we can use
the fact that outside, but very close to a source, a, varies as
logy and a, falls off as 1/x*. From this we conclude that
for small y

az(/\/min) = K /\/gurf 1Og/\/surf
[20) (Xmin) /\/Iznin 1Og/\/min

(B35)

We can now fix k = *1, its maximum reasonable value,
and we can choose a value of y,s, the value at which the
quadrupole and monopole have equal strength. These
choices determine a»(Ymin)/a0(Xmin)» and therefore the
computational model.

Results are presented in Table VI. For the choices
Xsug/a@ = 0.1, 0.2 and 0.3, and for k =1 and —1, the
amplitude of the quadrupole waves is computed for
Xmin/a@ = 0.05 and x.x/a = 70. For each choice of
a>(Xmin), the starting value of da,/dy is fine-tuned for
minimum wave amplitude. Since a,(y) should have the
form const./ x?, the value of da,/dy should be very nearly

TABLE VI. The effect on the wave amplitude of the conditions
on a, and da,/dy at ymin = 0.3a. The role of the a, term can be
understood as an effective shift of the center of scalar charge.
See text for details.

K Xsurf a2(Xmin) daZ/d/\/ at X'min Rel. Amp 1= 47Tra2/a
1 0.1  —2.92007 116.999652 1.045 1.046
-1 0.1 292007 —117.011864 0.955 0.954
1 02 —8.16416 327.127955 1.125 1.128
-1 02 8.16416 —327.140167 0.875 0.872
1 03 —13.7416 550.612310 1.211 1.216
1 03 137416  —550.6245521 0.789 0.784
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equal to —2a,/ x. The values for da,/dy in Table VI are
very close to this prediction. The table presents the “rela-
tive amplitude,” the ratio of the radiation amplitude to the
radiation amplitude for the case ay(xmin) = 0. It is clear
from the results that the structure of the source has little
influence on the radiation unless the source is large and has
an extreme nonspherical deformation.

In the case of gravitational sources, an even stronger
statement can be made. As already point out, the ‘““‘quad-
rupole” mode a,(y) cos(2®) near the source point is ac-
tually a local dipole a,(y) cos(6;). This dipole moment can
be viewed as a displacement of the center of scalar charge,
and hence a change in the radius at which the source points
move. The change in the radiation amplitude can be as-
cribed to this change in radius. This explanation of the
change can be made quantitative. We let r represent the
distance from source point 1 at which inner boundary data
is being specified and we let § be the radial distance by
which the center of scalar charge is being moved outward.
The solution for the scalar field is

1
¥ = — log(r? — 2rd cosf, + 62%)
4ar

1
~ —[logr? — 2(8/r) cos,]. (B36)
dar
From this we infer that
1)
a, = ——. (B37)
27rr

This means that the radius of orbital motion is changed
from a according to

a—a+ o6=a—2wra,. (B38)
From Eq. (B33) we see that for quadrupole radiation (that
is, m = 2) the amplitude of the waves scales o a?. It
follows that the amplitude of the waves should depend on
a, according to

amplitude « 1 — 47ra,/a. (B39)
For the computations presented in Table VI, a, is evaluated
at Ymin = 0.05a, so r = 0.05’a. The numerical results
following from this simple explanation of the shift of the
center of charge, presented as the last column in Table VI,
are convincingly accurate.

This explanation for the role of the m = 2 mode is of
considerable significance for gravitational problems. The
equivalence principle implies that there is no local dipole
for the gravitational sources. Thus the starting value of a,
which, at large distances gives the quadrupole radiation, is
not a parameter of the structure of the source; if we know

the location of the effective center of the source, the
structure is fixed.

104017-24



PERIODIC STANDING-WAVE APPROXIMATION: ...

APPENDIX C: DETAILS OF THE
EIGENSPECTRAL METHOD

In this appendix we explain how the continuum angular
Laplacian of Eq. (35) is implemented as a linear operator in
the N = ng X ng dimensional space. That linear operator
must represent the angular Laplacian evaluated at a grid
point ®,, ®,,. That is, the linear operator L, ;; must satisfy

[Sin®v§ng‘l’]ab = ZLab,ij‘I’ij: (CD
i

where the approximation is due to FDM truncation error. It
will be convenient below to write the linear operator as a
sum L = LW + L® with L containing ® derivatives
and L® containing @ derivatives.

