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I discuss the accuracy requirements on numerical relativity calculations of inspiraling compact object
binaries whose extracted gravitational waveforms are to be used as templates for matched filtering signal
extraction and physical parameter estimation in modern interferometric gravitational wave detectors.
Using a post-Newtonian point particle model for the premerger phase of the binary inspiral, I calculate the
maximum allowable errors for the mass and relative velocity and positions of the binary during numerical
simulations of the binary inspiral. These maximum allowable errors are compared to the errors of state-of-
the-art numerical simulations of multiple-orbit binary neutron star calculations in full general relativity,
and are found to be smaller by several orders of magnitude. A post-Newtonian model for the error of these
numerical simulations suggests that adaptive mesh refinement coupled with second-order accurate finite
difference codes will not be able to robustly obtain the accuracy required for reliable gravitational wave
extraction on Terabyte-scale computers. I conclude that higher-order methods (higher-order finite
difference methods and/or spectral methods) combined with adaptive mesh refinement and/or multipatch
technology will be needed for robustly accurate gravitational wave extraction from numerical relativity

calculations of binary coalescence scenarios.
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L. INTRODUCTION

Studies in numerical relativity in the past decades have
claimed at least partial motivation from the imminent
direct detection of gravitational waves from both ground
based (LIGO, GEO, TAMA, VIRGO) and space based
(LISA) detectors. Theoretical calculations of gravitational
waveforms from realistic astrophysical phenomena will be
an essential ingredient in the extraction of characteristic
information of gravitational wave sources (e.g., mass, spin,
size, and composition of compact objects) from the de-
tected gravitational waves. In particular, gravitational
waves produced during the coalescence of binary compact
objects (neutron stars and/or black holes) are strong can-
didates for direct detection, and thus it is precisely these
systems that are of great interest to the numerical relativity
community. Recent advances in numerical relativity, in
particular, with respect to the stability of binary black
hole evolutions [1-3] and binary neutron star evolutions
[4-6], make possible the calculation of gravitational
waves from fully general and consistent numerical relativ-
ity simulations of binary coalescences.

However, numerical relativity simulations contain
errors that arise from attempting to solve continuum dif-
ferential equations (the Einstein field equations) on infinite
domains (asymptotically flat spacetimes) with digital com-
puters of finite size and speed. Examples of these errors are
truncation errors (e.g., due to the truncating of Taylor-
series expansions for finite difference methods or to the
truncating of function expansions for spectral methods)
and boundary errors (e.g., errors induced by the introduc-
tion of a computational domain in causal contact with the
binary and/or the gravitational waves being emitted). The
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magnitude of these errors determines the accuracy of the
numerical relativity simulation (here, I do not include
modeling errors in the determination of the accuracy of
a numerical relativity code, e.g., inaccurate equation
of state for neutron star matter or astrophysically incorrect
initial data for binary simulations). In this paper, I demon-
strate, for the first time, a calculation for determining
the accuracy required of inspiraling binary numerical rela-
tivity simulations in order that the characteristics of the
extracted gravitational waveform represent the physics
of the binary system to the experimental error level of
the gravitational wave detector. Using the gravitational
waveform accuracy criterion in [7], I calculate the sensi-
tivity of the gravitational waveform to various parameters
of the dynamical binary system (e.g., binary separation,
angular velocity, mass) assuming a specific target sensitiv-
ity for the gravitational wave detector; forcing the errors
in the same dynamical parameters within numerical rela-
tivity coalescence simulations to be smaller than these
sensitivities will be one way of guaranteeing an extracted
theoretical waveform accurate to the sensitivity level of
the gravitational wave detector. Truncation and boundary
errors in the orbital separation of the multiple-orbit binary
neutron star simulations in [4] are calculated and are shown
to be several orders of magnitude larger than the margin
allowed for by the gravitational wave sensitivity calcula-
tion. Using a post-Newtonian model of the truncation
and boundary errors in the binary neutron star numerical
relativity simulations, I estimate the computational resour-
ces required for accurate gravitational waveform genera-
tion from such simulations, and conclude that both
higher-order methods and mesh refinement or multipatch
technology will be required for robust, reliable, and accu-
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rate gravitational waveform extraction from numerical
relativity simulations of coalescing binary inspirals and
mergers.

The outline of the rest of the paper is as follows. In
Section II, the sensitivity of gravitational waveforms to
various physical characteristics of the coalescing binary is
calculated for binary black hole and binary neutron star
systems. In Section III, I compare these sensitivities to
errors in recent state-of-the-art binary simulations in nu-
merical relativity, and find the errors to be orders of mag-
nitude larger than the gravitational wave sensitivities. I
conclude by discussing methods that may be helpful in
reducing the error of numerical relativity calculations of
coalescing binaries to levels that would permit their ex-
tracted gravitational waveforms to be used with confidence
as templates in modern interferometric gravitational wave
detectors.

