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Killing-Yano tensors are natural generalizations of Killing vectors to arbitrary rank antisymmetric
tensor fields. It was recently shown that Killing-Yano tensors lead to conserved gravitational charges,
called Yano-Arnowitt-Deser-Misner (Y-ADM) charges. These new charges are interesting because they
measure e.g. the mass density of a p-brane, rather than the total ADM mass which may be infinite. In this
paper, we show that the spinorial techniques used by Witten, in his proof of the positive energy theorem,
may be straightforwardly extended to study the positivity properties of the Y-ADM mass density for
p-brane spacetimes. Although the resulting formalism is quite similar to the ADM case, we show that
establishing a positivity bound in the higher rank Y-ADM case requires imposing a condition on the Weyl
tensor in addition to an energy condition. We find appropriate energy conditions for spacetimes that are
conformally flat or algebraically special, and for spacetimes that have an exact Killing vector along the
brane. Finally we discuss our expression for the Y-ADM mass density from the Hamiltonian point of view.
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I. INTRODUCTION

Conserved gravitational charges are associated with the
asymptotic symmetries of a spacetime. For example, the
Arnowitt-Deser-Misner (ADM) mass and angular momen-
tum correspond to asymptotic time translation and rotation
Killing vectors, respectively. In D spacetime dimensions
these charges are given by integrals over a �D� 2�-sphere
at spatial infinity. The electric charge carried by matter and
black holes in the spacetime interior is, of course, also
given by an integral over a �D� 2�-sphere. Charge con-
servation allows both these integrals to be evaluated at an
arbitrary time.

For p-branes this coincidence no longer holds. The
ADM mass, in this case, is given by an integral over a
cylinder Rp � SD��p�2� at transverse spatial infinity that
encloses the entire brane; i.e., the integral includes direc-
tions parallel to the brane. A p-brane world-volume natu-
rally couples to a �p� 1�-form gauge potential. The
electric charge of the brane is given by an integral over
an SD��p�2� that encloses only a single point on the brane
world-volume; i.e., the integral excludes directions parallel
to the brane. Charge conservation allows the ADM integral
to be evaluated at an arbitrary time, while the electric
charge integral may be evaluated at an arbitrary position
along the brane in space or time.

Symmetry may be restored to the formulation of gauge
and gravitational charges for p-branes by the introduction
of new gravitational charges, called Yano-Arnowitt-Deser-
Misner (Y-ADM) charges, associated with Killing-Yano
tensors [1]. A Killing-Yano tensor is an antisymmetric
tensor field of arbitrary rank that satisfies a natural general-
ization of Killing’s equation [2]. A rank 1 Killing-Yano
tensor is simply a Killing vector. It was shown in Ref. [1]
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that the Abbott-Deser (AD) construction of the ADM
charge associated with an asymptotic Killing vector [3]
may be generalized to give a conserved charge associated
with an asymptotic Killing-Yano tensor of higher rank. The
resulting Y-ADM charge is given by an integral over an
SD��p�2� at transverse spatial infinity. Like the electric
charge carried by a brane, it is independent of time and
also independent of translations of the surface of integra-
tion parallel to the brane.

For a p-brane spacetime, we focus on the rank �p� 1�
asymptotic Killing-Yano tensor given by the antisymmetric
product of translations in the directions parallel to the
world-volume of the brane. For a particle this is just the
asymptotic time translation Killing vector and the corre-
sponding charge is the ADM mass. For a general p-brane,
we call the corresponding charge the Y-ADM mass density,
which we will denote by M below.

One very important result associated with the ADM
mass is the positive energy theorem [4]. It is natural to
ask if any sort of positivity result holds for the Y-ADM
mass density M. In this paper we investigate this question,
making use of the spinor techniques of Witten [5] and
Nester [6]. We focus on the rank 2 case corresponding to
a 1-brane, or string.