By exploiting the symmetries of the PSW configuration
we can limit the range of angular coordinates to one quarter
of the complete 2-sphere. The indices a, i range from 1 to
ng , representing, respectively ® = A®/2t0 @ = 7/2 —
A®/2. The indices b, j range from 1 to ng, representing,
respectively @ = AD/2 to & =7 — AD/2. Our goal
here will be to show that with this choice of the grid, the
linear operator can be chosen to have the symmetry

Lapij = Ljjap- (C2)

The elements of L,,;; have a different form for the
boundaries at ® = A®/2, 7/2 - A®/2 and at ® =
Ad®/2, 7 — Ad/2, and in the interior of the angular
grid. We consider each case separately.

Case I: Interior points, 1 <a <ng,1<b<ng

The first contribution is

6/7' . .
Ezlb),ij = (A®])2 [Sln®a—1/25a—1,i - (Sln®a+1/2
+8in0,_12)8;4 +5in0O,41/28,41,]  (C3)
and the second is
1 S,
2 _ ai
abi] = (AD)? m@b—u —28,;+ 8p11)). (CH

Here §; . is the Kronecker delta, and sin®,, is defined
to mean sin(®, = A®/2). It can be seen that both contri-
butions to L, ;; are symmetric with respect to the inter-
change of the pair ab with the pair ij, and hence Eq. (C2) is
satisfied.

Case II: Boundaryata = 1,1<b<ng

The O derivative part of the operator formally takes the
form

Opj . . :
(ll,,)ﬂ»j = (Ag)z [sin08,; — (sin0 + sinA®)35;
+ SinA@sz’i]. (CS)

In the sum in Eq. (C1) the §,; term respresents W(0© =
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—A®/2, ®), which is not a value available on the angular

grid. This term however, is multiplied by sin0 = 0 and can

(0

be ignored, so L, ; ; satisfies the symmetry condition in

Eq. (C2). The form of Lfb)y ij also applies without change to

a = 1, and hence Eq. (C2) is satisfied for the index range
a = 1, 1<b< ng.

Case III: Boundary at a = ng, 1<b<ng

In this case the ® derivative part of the operator formally
takes the form

O
(5 B b : _
Lngb,ij = (A(E)j)z [Sln(7T/2 A@)Bn(’,l’i

— (sin(7/2 — A®) + sin(7/2))8,, ;

+ 8in(m/2)8,, 1,1} (C6)

The  8,,+1; represents W(O, ., ®,) =¥(0O =
7/2 + A®/2, ®). This value is not directly available on
the grid, but we can get an equivalent value that is on the
grid by using the symmetry

V(O, D) =V(r— 0,7 — D).

This is equivalent to the statement that W is invariant with
respect to inversion through the origin and reflection in the

orbital plane (or equivalently Z — —Z, X — —X, Y — Z

(C7)

o
T+HAD/2 r---r---p---pr---p oo
1 I D 1 l 1 1
| | I | | I |
T—AD2 +--- ' ' ' ro-
1 D 1
! Al A
- -t
| |
| |
| |
r--- -t @
! . —

| |
r--- --
| |
| |
| B B
- -t
| |
| C |

+A(D/2 T____\ | | | | ___T T[/z
| | I | | I |
A 7R S S~ S S S

—A®2 +AB/2 2702 ~1/2+A0 /2

FIG. 13.  An angular grid with ng =5 and ng = 6. Grid

points, points at which a value for ¥ is computed, are connected
by solid lines. The dashed lines extend the grid to ‘“phantom”
points needed for the computation. For the FDM implementation
of the Laplacian at point A the value of W at point A’ is needed.
By the symmetry of the physical problem, this value can be
replaced by the value at point B, which is on the grid. Similarly
the value at B, when needed, can be replaced by that at point A;
the value at C’ can be replaced by that at C; the value at D’ can
be replaced by that at D; and so forth.
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in Fig. 3.) As shown in Fig. 13, we can, therefore,
replace V(O = 7/2+ A0/2,d) with V(O =
m/2 —AO®/2, 7w — ®), or can replace ¥(O, ., D)

with ¥(0,,, ®;,) where b = Ng — b. Equivalently, we
can rewrite Eq. (C6) as

1) Sbj e
Lyowii = 207 [sin(7/2 — A®)S,, 1,

— (sin(7/2 — A®) + sin(7/2))6,,, ;]

S5+,
+ U sin(m/2)8,, i

(AO®)? €8
The term that has been introduced is
1
1) _
ﬂ@b,ﬂ(gg - (A@)Z : (C9)
Since b = b, we have LW =0 which satisfies
negb,ngb neb,ngb
the symmetry in Eq. (C2). All other terms in LY remain

l’l(.,)b, ij
the same as in Case I, and hence Eq. (C2) is satisfied for the
index range a = ng, 1 < b <ng.