II. REQUIRED ACCURACY FOR NUMERICAL
RELATIVITY SIMULATIONS OF BINARY
INSPIRALS: SENSITIVITY OF GRAVITATIONAL
WAVEFORMS TO PHYSICAL CHARACTERISTICS
OF THE BINARY

In order to calculate the sensitivity of gravitational
waveforms to various physical characteristics of the co-
alescing binary, I calculate binary coalescence solutions to
the post-Newtonian equations of motion for nonspinning
point particles. This formalism has the advantage that
accurate gravitational waveforms can be calculated in
astrophysically relevant binary coalescence scenarios.
The major disadvantage is that at small binary separations,
the point particle approximation breaks down due to finite
size effects; the gravitational waveforms obtained by solv-
ing the post-Newtonian equations of motion must therefore
be truncated at the point where these effects become im-
portant. As a result, the sensitivities calculated here will
only bound the true sensitivity, i.e. the sensitivity of the
entire gravitational wave train, through plunge, merger,
and ringdown of the final merged object. In other words,
due to the fact that the gravitational waveform is being
truncated when finite size effects become important, the
sensitivity of the entire physical gravitational waveform to
variations in the physical characteristics of the system is
being underestimated. Thus, the errors in numerical rela-
tivity simulations must be at least as small as the sensitiv-
ities calculated here.

A. Post-Newtonian equations of motion

The general relativistic equations of motion for non-
spinning point particles in harmonic coordinates with po-
sitions X; and ¥,, and masses m; and m,, can be written in a
post-Newtonian expansion as
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where X = X, — X, is the relative separation of the parti-
cles, v = v, — v, is the relative velocity between the
particles, r=1x|, A=X/r, m=m +m,, n=
mym,/m?, and i = dr/dt. The post-Newtonian expansion
in Eq. (1) is carried out in powers of € ~ m/r ~ v* (I set
G = ¢ = 1), where each power of € represents one post-
Newtonian (PN) order in the series. The 1PN and 2PN
terms are standard (e.g., see [§—10]). The 2.5PN [9-11]
and 3.5PN [10] have also been completely determined. The
3.0PN terms have just recently been calculated [12] up to
one gauge-dependent constant. Employing an energy and
angular momentum balance technique, the 4.5PN terms
have been fixed modulo 12 free ““‘gauge’ parameters [13]
(appendix B of [14] demonstrates that these free parame-
ters have a negligible effect on inspiral dynamics). Once
the initial relative positions and velocities of the particles
are given, Eq. (1) is then solved numerically for the time
evolution of the binary system. Specifically, if the initial
separation r and its time derivative 7 along with the initial
relative angular position ¢ and its time derivative ¢ are
specified at time 7 =0, then the equations of motion
Eq. (1) specifies r(¢) and ¢(¢) for ¢ > 0 (I assume the binary
orbits within the z = 0 plane).

I use the post-Newtonian formalism presented in [15—
18] to calculate the polarization state h(r) = h () of the
gravitational radiation as a function of the motion of the
binary. For definiteness, I fix both observation angles
(®, ®) to be 0 for the remainder of the paper (i.e., the
binary, which is orbiting in the z = 0 plane, is observed
along the +z-axis).

B. Waveform sensitivity to physical characteristics
of the binary

An inner product on the space of waveforms A(r) is
defined as
i ()ha(f)
1(Hh(f } 2
Si(f)

where /1, (f) and /1,(f) are the Fourier transforms of the two
waveforms h,(t) and h,(¢), and S,(f) is the one-sided
power spectral density of the strain noise of the detector.
For the calculations in the remainder of this paper, the
model of the one-sided power spectral density of the strain
noise for the advanced LIGO detector found in [19] is used
for S,(f), where the mass scale is set by assuming an
equal-mass binary with m; = m, = 1.4M. The latest

(i liy) = 4Re{ﬁ°° df
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detection rates for binary neutron star coalescences for the
advanced LIGO sensitivity is between 40 and 650 events
per year [20]. Assume that the gravitational waveform h(r)
contains an error 8h(7). Arguments in [7] determine the
criteria that the error 8h(f) be small enough so that the
quantity

_ 1 (Sh|8h)
=2y )
satisfies
A =0.01. 4

This accuracy criteria is based on matched filtering accu-
racy arguments, physical parameter estimation arguments,
and arguments based on the total information content of the
gravitational wave signal (see [7] for details). The specific
criteria Eq. (4) is based on the assumption that the signal to
noise ratio is of order 10. Much higher signal to noise ratios
are expected for LISA, and therefore an even more strin-
gent requirement on 6k(#) could be required in that case
(e.g., for gravitational wave templates used in physical
parameter estimation, the required A scales like the inverse
square of the signal to noise ratio).

