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Physical process version of the first law of thermodynamics for black holes
in higher dimensional gravity
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The problem of physical process version of the first law of black hole thermodynamics for charged
rotating black hole in n-dimensional gravity is elaborated. The formulas for the first order variations of
mass, angular momentum and canonical energy in Einstein �n� 2�-gauge form field theory are derived.
These variations are expressed by means of the perturbed matter energy momentum tensor and charge
matter current density.
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I. INTRODUCTION

In their seminal paper Bardeen, Carter and Hawking [1],
considering linear perturbations of a stationary electrovac
black hole to another stationary black hole, found the first
law of black hole thermodynamics. Contrary to the deri-
vation presented in Ref. [1] Sudarsky et al. [2] using the
Arnowitt-Deser-Misner (ADM) formalism derived the first
law of black hole thermodynamics for Einstein-Yang-Mills
(EYM) theory valid for arbitrary asymptotically flat per-
turbations of a stationary black hole. In Ref. [3] this
method, was used to study the first law of black hole
thermodynamics in Einstein-Maxwell axion-dilaton grav-
ity (EMAD) being the low energy limit of the heterotic
string theory. In Ref. [4] the first law of black hole me-
chanics in n-dimensional gravity was established.

The first law of black hole thermodynamics for an
arbitrary diffeomorphism invariant Lagrangians with met-
ric and matter fields possessing stationary and axisymmet-
ric black hole solutions was widely studied in Refs. [5].
The case of a charged and rotating black hole where fields
were not smooth through the event horizon was considered
in Ref. [6]. The case of the higher curvature terms and
higher derivative terms in the metric was considered in [7],
while a generalized theory of gravity subject to the
Lagrangian being arbitrary function of metric, Ricci tensor
and a scalar field was treated in Ref. [8]. One can also think
about a physical process version of the first law of black
hole thermodynamics obtained by changing a stationary
black hole by some infinitesimal physical process, e.g.,
when matter is thrown into black hole. Assuming that the
black hole eventually settle down to a stationary state and
calculating the changes of black hole’s parameters one can
find this law. If the resulting relation fails comparing to the
known version of the first law of black hole thermodynam-
ics it will provide inconsistency with the assumption that
the black hole settles down to a final stationary state. This
fact will give a strong evidence against cosmic censorship.
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The physical process version of the first law of black hole
thermodynamics in Einstein theory was proved in [9].
Then, it was generalized for Einstein-Maxwell (EM) black
holes in Ref. [10] and for EMAD gravity black holes in
[11]. In our paper we shall find a physical process version
of the first black hole mechanics in Einstein �n� 2�-gauge
form field theory. The convention will follow Ref. [12].
II. PHYSICAL PROCESS VERSION OF THE FIRST
LAW OF BLACK HOLE MECHANICS

We begin with the Lagrangian of generalized Maxwell
�n� 2�-gauge form field in n-dimensional spacetime as
follows:

L � ���n�R� F2
�n�2��; (1)

where by � we denote the volume element, F�n�2� �

dA�n�3� is �n� 2�-gauge form field. One can remark that
using in n-dimensional spacetime the generalized Maxwell
field Fj1...jn�2

enables one to treat both magnetic and elec-
tric components of it.

Consider, next, the first order variation of the conserved
quantities in this theory. Our main task will be to obtain the
explicit formulae for the variation of mass and angular
momentum. The result of the variations yields

	L � ��G�� � T���F�n�2���	g��

� 2�n� 2�!�rj1F
j1...jn�2�	Aj2...jn�2

� d�; (2)

where the energy momentum tensor for �n� 2�-gauge
form field is given by the expression

T���F�n�2�� � �n� 2�F�j2...jn�2
Fj2...jn�2
�

�
1

2
g��Fj1...jn�2

Fj1...jn�2 : (3)

The totally divergent term in Eq. (2) is a functional of the
field variables Aj1...jn�3

and their variations 	Aj1...jn�3
which

for simplicity we have denoted, respectively, by  � and
	 �. Inspection of relation (2) reveals the following form
of the symplectic �n� 1�-form �j1...jn�1

� �; 	 ��, namely
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�j1...jn�1
� �; 	 �� � ��j1...jn�1

�!� � 2�n� 2�!F�j2...jn�2

	 	Aj2...jn�2
� (4)

where !� implies

!� � r�	g�� �r�	g
�
�: (5)

By virtue of Eq. (2) one enables to read off the source-free
Einstein �n� 2�-gauge form fields equations of motion

G�� � T���F�n�2�� � 0; (6)

rj1F
j1...jn�2 � 0: (7)

One identifies the variations of the fields 	 � with a
general coordinate transformations L� � induced by an
arbitrary Killing vector ��. The Noether �n� 1�-form,
with respect to this Killing vector ��, implies [5]