Case IV: Boundaries at 1 = a<ng,b=1and b = ng

For these boundary points Case I considerations apply to

LY @ takes the form

abij* For b = 1, however, Lub’i]

1 o
@ _ ai _
alii = (A0) 5in0, (80, =281, + 83)).

(C10)

The 8 ; refers to an angular location (& = —A®/2) that
is not on the grid. Here we can use the symmetry
V(O, —d) = V(O,d), and hence W(O, —AD/2) =
W(0, AdD/2), to replace &,; with ;. The resulting
L, ;; satisfies the symmetry of Eq. (C2).

For b = ng, the considerations are very similar. The
VO, —P) = (O, d) symmetry is used to replace
5nq)+l,j by 5n¢,j'

Case V: Boundaries at a = ng, b = 1and b = ny

Here the forms of Lg{;], ;j and qul(;znq,,ij are taken from
Case III with b =1, ng, and the forms of Lf(jl,i/‘ and

qu(znq,,i,‘ are taken from Case IV with a = ng. From the

considerations of Case III and Case IV it follows that the
results here also satisfy Eq. (C2).
To clarify the results derived above, we list here all

nonzero elements of Lglb)’ ij and L(azb)’ it
(1) _ Sin®a+1/2 + sin@a_1/2
Lab,ub = (A®)2 all a, b (Cl 1)
(1) _ ) _ Sin@a—l/Z
Lab‘(a_l)b = L(a_l)b,ab = 7(A®)2 for 1 <a (Cl12)
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1) —_ 7 _sin®,4),
Lo+ = Liarvpay = “Gher for a <ng
(C13)
R ! where b = ng — b
neb,ngb ngb,ngb (A@)Z P
(C14)
1O, =2 all<b<n (C15)
ab.ab sin@,(A©)> ®
1@ - 1@ _ 1 C16)
alal = 2 T 6in@,(A®)?
(2) _ 7 o
Lab,a(b+1) - Lu(h+1)yab = W all b < ne
(C17)
L =1 = <
ab,a(b—1) a(b—1),ab Sin@a(A @)2 .
(C18)

This completes the proof that for the full range of its
indices L, ;; satisfies Eq. (C2). With this result in hand we
can go on to the computation that is central to our eigens-
pectral method: finding the eigenvectors of

> Lapi¥)) = —AWsin®, v, (C19)
ij

where the k index indicates that the solution is the kth
eigensolution. Aside from the sin®, factor on the right,
this is a standard eigenproblem for a symmetric real ma-
trix, and we conclude that the eigenvalues are real and the
eigenvectors form a complete basis. It is easy to show that
the factors of sin®, do not change these conclusions.

The finite difference problem in Eq. (C19), along with
Egs. (C1), can be seen to be the finite difference equivalent
of the continuum eigenproblem

V2,.Y(0, ®) = —AY(0, ®). (C20)

With the usual boundary conditions, the solutions of
Eq. (C20) can be taken to be the spherical harmonics,
and A to have values €(€ + 1) where € is an integer. The
solutions of Eq. (C19) should then be approximately pro-
portional to the real and imaginary parts of Y, (0, ®)),
the approximation becoming perfect as the grid goes to the
continuum limit.

We next define the inner product in the grid vector space
by the expression in Eq. (36). It is simple to show, follow-
ing the usual pattern with eigenproblems, that with respect

to this inner product, two nondegenerate eigenvectors Y, ij]-‘) .

and Y ff/) are orthogonal as a consequence of the symmetry
in Eq. (C2). Since we find the grid multipoles to have no
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degeneracies it follows that the solutions to Eq. (C19)
constitute a complete, orthogonal basis, and can be nor-
malized to satisfy Eq. (37). It should be clear that this is the
finite difference equivalent of well known continuum rela-
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tions. In the continuum limit, Eq. (36) is the inner product
on the two sphere. The orthogonality of our grid multipoles
is therefore just the finite difference form of the orthogo-
nality of spherical harmonics.
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