Using the post-Newtonian equations of motion de-
scribed in Sec. I A as a model for coalescing binary
compact objects, along with the gravitational wave accu-
racy requirements Eqgs. (3) and (4), I now analyze the
sensitivity of the gravitational waveform to various physi-
cal characteristics of the binary dynamics. Note that the
gravitational waveform h(¢) of our post-Newtonian model
of a binary inspiral depends solely on the 8 parameters x=
{ro, b0, o, d}o, my, my, ts, R}. Here, ry and ¢ specifies the
relative binary position at the initial time ¢ = f,, 7, and ¢
specifies the initial relative binary velocity, m; and m,
specifies the mass of each compact object, while R speci-
fies the observation distance from the center of mass of the
binary. The parameter 7 is the time at which the waveform
is truncated due to the breakdown of the post-Newtonian
point particle approximation. This breakdown occurs when
the internal structure of the individual compact objects has
a significant effect on the orbital dynamics of the binary.
Throughout the rest of this paper, I take 7, to be the time at
which the binary separation r(t;) = 4m for equal-mass
binary black holes and r(z;) = 8m for equal-mass binary
neutron stars. I orient the system such that the initial
relative angle ¢, = 0. For a specific initial binary separa-
tion ry, I set the initial relative velocity parameters 7, and
¢, to be those specified by the unique quasicircular solu-
tion of the binary (the quasicircular solution to the PN
equations of motion is obtained by starting from circular
orbit initial data in the limit as the initial separation » — oo,
see Sec. 2 of [14]).

For a specific set of parameters X that specify the wave-
form h(z), define the quantity Ag ;A to be the ranges in the

PHYSICAL REVIEW D 71, 104016 (2005)

parameters such that the change in the gravitational wave-
form 8h(z) induced by separately changing each individual

component A; satisfies A =< 0.01. The quantity AO_le can
be interpreted as the “allowable’ error in each parameter
during the course of a numerical relativity time evolution
simulation, since changes within this range do not appre-
ciably (to the tolerance set by Eq. (3)) affect the gravita-
tional waveform.

As a concrete example, [ examine the sensitivity of the
gravitational waveform on changes in the binary separation
r. I solve the 4.5PN equations of motion for the quasicir-
cular solution for an equal-mass (m; = m, = m/2) binary
and find that exactly 3 orbits before merger (for definite-
ness, assume binary black holes and define the merger to be
at binary separation r = 4m), the binary separation is r =
7.3195m, the relative radial velocity is 7 = —0.005 573,
and the relative angular velocity is ¢ = 0.042 63 /m. Using
these values of parameters as initial data, the subsequent
gravitational waveform h(z) for the last 3 orbits before
merger is computed. I define a second gravitational wave-
form A'(r) to be the one obtained by changing the initial
binary separation ry — ry, + 6r, keeping all other initial
parameters fixed. The change in the waveform 6h(t) in-
duced by changing the initial binary separation an amount
Sr is therefore S8h(r) = h'(r) — h(r). The quantity A
(Eq. (3)) can now be calculated; in Fig. 1, the quantity A
is plotted as a function of the change in initial binary
separation &r. The quantity A, r is defined as the range
of &r such that A = 0.01; in this case, Ayg;r = 0.0165m
(see Fig. 1). The intuitive interpretation of this calculations
is as follows: &r represents the error in the binary separa-

0.015
Ay r =0.0165 m
001 =—-———————— =

A L 4

0.005 |- .
—%.01 -0.005 (‘) 0.005 0.01

(0r) / m

FIG. 1. An example of the definition of the A, operator. A

(Eq. (3)) is plotted as a function of the variation of the initial
orbital separation dr for an equal-mass black hole binary, start-
ing 3 orbits before merger (m is the total mass of the system). In
order that variations in the resulting gravitational waveform
satisfy A < 0.01, any variation in the initial orbital separation
r must satisfy 6r <0.0165m. 1 therefore define Aygr =
0.0165m.
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tion of a numerical relativity simulation of equal-mass
black holes at a time when 3 orbits remain until the merger.
The quantity A o r represents the allowable error in binary
separation r as set by the tolerance level of Eq. (4). Thus, a
numerical error | 57| in the binary separation of a numerical
relativity simulation at a time when 3 orbits remain until
merger that is greater than A ;7 would correspond to an
unacceptable level of error in that simulation.