J j1...jn�1
� �mj1...jn�1

Jm� �;L� ��; (8)

where the vector field Jm� �;L� �� is given by

J 	� �;L� �� � �	� �;L� �� � �	L: (9)

Using the above relation (9) we get the resultant expression
for the Noether current �n� 1�-form with respect to the
Killing vector field ��. It yields

J j1...jn�1
� dQGR

j1...jn�1
� 2�	j1...jn�1

�G	
� � T	��F�n�2�����

(10)

�2�n� 2�!�n� 3��mj1...jn�1
r�2

��dAd�3...�n�2
Fm�2...�n�2�

� 2�n� 2�!�n� 3��mj1...jn�1
�kAk�3...�n�2

	r�2
�Fm�2...�n�2�;

where QGR
j1...jn�2

implies

QGR
j1...jn�2

� ��j1...jn�2abr
a�b: (11)

Quite nontrivial calculations reveal that the relation (10)
can be written in the following form:

J j1...jn�1
� dQj1...jn�1

� 2�	j1...jn�1
�G	

� � T	��F�n�2����
�

� 2�n� 2�!�n� 3��mj1...jn�1
r�2

Fm�2...�n�2

	 �kAk�3...�n�2
: (12)

Having in mind that J ��� � dQ��� � ��C�, where C� is
an �n� 1� form locally constructed from the dynamical
fields we may identify Q�� as the Noether charge. Thus,
the Noether charge is subject to the expression

Qj1...jn�2
� QGR

j1...jn�2
�QF

j1...jn�2
; (13)

where

QF
j1...jn�2

� 2�n� 3��mkj1...jn�2
Fmk�3...�n�2�dAd�3...�n�2

:

(14)
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On the other hand, the quantity Caj1...jn�1
implies the fol-

lowing:

Caj1...jn�1
� 2�mj1...jn�1

�Gm
a � Tma �F�n�2���

� 2�n� 2�!�n� 3��mj1...jn�1
r�2

Fm�2...�n�2

	 Aa�3...�n�2
: (15)

If C� is equal to zero one has the source-free equations
fulfilled, when it does not hold we obtain

G�� � T���F�n�2�� � T���matter�; (16)

rj1F
j1...jn�2 � jj2...jn�2�matter�: (17)

Let us suppose that �g��; A�1...�n�3
� be the solution of the

source-free equations of motion with �n� 2�-gauge form
field. Let us assume further that �	g��; 	A�1...�n�3

� be
linearized perturbations fulfilling equations of motion
with sources 	T���matter� and 	jj2...jn�2

�matter�. Thus,
for a perturbed 	Caj1...jn�1

quantity we have the following
relation:

	Caj1...jn�1
� 2�mj1...jn�1

�	Tma �matter� � �n� 2�!�n� 3�

	 Aa�3...�n�2
	jm�3...�n�2�matter��: (18)

As was shown in Ref. [10] when �� is a Killing vector field
of a background spacetime and it also describes a symme-
try of background matter fields. Then, one can write the
explicit formula for a conserved quantity 	H� connected
with the aforementioned Killing vector field, namely

	H� � �
Z

��	C� �

Z
@
�	Q��� � � 
��: (19)

In our case 	H� has the form as follows:

	H� � �2
Z

�mj1...jn�1

�	Tma �matter��a � �n� 2�!�n� 3�

	 �aAa�3...�n�2
	jm�3...�n�2�matter��

�
Z
@
�	Q��� � � 
��: (20)

By virtue of choosing �� to be an asymptotic time trans-
lation t� one can conclude that M � Ht. Thus, we finally
obtain the variation of the ADM mass

�	M � �2
Z

�mj1...jn�1

�	Tma �matter�ta � �n� 2�!�n� 3�

	 taAa�3...�n�2
	jm�3...�n�2�matter��

�
Z
@
�	Q�t� � t 
��; (21)

where � � n�3
n�2 . On the other hand, taking the Killing

vector fields "�i� which are responsible for the rotation in
the adequate directions, we arrive at the relations for
angular momenta
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	J�i� � 2
Z

�mj1...jn�1

�	Tma �matter�"a
�i� � �n� 2�!�n� 3�

	"a
�i�Aa�3...�n�2

	jm�3...�n�2�matter��

�
Z
@
�	Q�"�i� �"�i� 
��: (22)

In order to consider the physical process version of the first
law of black hole thermodynamics let us suppose that one
has a classical, stationary black hole solution to the equa-
tions of motion of Einstein �n� 2�-gauge form field sys-
tem (6) and (7). Then, one perturbs the considered black
hole by dropping charged matter. Assuming that the black
hole will be not destroyed in the process of this phenome-
non and settles down to a stationary final state, one can
calculate the change of black hole’s parameters. To pro-
ceed to the physical process version of the first law of black
hole thermodynamics let us assume moreover that
�	g��; 	A�1...�n�3