Our central result is a spinorial boundary integral ex-
pression for the Y-ADM mass density M. Assuming that
the spatial slices have no interior boundaries, e.g. at hori-
zons, Stokes theorem relates this boundary integral to a
volume integral, whose integrand is the sum of three terms.
The first of these terms involves the stress-energy tensor;
the second term is a positive definite expression quadratic
in the derivative of the spinor field; the third term involves
certain components of the Riemann tensor. The first two
terms are similar to those that appear in Witten’s proof of
-1  2005 The American Physical Society
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the positive energy theorem [5], in which an energy con-
dition is sufficient to ensure positivity of the mass. The
third term, however, cannot be written directly in terms of
the stress-energy tensor and, hence, an energy condition is
not sufficient to imply positivity of M. We discuss two
types of further conditions under which positivity never-
theless holds: (i) if the spacetime is conformally flat or
algebraically special and (ii) if the spacetime has an exact
translational symmetry along the brane.

The paper is organized as follows. Section II pre-
sents various preliminaries—definitions and results relat-
ing to Killing-Yano tensors, transverse asymptotically flat
spacetimes, and spinors. In Sec. III, we briefly review the
construction of Y-ADM charges [1] using the techniques
of Abbott and Deser [3]. We show, in particular, for the
rank 2 case, that the Y-ADM mass density M is intrinsic
in the sense that it depends only on quantities intrinsic to
the codimension-two slice transverse to the string—a re-
sult that has a close parallel in the rank 1 case, in the
formula for the ADM mass. Our spinorial construction
for Y-ADM charges is presented in Sec. IV. In Sec. V,
we demonstrate positivity of the mass density M under
the special conditions mentioned above. Section VI is a
discussion of preliminary results on the Y-ADM mass
density as a p-brane Hamiltonian and some concluding
remarks.
II. PRELIMINARIES

A. Killing-Yano tensors

A Killing-Yano tensor [2] is a rank n rank antisymmetric
tensor field fa1���an � f�a1���an	 satisfying

r�a1fa2�a3���an�1
� 0: (1)

For rank n � 1 this condition reduces to Killing’s equa-
tion. Flat spacetime has the maximal number of Killing-
Yano tensors of each rank. In this paper we will focus on
the case of rank n � 2. For flat spacetime in Cartesian
coordinates, a basis for rank 2 Killing-Yano tensors is
given by the translational tensors,

f � dxa ^ dxb; (2)

together with the rotational tensors,

f � xadxb ^ dxc � xbdxc ^ dxa � xcdxa ^ dxb: (3)
1In this paper we take the p spatial directions tangent to the
brane will be taken to be either infinite in extent or periodically
identified on a torus. It might also be interesting to consider
wrapping the tangent directions on nontrivial cycles of more
general reduced holonomy spaces.
B. Transverse asymptotically flat spacetimes

The notion of transverse asymptotic flatness in
D-dimensions, as discussed in Ref. [7], is motivated by
considering p-brane spacetimes. Such spacetimes become
flat only as we approach transverse spatial infinity in the
D� �p� 1� directions transverse to the brane; not by
104015
moving along the p spatial directions parallel to the brane.1

Write the full spacetime metric as gab � �ab � hab,
where �ab is the flat Minkowski metric. Let �x�; xI� with
� � 0; 1; . . . ; p and I � p� 1; . . . ; D� 1 be Cartesian
coordinates in the asymptotic region and let r2 �
�IJxIxJ. Transverse asymptotic flatness requires that in
the limit r! 1 the components of hab falloff as

h��; hIJ �O

�
1

rD��p�3�

�
; h�I �O

�
1

rD��p�2�

�
: (4)

Note, in particular, that cross terms between the directions
tangent and transverse to the brane are required to fall off
one power faster than the other components.