In Fig. 2, the parameter tolerance A A; for physical
parameters m,, ms, ro, ¢ and 7 is plotted as a function of
the number of orbits until merger for equal-mass binary
black holes and binary neutron stars. Note that the gravi-
tational waveform is roughly an order of magnitude more
sensitive to small changes in the angular velocity as com-
pared to small changes in the radial velocity.

T

— (A om)) /m=(A
....... (AO.Olr) /m

(8, (@0/d0) ) m
----- (A, (dr/dt))

mz)/m
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FIG. 2 (color online).  Gravitational wave sensitivities to vari-
ous dynamical quantities for orbiting binary black holes (top
panel) and binary neutron stars (lower panel) are plotted as a
function of the number of orbits remaining until merger. Shown
are gravitational wave sensitivities of the mass of each compact
object (Aggim; = Aggim,y, solid line), the orbital separation
(Agor7, dotted line), the relative orbital angular velocity
(Ago; ¢, dashed line), and the relative orbital radial velocity
(Ag o1 7, alternating dot-dashed line).
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III. CASE STUDY: BINARY NEUTRON STAR
EVOLUTION

A. Comparing errors in numerical relativity
simulations of coalescing binary neutron stars
to gravitational waveform sensitivities

Several recent studies [4,6] have analyzed various as-
pects of orbiting binary neutron stars by performing 3 + 1
general relativistic hydrodynamic simulations. It is instruc-
tive to analyze the accuracy of these simulations in com-
parison to the sensitivity required for the accurate
generation of gravitational waves as represented in Fig. 2.

In [4], quasiequilibrium initial data sets corresponding
to two equal-mass, corotating binary neutron stars were
numerically evolved using a general 3 + 1 numerical rela-
tivity code that simultaneously solved the Einstein field
equations coupled to the general relativistic hydrodynam-
ics equations. In order to assess the quality of the numerical
solution, the exact same initial data set was numerically
evolved 5 separate times, using a variety of discretization
parameters and outer boundary placements (see Table II in
[4]). There are two types of numerical errors associated
with the simulations presented in [4]. The first type of
numerical error is due to the finite difference approxima-
tion, where derivatives in the partial differential equations
have been replaced by truncated Taylor-series approxima-
tions. Assuming that the finite difference equations used in
[4] are consistent and stable, Lax convergence theorems
(see [21]) state that the relationship between any quantity
Q constructed from a true solution of the differential
equation is related to that same quantity observed in the
numerical solution Qpmerical PY

Q = Qnumerical + Cl(Ax) + CZ(AX)Z +oe, (5)

where C; are constants (which are different for distinct
quantities Q) and Ax is the discretization parameter used in
the construction of the finite difference equations.
Assuming that Ax is made small enough so that higher-
order terms can be ignored, define the truncation error
(A Q) unc Of the calculations in [4] to be

(AQ)trunc = CI(AX) + CZ(AX)Z- (6)

While the code being analyzed is formally second-order
convergent in both space and time, the use of high resolu-
tion shock capturing (HRSC) methods renders the hydro-
dynamics convergence rate to be first order in space in
regions where the dynamical variables obtain a local ex-
trema (see, e.g., [22]). Thus, the form of the truncation
error, Eq. (6), necessarily contains a term proportional to
the first power of the spatial discretization parameter Ax.

The second type of numerical error that exists in the
simulations presented in [4] is due to the location of the
boundary of the computational domain. Ideally, the com-
putational domain would be placed many gravitational
wavelengths away from center of mass of the orbiting
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binary, thus minimizing the effect of the boundary on the
dynamics of the binary. However, computational resource
limitations coupled with the fact that the code used in [4] is
only second-order accurate and does not employ adaptive
mesh refinement, prevented the location of the outer
boundary of the computational domain to be placed no
farther than 1/4 of a gravitational wavelength from the
center of mass of the system. I model the error associated
with the close proximity of the boundary of the computa-
tional domain analogously with that of the truncation error;
assume that the error in any particular quantity Q induced
by the boundary goes to O as the distance between the
center of mass of the system and the location of the outer
boundary (denote this distance as r;,) goes to infinity. I
expand this boundary-induced error, (A Q)yound» 8 @ power
series about 7, = oo and assume that the values of r;, used
in the calculations in [4] are large enough so that the power
series can be truncated as

B, B
(AQ)bound =— + _22 (7
ry ry

The total numerical error, therefore, is represented as the
relationship between the exact quantity Q... specified
from the solution to the differential equations and quantity
O umerical Produced by numerical simulations:

Qexact = Qnumerical + (AQ)trunc + (AQ)bound‘ (8)