In this paper we will focus on the case of 1-branes, or
strings. In addition to transverse asymptotically flat bound-
ary conditions with p � 1, we will assume that the space-
time interior can be foliated by codimension-two spatial
submanifolds, which we will think of as transverse to the
brane. At infinity these spatial submanifolds are taken to be
aligned with the �x2; . . . ; xD�1� hyperplane. The spacetime
metric may then be written as gab � Lab � qab, with
Lbaqbc � 0, where qab is a Euclidean metric on the �D�
2� dimensional submanifolds and Lba projects onto the
directions normal to these submanifolds. It will also prove
useful to be able to further split the metric as

gab � �nanb � yayb � qab (5)

where na and ya are normal vectors to the submanifolds
satisfying nana � �1; yay

a � 1; nay
a � 0. At infinity, we

take

na � �@=@x0�a; ya � �@=@x1�a: (6)

The asymptotic Killing-Yano tensor used to define the Y-
ADM mass density of a string in the x1 direction has
nonzero components f01 � �f10 � 1. At infinity, we can
then also write

fab � nayb � yanb: (7)

The construction of the Y-ADM mass density for a string
takes place on a codimension-two volume V with the two
normals na and ya, and metric qab. The embedding of V in
the full spacetime is described by the extrinsic curvature
tensor Kab

c � qamqb
nrmqne. The indices a; b are tangent

to V, and the index c is normal, i.e. qcdKab
c � 0. The

extrinsic curvature Kab
c is symmetric on the indices a; b, a

result that follows from Frobenius’ Theorem. The Gauss-
Codazzi relations, which will be used in subsequent cal-
culations, are
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qa
eqb

fqc
rqdsRefr

s�g	 � Rabc
d�q	 � Kca

eKb
d
e

� Kcb
eKade: (8)

The extrinsic curvature can be decomposed as Kc
ab �

!abnc � "abxc, where !ab � qcaqdbrcnd, and "ab �
�qcaqdbrcyd.

C. Spinors and Killing-Yano tensors

We are interested in extending Witten’s spinorial tech-
niques to study the positivity of Y-ADM charges. Hence,
we assume the existence of a spinor field  in the space-
time. At transverse spatial infinity we will assume that  
approaches one of the constant spinors  �0� of flat space-
time. We will make use of the quantity fab �
� y$0̂ 1̂$ab below, where $0̂ � �na$a and $1̂ �
xa$a. In the asymptotic limit, where  is replaced by
 �0�, the tensor fab is a Killing-Yano tensor. Note that we
can only construct the translational Killing-Yano tensors
(2) of the background flat spacetime in this way. The
particular Killing-Yano tensor of interest to us (7) is of
this form.
III. Y-ADM CHARGES

We begin by briefly reviewing the construction of Y-
ADM charges in transverse asymptotically flat spacetimes
[1]. We will continue to focus on the case of rank 2 Killing-
Yano tensors. The general case is considered in [1]. The
construction is an extension of the Abbott and Deser
construction of a conserved ADM charge associated with
the Killing vectors of flat spacetime [3].

The construction begins by writing the metric in the
form gab � �ab � hab throughout the spacetime. The dif-
ference hab between the full metric and the flat metric may
be large in the interior of the spacetime, but vanishes at the
rates specified by Eqs. (4) near transverse spatial infinity.
Let fab be a Yano tensor for the background metric. Using
the Bianchi identities and the defining properties of Yano
tensors, one can construct a rank 2 antisymmetric tensor
current kab which is conserved with respect to the back-
ground derivative operator, i.e. r�0�

a kab � 0. This current is
given by

kab � facRL b
c � fbcRL a

c �
1

2
fabRL �

1

2
fcdRL ab

cd ; (9)

where RL ab
cd , for example, is the linear term in the formal

power series expansion of Rcd
ab in hab.

Conservation of the 2-form current k can be rewritten as
d � k � 0, where � indicates the Hodge dual with respect to
the background flat metric. It then follows that there locally
exists a 3-form l, such that �k � d � l. One finds that the
3-form l is given by
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labc � 3��ak �
b
l �

c
m�

d	
n fkl� �rmhnd� �

1

4
� �r�afbc	�hnd

�
3

4
� �rdf�ab�hc	d: (10)

As in the previous section, let V be a spacelike,
codimension-two slice with normals na and xa. The con-
served Y-ADM charge is then defined by the integral of the
�D� 3�-form �l over @V as @V ! 1, i.e., over a closed,
codimension-two, section of spatial infinity,

Q�fab	 �
1

8(

Z
@V

�l; (11)

where we have used the notation Q�fab	 to denote the
charge associated with an arbitrary asymptotic Killing-
Yano tensor fab.

We now focus on the Y-ADM mass density M, which
means specifying the background Killing-Yano tensor fab

as in Eq. (7) and there above. In this case, since �raf
bc � 0,

only the first term in Eq. (10) is nonzero. Substituting the
identification (7) into this term and carrying out the anti-
symmetrization then yields the expression for the Y-ADM
mass density:

M �
1

8(

Z
@V
dsaqadqcb �r�b�gd	c: (12)

We can further specialize to Cartesian coordinates near
infinity, giving the form

M �
1

8(

Z
@V
dsI�@JhIJ � @IhJ

J� (13)

which is very similar to the usual formula for the ADM
mass M, differing only in the higher codimension of the
surface V and the correspondingly smaller range of the
indices summed over—here I; J � 2; . . . ; D� 1.

It is interesting to compare the values of the Y-ADM
mass density M and the ADM mass MADM. As noted
above, if the x1 direction tangent to the string is infinite
in extent, then the ADM mass MADM will itself be infinite.
The ADM mass will be finite if we consider spacetimes
such that x1 compact. If we make the identification x1 �
x1 � L, then the ADM mass is given by

MADM �
Z L

0
dx1

Z
@V
dsI�@Jh

IJ � @IhJ
J � @Ih1

1�

� L�M�Mscalar�; (14)

where the scalar charge density Mscalar is defined to by the
integral over @V of the final term in the integrand above.

It is, finally, instructive to rewrite the expression for the
Y-ADM mass density in terms of �ab, the extrinsic curva-
ture of @V in V. One finds

M �
1

16(

Z
@V
dv��I

I �� I
�bg�I �; (15)

where �IJ
�bg� is the extrinsic curvature of @V within V
-3
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evaluated with respect to the background flat metric. This
expression has the same form as that given by Hawking and
Horowitz for the ADM mass in Ref. [8], except that in their
work the integral is over the boundary of a codimension-
one volume.
2We assume that there are no horizons in the spacetime so that
no inner boundary terms arise in applying the Stokes theorem.
An extension of these results to black brane spacetimes with
horizons would presumably require additional boundary condi-
tions on the spinor field  to eliminate inner boundary terms, as
in Ref. [11].
IV. SPINOR CONSTRUCTION OF THE Y-ADM
MASS DENSITY M

In his proof of the positive energy theorem [5], Witten
found an expression for the ADM mass boundary integral
in terms of a spinor field. The Stokes theorem then pro-
vides an alternative volume integral expression for the
ADM mass which, providing the spinor satisfies a certain
Dirac-type equation on the spacelike hypersurface, is the
sum of two terms. The first of these terms, involving the
Einstein tensor, is positive provided the dominant energy
condition is satisfied. The second term, quadratic in first
derivatives of the spinor field, is manifestly positive and
vanishes only in flat spacetime. Witten’s formalism was
later streamlined by Nester [6].

In this section, we develop a generalization of the
Witten-Nester formalism that yields a spinor expression
for the Y-ADM mass density M for a 1-brane spacetime.
The corresponding volume integral in this case is again the
sum of two terms. The term quadratic in first derivatives of
the spinor field is again positive definite. However, the
analogue of the Einstein tensor term now has contributions
from the uncontracted Riemann tensor as well. Positivity
of these terms cannot be ensured by an energy condition.
We explore the issue of conditions that may be imposed on
the spacetime to yield positivity of this second term in the
volume integral expression for M.

Our construction begins with finding an appropriate
generalization of the Nester 2-form [6],

Bab �  y$0̂$abcrc : (16)

Within the formalism, a 2-form is the correct object in the
ADM case, because the boundary of a spatial hypersurface
has codimension-two with respect to the full spacetime. It
is also useful to keep in mind that the ADM mass is defined
in terms of the asymptotic Killing vector @=@x0. A similar
Nester 2-form was used in Ref. [9] to study positivity of the
ADM tension of a string [7,10], which is defined in terms
of the asymptotic spatial Killing vector @=@x1 tangent to
the string. The Nester 2-form, in this case, differs only in
the substitution of $1̂ for $0̂ in Eq. (16), corresponding to
the change in asymptotic Killing vector relevant to the two
different charges.