I now compare the errors in the binary separation r
contained in the simulations of [4] with the sensitivity of
the gravitational waveform to changes in the binary sepa-
ration, A, r. L use Eq. (8) to calculate the numerical errors
in the calculation of the binary separation r(¢) for the
simulations presented in [4]. At each time ¢, I assume
that the numerically computed binary separation 7,,merical
takes the form of Eq. (8):

= Tnumerical + (Ar)mmc + (Ar)bound- (9)

Using the results from the five simulations displayed in
Fig. 17 in [4] (which are reproduced in Fig. 4 of this paper),
the five unknowns in Eq. (9) (7exact» C1» Ca, B1, and B,) are
specified at each time ¢. The absolute values of the trunca-
tion error (A7) qyne and the boundary error (Ar)poung Of the
binary separation are plotted in Fig. 3. For comparison, the
gravitational wave sensitivity to binary separation, Agg;r
(see Fig. 2), is also plotted. Important to notice is the
magnitude of the errors (both truncation errors and bound-
ary errors) in the binary separation of the numerical rela-
tivity calculations in [4] as compared to the sensitivity of
the gravitational waveform to the binary separation: the
simulation errors in the binary separation are several orders
of magnitude larger than the gravitational waveform sen-
sitivity to variations in the binary separation! Assuming
that they are to be used as signal detection and parameter
estimation templates, the gravitational waveforms ex-
tracted from these numerical simulations will contain er-

rexact
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FIG. 3 (color online). The absolute value of the truncation
error (Ar)yune and boundary error (Ar)youna Of the orbital sepa-
ration is plotted as a function of the number of orbits for the
binary neutron star simulations in [4]. For comparison, the
gravitational wave sensitivity to variations in the orbital separa-
tion, A.r is also plotted. Assuming the use of gravitational
waveforms produced from numerical simulations as matched
filtering search templates in a gravitational wave detector, sen-
sitivities of Ag g, Ag 1, and Ags correspond to a detector event
loss rate of 3%, 27%, and 87%, respectively.

rors that dominate the experimental errors in modern
interferometric gravitational wave detectors. Steps must
be taken to improve the accuracy of these simulations
before gravitational waves extracted from them can be
considered for use as templates in gravitational wave
detectors.

B. Estimating the accuracy and computational
resources required to extract sufficiently accurate
waveforms from binary coalescence simulations

In order to obtain information on the computational
resources required to reduce the boundary and truncation
errors of simulations such as those in [4] down to accept-
able levels (i.e., such that the errors in the gravitational
waveforms &4 induced by these numerical errors satisfy
A = 0.01), these errors and their effect on gravitational
waveforms are modeled using the post-Newtonian equa-
tions of motion for spinless point particles, Eq. (1). The
same mass and initial orbital separation is used in the post-
Newtonian model as was used in the numerical relativity
simulations. The initial angular velocity of the binary is
determined by the circular orbit assumption (see [14]),
which is consistent with the initial data used for the nu-
merical relativity simulations in [4]. In order to model the
effects of truncation and boundary errors with the post-
Newtonian model, it is modified in the following way.
First, the initial angular velocity of the binary is set to be
a function of discretization Ax and outer boundary place-
ment 7, as
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. . Ax Ax\2
(bo(AX, rb) = ¢circular + (21 <_> + 0-2<_>
m m

+ 0'3<T—b> + 04(?)2 (10)

where ¢ ircutar 18 the angular velocity determined by the
circular orbit assumption. Second, the post-Newtonian
equations of motion are modified so that the evolution of
the angular momentum is given by

dL\  (dL . Ax . Ax\2
(E) N <E>pN s <ﬁ> Uf’(?)
+ a7<ﬂ> + ag<ﬁ>2 (11)
rp rp

In the ideal limit of infinite resolution (Ax — 0) and infi-
nite distance from the center of mass of the system to the
computational boundaries (r, — o), the solutions to these
modified post-Newtonian equations reduce to the standard
post-Newtonian inspiral solutions starting with circular
orbit initial data. The constants ¢ through oy are to be
chosen so as to best reproduce the effects of the truncation
errors and boundary errors from the multiple-orbit simula-
tions of binary neutron stars in [4]. To this end, I define an
“error function” y(o;), which measures the difference in
the orbital separation profile in time between the 5 numeri-
cal relativity simulations NS-A through NS-E from [4]
(which I denote as 4, (), j = 1,2, 3,4, 5) and the solution
to the modified post-Newtonian equations Eqgs. (1), (10),
and (11) (which I denote as r,, (1, Ax, rp, 07;)), as

R T S A I e X )

1
341\ o dt

J

(12)

where (Ax); and (r,); are the discretization and boundary
placement parameters used to produce the numerical rela-
tivity result 7, (¢) for each of the five multiple-orbit nu-
merical relativity simulations of binary neutron stars
performed in [4]. The time integrations in Eq. (12) use 1 =
610m, which corresponds to roughly 2.5 orbits of the
binary system. A global minimum of y(o™") = 0.093m
is found numerically by varying the o; parameters. A
comparison among the five numerical relativity simula-
tions NS-A through NS-E from [4] and the solutions of
the modified post-Newtonian equations of motion Egs. (1),
(10), and (11) using the a’?‘i“ parameters that minimize
x(o;) is shown in Fig. 4.