To compute the Y-ADM mass density M for a 1-brane,
one integrates over the boundary of a codimension-two
spatial surface transverse to the brane. This boundary has
codimension-three and we therefore need to introduce a
Nester 3-form. Based on the discussion above, we take this
to be
104015
Babc �  y$0̂ 1̂$abcdrd : (17)

We show below that M is indeed given in terms of this
Nester form by

M �
1

8(

Z
@V
dsanbyc�Babc � Babc��; (18)

where V is the codimension-two surface with normals na

and ya, as in Sec. II B above, and � denotes complex
conjugation.

We now focus on the volume integral form of M
obtained from Eq. (18) using the Stokes theorem2

M �
1

8(

Z
V

���
q

p
nbycra�Babc � Babc��: (19)

It is then straightforward to show that the volume integrand
above may be rewritten as the sum of two terms, as in the
discussion of the ADM mass above. The first term, which
involves curvature tensors contracted with bilinears in the
spinor field  , is given by

�vol�1 � Rabna-b � Rabya.b �
1

2
R/� Rabcdnayb-cyd;

(20)

where / �  y , -a � � y$0̂$a and .a � 1
2 �

� y$1̂$a � c:c:�. The second term, which is quadratic
in derivatives of the spinor field, is given by

�vol�2 � 2ra 
yqabrb � 2�ra 

yqac$
c��qbd$

drb �:

(21)

If  is a solution to the Dirac-Witten equation
qab$

bra � 0, then the second term in (21) vanishes
and �vol�2 is positive definite. The term �vol�1 may be
simplified by choosing the spinor field  to be an eigen-
vector of $0̂ with eigenvalue �i, which is consistent with
the Dirac-Witten equation. The spinor bilinears in Eq. (20)
are then related according to -a � �ina/ and .a � ya/.

Combining the two volume terms, we then have the
result

M �
1

8(

Z
V

��
Rabnanb � Rabyayb �

1

2
R

� Rabcdnaybncyd
�
 y � 2�ra y�qabrb 

�
:

(22)

The volume integrand can be further rewritten in a variety
of ways. A compact form which is useful in subsequent
calculations is
-4
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�vol�1 �
1

2
Rabcdqacqbd y : (23)

This version highlights the similarities with the
codimension-one case, see Sec. VI.

A second form that will also be useful is

M �
1

8(

Z
V
��Gabnanb � Rabcdyaycqbd� y 

� 2�ra 
y�qabrb 	: (24)

Here, after making use of Einstein’s equation, the first term
is simply equal to the energy density Tabnanb, which
supports the idea that the Y-ADM charge M is a kind of
mass per unit length. It is less clear how one should
interpret the Riemann tensor term. Since it is not directly
related to the stress energy, one cannot, as in the case of the
ADM mass and tension, ensure positivity of M by impos-
ing an energy condition. However, the fact that the spinor
contribution, as in the ADM case, is positive definite
suggests that one look for additional conditions on brane
spacetimes such that the Riemann term is also positive. We
turn to this issue in Sec. V below. First, we return to the
issue of the spinor boundary integral in Eq. (18).

A. Further study of the spinor boundary term

In this section, we demonstrate that the spinor boundary
integral in Eq. (18) does indeed reproduce the definition of
the Y-ADM mass density given in Sec. III. We also include
a further analysis of the Y-ADM boundary integral, which
shows that the Y-ADM mass density M depends only on
the metric qab on the surface transverse to the brane. This
result provides further motivation for regarding the mass
density M as an intrinsic (rather than extensive) property
of the brane.

We consider transverse asymptotically flat spacetimes.
The metric therefore approaches the Minkowski metric
�ab at spatial infinity, and we can assume that the spinor
field  approaches one of the constant spinors  �0� of flat
spacetime; i.e., satisfying �ra �0� � 0. The Nester 3-form
can then be schematically rewritten as B�r	 �

B�r � �r	 � B� �r	. One can check that B� �r	 vanishes
sufficiently fast as  approaches  �0� that the boundary
term just depends only on the difference of the derivative
operators. One can then show that �ra �

�ra� �

� 1
4r�mhn	a$

mn , with the result that the boundary inte-
grand becomes

naxb�Babc � c:c:� �
1

4
r�mhn	dqacqb

d y

� �$ab$mn � $mny$ab� : (25)

Here we have replaced $aby by $ab since it is projected by
the spatial metric qab. Except for hab, all quantities in
Eq. (25) are background quantities. Depending on whether
the coordinates xm; xn are timelike or spacelike, either the
commutator or the anticommutator of the gamma matrices
104015
in (25) contributes. The asymptotically flat boundary con-
ditions (4) imply that terms involving hxi or hti, where the
indices i; j are projected by qji , are higher order. It is then
straightforward to check that the only terms which con-
tribute to the sum in Eq. (25) are those withm; n � i; j. We
then have

M �
1

8(

Z
@V
dsaq

adqcbr�bhd	c (26)

which agrees with the expression in Sec. III.
We have seen that the spinor formalism of this section

gives an alternate construction of Y-ADM charges. The
original formulation [1] based on the AD construction [3]
has the merit of establishing a clear relationship between
the Y-ADM charges and the Killing-Yano tensors of the
background flat spacetime. However, the volume integral
form of the charge, in this construction, involves only the
linearized curvature tensors around the flat background.
The strength of the spinor construction is that it yields a
volume integral expression that depends on the exact cur-
vature tensor of the spacetime together with a positive
definite spinor term, and is much more useful in trying to
assess positivity properties.

We finish this section by rewriting the Y-ADM mass
density M in terms of the transverse metric perturbation
�qab defined near spatial infinity via the relation qab �
�ab � �qab. Again making use of the assumption that hti
and hxi are of higher order at infinity, we find that in the
boundary integral (26) we may write qbaqcdqmnrbhmc �
Da�qdn, where Da is the flat covariant derivative operator
on the slice V. The formula for M then becomes

M �
1

8(

Z
@V
dsa�Db��qcdqacqbd��Da�qbcqbc�: (27)

This expression highlights the fact that M is an intrinsic
quantity on the codimension-two volume V, since it only
depends on qab. Also note that, if instead V was a
codimension-one volume, and qab the metric on V, then
Eq. (27) gives the usual expression for the ADM mass.

V. POSITIVITY

We have seen above that the volume integral expression
for the Y-ADM mass density M, coming from a rank 2
Killing-Yano tensor, differs from the ADM mass, which
comes from a rank 1 Killing-Yano tensor, in that the
Riemann tensor contributes to the volume integrand, as
well as Ricci and scalar curvature terms which occur in
both cases. These latter terms can be related to the stress-
energy tensor via the Einstein equation, so that positivity,
in the ADM mass case, can be phrased in terms of energy
conditions. The prospects for positivity of the Y-ADM
mass density M therefore look less favorable. However,
the fact that the spinor field makes a positive definite
contribution to M suggests that we look for conditions
under which the Reimann tensor term is positive as well. In
this section we derive positivity results for the Y-ADM
-5
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mass density M under two kinds of conditions; first, by
requiring conditions on the Weyl tensor of the spacetime,
and second, in the case of exact translational symmetry in
the x1-direction.

A. Conditions on the Weyl tensor

The idea here is to decompose the Reimann tensor into
trace pieces, the Ricci and scalar contributions, and the
rest, the Weyl tensor. When the Weyl term vanishes, the
remaining terms in the volume integrand can be related to
the stress energy, which leads to an energy condition for
positivity of M. In D dimensions, the decomposition of
the Riemann tensor is given by

Rabcd � Cabcd �
2

�D� 2�
�ga�cRd	b � gb�cRd	a�

�
2

�D� 1��D� 2�
Rga�cgd	b: (28)

Substitution into Eq. (20) then yields

�vol�1 �
�

D�D� 3�

2�D� 1��D� 2�
R�

D� 3

D� 2
Rab

� �nanb � yayb� � Cabcdn
aybncyd

�
 y : (29)

One simple condition to consider is the vanishing of the
Weyl tensor, Cabcd � 0. It is then clear that an appropriate
energy condition would assure positivity of �vol�1.