Using the solutions to the modified post-Newtonian
equations of motion corresponding to parameters oM
that minimize x(o;) as a model for the effects of the
truncation and boundary errors in the full numerical rela-
tivity simulations of orbiting binary neutron stars in [4], I
am now able to gauge the effect these errors have on the
resulting gravitational waveform. Specifically, the goal is
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FIG. 4 (color online). Top panel: plotted is the orbital separa-
tion as a function of time from the numerical relativity simula-
tions of orbiting binary neutron stars in [4]. These simulations
were performed with the same initial data, but with different
discretization parameters Ax and computational domain bound-
ary placement parameters r,. Shown are simulations NS-A (solid
line), NS-B (dotted line), NS-C (short dashed line), NS-D (long
dashed line), and NS-E (alternating dot-dashed line), evolved to
time ¢t = 610m, which corresponds to 2.5 orbits. Bottom panel:
the modified post-Newtonian model rp,(, (Ax);, (ry);, 07'™) is
plotted for the five discretization and boundary parameters
{(Ax);, (rp);}. (G = 1,2,3,4,5), corresponding to the parameters
used in numerical relativity simulations NS-A through NS-E,
respectively. The modified post-Newtonian model robustly en-
capsulates the effects of the truncation and boundary errors
within the full numerical relativity simulations.

to find bounds on the discretization parameter Ax and outer
boundary location parameter r; such that the error in the
produced gravitational waveform satisfies, e.g., Eq. (4). In
order to calculate A = (1/2){S8h|8h)/{h|h), 1 take the
target gravitational waveform %(¢) to be that determined
by the solution to the modified post-Newtonian equations
of motion in the limit as Ax — 0 and r,, — o0, which is just
the waveform obtained from the ordinary post-Newtonian
equations of motion assuming initial data corresponding to
a circular orbit. This waveform we denote as /(). The
“error” in the waveform 8A(¢) induced by the truncation
error and boundary error in the numerical simulations can
then be calculated as

Sh(t, Ax, ry,) = h(t, Ax, rp) — hy(2) (13)

where h(z, Ax, r) is the waveform obtained by the modi-
fied post-Newtonian equations of motion using discretiza-
tion parameter Ax and boundary placement parameter r
(and, of course, using the o; parameters that minimizes
x (o). Figure 5 is a plot of the target waveform A (z) and
the waveform A(t, Axys_a, 'pys—a), Which corresponds to
the best numerical relativity simulation NS-A (the solid
line in Fig. 4).
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FIG. 5 (color online). Gravitational waveforms (multiplied by
the distance to the source, R). The solid line waveform corre-
sponds to hy(f), which is the “‘zero error”” waveform correspond-
ing to the modified post-Newtonian solution with discretization
parameter Ax = 0 and boundary placement parameter r, = 0.
The dashed line waveform is h(f, Axyg_a, pns—a), Which corre-
sponds to the numerical relativity simulation NS-A (see Fig. 4).
The difference between these waveforms (Eq. (13)) corresponds
to A = 0.054, which is 5 times larger than our target accuracy
(see Egs. (3) and (4)).

Shown in Fig. 6 is a contour plot of A (Eq. (3)) as a
function of Ax and r,. Contours for A = 0.1, 0.01, and
0.001 are shown. The “peninsula’-like shape of the con-
tours in Fig. 6 are due to the slightly offsetting effect of the
truncation and boundary errors in the numerical simula-
tions of [4]; larger discretization parameters Ax tend to
artificially increase the rate at which angular momentum is
lost from the binary, while closer outer boundary place-
ments (smaller r,) tend to have the opposite effect. For
reference, the computational memory resources for the
unigrid numerical relativity code used in [4] is shown in
Fig. 6, indicating Gigabyte (10243 bytes), Terabyte (1024*
bytes), and Petabyte (1024° bytes) requirements. Adaptive
mesh refinement (AMR) allows the efficient minimization
of errors induced by the boundary by permitting the place-
ment of the boundary of the computational domain farther
from the coalescing binary for a fixed amount of computa-
tional resources (other methods could also reduce bound-
ary errors, such as employing a Cauchy-characteristic
matching code [23] or using a null-approaching slicing
far from the center of mass of the binary [24]). The
computational memory resources for an AMR version of
the code is also shown in Fig. 6 (I have assumed that the
finest resolution grid is the size of the compact objects, that
the grid at each level has the same computational volume
as every other grid, and that the grids are uniformly nested
with a refinement ratio of 2).