Another condition under which the Weyl tensor term in
Eq. (29) vanishes is when the metric is algebraically spe-
cial with all four principal null directions coinciding, and
the null vector lies in the plane tangent to the brane.
Explicitly, this means assuming that paCabcd � 0 for a
null vector pa � na � ya. To see this, define the vectors
ka � na � ya and qa � na � ya, which allows us to write

Cabcdnaybncyd �
1

4
Cabcdkaqbkcqd: (30)

If either ka or qa is the principal null vector pa, then this
term vanishes. Note that while either this condition, or that
of conformal flatness, is sufficient to make the Weyl tensor
term in Eq. (29) vanish, both these conditions appear to be
stronger than necessary. It would be interesting to find a
geometrical condition which was minimal in the sense of
being both necessary and sufficient.

If the Weyl tensor term vanishes, then �vol�1 can be
rewritten in terms of the stress-energy tensor using
Einstein’s equation. If we make the definitions 6 �
Tabnanb, pŷ � Tabyayb and similar definitions for the
pressures pî in directions transverse to the string, then
the volume integral expression for M becomes

M �
�D� 3�

�D� 1�

Z
V

��
6� pŷ �

1

D� 2

X
i

pî

�
 y 

� 2�ra y�qabrb 
�

(31)
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where the index i runs over the transverse coordinates. If
we therefore have any set of conditions, such as those
suggested above, which lead to the vanishing of the Weyl
tensor term in (29), then we have shown that the Y-ADM
mass density M is positive if the additional energy con-
dition

�
6� pŷ �

1

D� 2

X
i

pî

�
� 0 (32)

is satisfied.3

The energy condition (32) has a straightforward physical
interpretation. The quantity �pŷ is simply the tension
along the string, and Eq. (31) implies that this tension
contributes positively to M. Note that for a standard
cosmic string we have pŷ � �6. The pressures pî in the
directions transverse to the string contribute as they do for
a particle-type configuration—positive pressures make a
positive contribution to the mass. Note also that, in the
nonrelativistic limit where the pressures are negligible
compared to the energy density, Eq. (31) implies that M
is the energy density integrated over a transverse slice, plus
a positive definite contribution from the gravitational field.

B. Translational symmetry and Kaluza-Klein reduction

Suppose that translation along the string is actually a
symmetry of the D-dimensional spacetime. One would
then expect that there is a �D� 1�-dimensional point of
view, in which the Y-ADM mass density M is related to
the �D� 1�-dimensional ADM mass.

We will need the following Gauss-Codazzi relation for a
codimension-one submanifold with unit normal vector wa.
If we write the metric as

gab � sab � �w � w�wawb; (33)

where w � w � �1 depending on whether the normal wa is
spacelike or timelike, then the Riemann tensors of gab and
sab are related according to

sma s
n
bs
r
cs
p
dRmnrp�g	�Rabcd�s	���w �w��JacJbd�JadJbc�

(34)

where Jab � scarcwb is the extrinsic curvature of the
submanifold.

Take the normal vector to be ya, the direction tangent to
the string. The metric sab is then Lorentzian. The volume
integrand for M can be expressed in terms of the Einstein
tensor for a �D� 1�-dimensional metric G�D�1�

ab �s	 as fol-
lows. Making use of Eq. (34), one finds that
-6
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�vol�1 �
1

2
qacqbdRabcd�g	

�
1

2
qacqbd�Rabcd�s	 � JacJbd � JadJbc�

� G�D�1�
ab �s	nanb �

1

2
�"ab"ab � "2� (35)

where "ab � qa
mqb

nrmyn is the projection of the extrin-
sic curvature Jab onto the directions transverse to the
string.

We now assume that the spacetime has a spatial trans-
lation Killing field Va that is parallel to the brane. Near
infinity, the Killing vector Va approaches @=@x1, which
also coincides with the unit normal vector ya in this limit.
Further assume that we extend ya into the interior of the
spacetime, such that it is parallel to the Killing field Va;
i.e., let Va � Fya where VaVa � F2. We then have Jab �
0, since Jab � �1=2�LVsab. From the last line of Eq. (35),
we then have the result

M �
1

8(

Z
V
�nanbG�D�1�

ab �s	 y � 2�ra y�qabrb �:

(36)

At this point one needs to know something about the
dimensionally reduced theory,4 in order to draw a conclu-
sion about the Y-ADM mass density M. If the dimension-
ally reduced Einstein tensor is equal to a stress energy
which satisfies the dominant energy condition, then M is
positive. Indeed, the form of the boundary term given in
Eq. (27) is the standard ADM mass for the metric sab.
Therefore, the argument leading to (36) gives a consistency
check on the meaning of the mass per unit length: when
dimensional reduction is possible, the mass per unit length
coincides with the ADM mass of the lower dimensional
theory.
VI. A GENERALIZED HAMILTONIAN FOR
TRANSVERSE ASYMPTOTICALLY FLAT

SPACETIMES?

In this final section we point out that the form of the
volume integral expression for M derived in Sec. IV
suggests that the term �vol�1 might serve as a generalized
Hamiltonian for the evolution for transverse asymptoti-
cally flat brane spacetimes. By generalized Hamiltonian
evolution we mean specifying data on a codimension-two
slice transverse to the brane and evolving the data via a
system of first order partial differential equations in the
directions tangent to the brane. In this view, we think of
ordinary Hamiltonian evolution as specifying data on a
4Note that the metric sab is not rescaled by a dilaton factor, as
it would be in the Kaluza-Klein ansatz, and that no Kaluza-Klein
gauge fields appear because we have chosen the normal direction
to be parallel to the Killing vector va. Therefore, in these
coordinates, the shift terms gyt and gyI vanish.
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codimension-one slice transverse to the world line of par-
ticlelike sources and then evolving in the single direction
tangent to the particle world line.

First recall that in the codimension-one case, if we write
gab � �nanb � lab, then the Einstein tensor term in the
volume integrand is simply given by

�vol�1 � �Gabn
anb� y (37)

�
1

2
�Rabcdl

aclbd� y : (38)

If we then change to Hamiltonian variables we have

�vol�1 �
1

2
�R�l	 � kabk

ab � k2� y (39)

where R�l	 is the scalar curvature of the D�
1-dimensional metric lab and kab � laclb

drcnd is the ex-
trinsic curvature of the slice with normal na. The factor
multiplying  y is, of course, simply proportional to the
gravitational Hamiltonian. An additional momentum term
would also arise if  were not taken to be an eigenvector of
$0̂.

In the codimension-two case addressed in this paper, it is
interesting that the volume term �vol�1 has a very similar
form to Eq. (38) and may be similarly rewritten in
Hamiltonian form:

�vol�1 �
1

2
�Rabcdqacqbd� y 

�
1

2
�R�q	 � Kae

a Ka
ae � Kab

eKab
e� y : (40)

It seems natural to speculate that this quantity, along with
the analogous momentum terms that would appear if we
did not take  to be an eigenvector of $0̂, plays a role in a
generalized Hamiltonian evolution of brane spacetimes of
the sort described above. We note, as well, that extrinsic
curvature can be further decomposed as Kc

ab � !abnc �
"abyc, where !ab � qcaq

d
brcnd and "ab � �qcaq

d
brcyd.

We can then write

1

2
Rabcdqacqbd�

1

2
�R�q	�!ab!ab�!2�"ab"ab�"2�;

(41)

where all contractions are done with the positive definite
metric qab. We can thus read off whether the extrinsic
curvature terms are positive or negative.

It is also interesting to compare Eq. (40) to the
Hamiltonian in the double null formalism developed by
Hayward [12]. In certain gauge conditions, Eq. (40) is
identical with the Hamiltonian in double null formalism,
at least in four-dimensional spacetimes (see Ref. [13]). The
extension to higher dimensional spacetimes is straightfor-
ward. Since we focus on the codimension-two integral
manifolds, the twist term also vanishes. Therefore, we
-7
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can realize that Eq. (40) is indeed the Hamiltonian. This is
a natural consequence because the double null formalism
provides us with a codimension-two space normal to two
null directions.
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