An optimistic reading of Fig. 6 implies that numerical
relativity simulations using a 10 Terabyte computer would
be able to attain the target accuracy of A = 0.01. However,
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FIG. 6. Contour plots of the gravitational wave accuracy pa-
rameter A (Eq. (3)) as a function of discretization parameter Ax
and distance from the center of mass of the binary to the
computational domain boundary 7, for the numerical relativity
simulations of binary neutron stars in [4]. Configurations for
various sized computers with a unigrid code and an AMR code
(nested boxes, with grid refinement ratio of 2) is shown for
reference.

the reliability and robustness of such a calculation would
be highly questionable, due to the fact that the discretiza-
tion and boundary placement would have to be fine-tuned
to reach the tip of the A = 0.01 contour peninsula in Fig. 6.
In order to obtain a robustly accurate simulation from
which gravitational waveforms could be extracted with
confidence, it will likely be necessary to, at a minimum,
use a target resolution Ax,,, 4. and boundary placement
Fprarget SUuch that the gravitational wave accuracy parame-
ter A (Eq. (3)) satisfies A = 0.01 for all Ax = Axi . get
and 7, = rpearger - From Fig. 6, we see that this minimum
target configuration is at roughly Ax,, g ~ 0.002m and
Fhrarget ~ 2000m. However, this minimum target con-
figuration would not be possible with a unigrid code, and
would just barely be possible with an AMR code on a
Petabyte machine, although the execution time of such a
simulation would render it highly impractical. In order to
reduce the computational resources required to perform
sufficiently accurate inspiral calculations in numerical
relativity, higher-order methods will need to be employed
in future calculations. Possible higher-order extensions to
the code in [4] include the use of spectral methods (where
the truncation error drops off exponentially with the num-
ber of collocation points) or the use of higher-order finite
difference methods. Figure 7 reproduces the results of
Fig. 6 assuming that the truncation error of the simulation
falls off as (Ax)®, which is consistent with using an eighth-
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FIG. 7. Contour plots of A (Eq. (3)) as a function of discreti-

zation parameter Ax and distance from the center of mass of the
binary to the computational domain boundary r;,, assuming an
eighth-order finite difference method is used for the numerical
relativity simulations of binary neutron stars. Configurations for
various sized computers with a unigrid code and an AMR code is
shown for reference. Note that higher-order finite difference
methods, couple with AMR, will be able to robustly obtain the
required gravitational waveform accuracy A = 0.01 on Gigabyte
computers.

order finite difference method. The increased accuracy of
the eighth-order method allows for a larger discretization
parameter Ax; the new minimum target discretization is
AXiarger ~ 0.33m. As seen in Fig. 7, a combination of
both higher-order finite difference methods and AMR will
yield a robustly accurate simulation on Gigabyte scale
computers. Not only will the memory fingerprint of a
sufficiently accurate simulation be relatively small for an
AMR code employing higher-order methods, but just as
importantly, the execution time of a simulation using such
a code will be considerably smaller than, e.g., the 200 000
CPU hours required for the NS-A simulation from [4]
displayed in Fig. 4.

C. Generality of results

Various aspects of the implementation of numerical
relativity simulations of coalescing binary compact ob-
jects, including details regarding the spacetime and hydro-
dynamics solvers, boundary conditions, initial data, gauge
conditions, and total evolution times, could have a large
impact on the details of the accuracy studies presented in
sections III A and III B. For instance, the implementation
of constraint-preserving boundary conditions [25,26] in the
simulations presented in [4] could reduce by a significant
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amount the errors in the simulation induced by the outer
boundaries. Of course, any approximation method em-
ployed in the generation of gravitational wave templates
used for signal searches and parameter estimations in
gravitational wave detectors must be validated; one must
directly confirm that the approximation is good relative to
the signal to noise ratio of the detector. As such, the
calculations presented in sections IIIA and IIIB are a
demonstration for the case of numerical relativity simula-
tions of coalescing binary compact objects; gravitational
waveform results from different numerical relativity codes
using different methods and/or different implementation
techniques must be validated in a similar way.

It is instructive to compare the accuracy requirements
found here with other multiple-orbit binary neutron star
simulation results, such as those in [6]. However, the de-
tailed accuracy studies of numerical relativity binary simu-
lations in sections IIT A and IIIB are made possible by
repeating the same simulation (more specifically, using the
same initial data) many times using a wide variety of
discretization parameters and outer boundary placements,
as presented in [4]. While the simulations presented in [6]
used several discretization parameters and boundary place-
ments, they were performed for differing initial data cor-
responding to an array of initial binary separations. Thus,
the detailed studies in sections III A and III B cannot be
repeated using the results from the multiple-orbit neutron
star simulations presented in [6]. However, a casual in-
spection of the simulations from [6] confirms that the
errors induced by the boundary are similar to those of
[4]. In Fig. 8, a simulation of initially corotating binary
neutron stars from [6] is displayed; the coordinate separa-
tion of the neutron stars is plotted as a function of time over
two orbital periods. The equations of state used in the
simulations of [4,6] are identical, and the results from [6]
plotted in Fig. 8 use neutron stars that are 7% more massive
than those used in [4]. Note that the simulation from [6]
(labeled ““Stable’ in Fig. 1 of reference [6]) displayed in
the top panel in Fig. 8 has an initial separation of r; =
9.85M (separation values in [6] are normalized by the
total baryonic mass M; we follow this convention in Fig. 8
and during the discussion here). After two orbits, the
binary separation has increased over 10%, while a post-
Newtonian point particle simulation using identical mass,
initial separation, circular orbit initial conditions, and ac-
curate to order (v/c)° in the post-Newtonian expansion,
predicts that the separation should instead decrease by
15% during the first two orbits (the post-Newtonian simu-
lation is plotted along side the Stable simulation from [6] in
the top panel of Fig. 8). At the very least, it is clear that the
separation of the neutron stars cannot increase, due to the
fact that i) the dissipative effects of gravitational radiation
will cause a decrease in the binary separation and ii) while
the circular orbit initial condition induces a slight eccen-
tricity to the orbit of the binary, this initial condition
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FIG. 8 (color online).  Top panel: the separation of binary
neutron stars (normalized by the total baryonic rest mass of
the system M) simulated by the general relativistic hydrody-
namics code in [6] is plotted as a function of time for two orbital
periods. For comparison, the solution to the post-Newtonian
point particle equations of motion (accurate to order (v/c)®)
for the same masses and initial conditions is shown. Bottom
panel: the binary separation from the general relativistic simu-
lations NS-A and NS-B in [4] (also shown in Fig. 4 using a
different normalization) is plotted for two orbital periods. NS-B
has a similar outer boundary placement as that used in the
simulations of [6], but NS-A has an outer boundary that is
located twice as far away from the binary as that of simulation
NS-B. The similarity of the top and bottom panels suggests that
the unphysical increase in the binary separation of the Stable
simulation in [6] is due to boundary errors, and that the magni-
tude of the errors are roughly the same for the simulations in

[4,6].

corresponds to an apastron (maximum separation) point in
the dynamical evolution [14]. To compare with the simu-
lations analyzed in this paper, the simulations NS-A and
NS-B from [4] shown in Fig. 4 are reproduced in the lower
panel of Fig. 8. Simulation NS-B has a similar outer
boundary placement as that used in the Stable simulation
from [6], but NS-A has an outer boundary that is twice the
distance from the binary as compared to NS-B. The sim-
ilarities between the top and bottom panels of Fig. 8 sug-
gests that the cause of the unphysical increase in the binary
separation during the first two orbits of the Stable simula-
tion from [6] is the close proximity of the boundary of the
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computational domain, and that the errors induced by the
boundary of the computational domain in [4,6] are of a
similar magnitude.

IV. CONCLUSIONS

Using a criterion for gravitational waveform template
accuracy motivated by matched filtering and parameter
estimation requirements of modern interferometric gravi-
tational wave detectors, I have calculated the accuracy
required of numerical relativity simulations of coalescing
compact binary systems. I have calculated the numerical
errors of state-of-the-art numerical relativity simulations of
orbiting binary neutron stars [4], and I find these errors to
be several orders of magnitude larger than the allowed
errors determined from gravitational waveform accuracy
considerations. Using a post-Newtonian model for the
truncation errors and boundary errors in the numerical
simulations of [4], the computational resources required
in order that these simulations attain an accuracy needed
for reliable gravitational wave extraction have been calcu-
lated. I find that while mesh refinement technology will
provide an improvement over the unigrid second-order
accurate simulations of [4], higher-order methods will
also be required for a robustly accurate numerical relativity
calculation of multiple-orbit binary coalescence calcula-
tions on Terabyte-scaled (or smaller) digital computers.
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