� are solutions to the source-free
Einstein equations with �n� 2� form field. Furthermore,
suppose that the event horizon the Killing vector field %� is
of the form as

%� � t� �
X
i

��i�"��i� (23)

Let us assume further that 0 is an asymptotically flat
hypersurface which terminates on the event horizon and
take into account the initial data on 0 for a linearized
perturbations �	g��; 	A�1...�n�3

� with 	T���matter� and
	j�2...�n�2�matter�. We require that 	T���matter� and
	j�2...�n�2�matter� disappear at infinity and the initial
data for �	g��; 	A�1...�n�3

� vanish in the vicinity of the
black hole horizon H on the hypersurface 0. It envisages
the fact that for the initial time 0, the considered black
hole is unperturbed. Consequently, taking into account
Eqs. (21) and (22) and having in mind that the perturba-
tions vanish near the internal boundary @0 of the initial
surface, we can write the following:

�	M �
X
i

��i�	J�i� � �2
Z
0

�mj1...jn�1
�	Tma �matter�"a

�i�

� �n� 2�!�n� 3�"a
�i�Aa�3...�n�2

	 	jm�3...�n�2�matter��

�
Z
H
(�k� ��j1...jn�1

; (24)

where ��j1...jn�1
� n	�	j1...jn�1

and n	 is the future directed
unit normal to the hypersurface 0. In the last line of
Eq. (24) we replace n	 by the vector k	 tangent to the
affinely parametrized null generators of the black hole
event horizon H . It can be done due to the fact of the
conservation of current (� and the assumption that all of
the matter falls into the considered black hole. Of course,
one should also integrate over the event horizon H .
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Now, it is easy to see that we have left with the follow-
ing:

�	M�
X
i

��i�	J�i� � 	EF � 2
Z
H
	T����k�; (25)

where by 	EF is the canonical energy of �n� 2�-gauge
form fields [4].

Our next task will be to find the change in the area of
black hole horizon. Having in mind that the null generators
of the event horizon of the perturbed black hole coincide
with the null generators of the unperturbed stationary black
hole [10] (when we use the diffeomorphism freedom in
identifying the perturbed spacetime with the background
one) the result of this gauge choice is that the perturbation
in the location of the event horizon disappears and we
obtain that 	k� / k�.

Consider, next the Raychauduri equation of the form as
follows:

d)
d*

� �
)2

�n� 2�
� +ij+

ij � R���
���: (26)

Because of the fact that the expansion ) and shear +��
vanish in the stationary background, one gets the perturbed
Raychauduri’s equation written as

d�	)�
d*

� �	�T���total�k�k�� jH

� �	�T���matter��k�k� jH

� 	�T���F�n�2���k�k� jH ; (27)

where we exploit the fact that T�F�n�2����k
�k� jH� 0 and

	k� / k� to eliminate terms in the form
T�F�n�2����k

�	k�. One finds that the remaining term in
Eq. (27) reads

	T���F�n�2��k�k� jH � �2�n� 2�	F�j2...jn�2
Fj2...jn�2
�

�
1

2
	g��Fj1...jn�2

Fj1...jn�2

� g��	Fj1...jn�2
Fj1...jn�2�k�k�:

(28)

The last two expressions in the above equation are equal to
zero, because of the fact that the vector k� is a null vector
both in the perturbed as well as in unperturbed case. One
also finds that F�j2...jn�2

k� / kj2 . . . kjn�2
. For since we take

into account the antisymmetricity of 	F�j2...jn�1
the first

term in the related equation also vanishes. Hence, one
concludes that

d�	)�
d*

� �	T���matter�k�k� jH ; (29)

Calculations of the right-hand side of Eq. (29) are identical
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as in Ref. [9]. For the readers’ convenience we quote the
main steps. Namely, it is possible to substitute for the
Killing vector k� the following expression

k� �

�
@
@V

�
�
�

1

-V
�t� �

X
i

��i�"��i��; (30)

where - is the surface gravity. On the other hand, V is an
affine parameter along the null geodesics tangent to ��
generating the adequate Killing horizon. One can introduce
the function v ( it is called Killing parameter time) on the
portion of Killing horizon. It satisfies the relation
��r�v � 1 and it is related with V by the expression V �

exp�-v�. Then, we multiply both sides of the resulting
equation by -V and integrate over the event horizon.

One should also recall that expansion ) measures the
local rate of change of the cross-sectional area as the
observer moves up the null geodesics. It can be parame-
terize in the following way: ) � 1

A
dA
d* , where * is an affine

parameter which parametrized null geodesics generators of
104004
the horizon. The left-hand side of Eq. (29) is evaluated by
integration by parts, having in mind that V � 0 at the lower
limit and ) has to vanish faster than 1=V as V tends to
infinity when the considered black hole settled down to a
stationary final state after throwing some charged matter
into it. The consequence of the above establishes the result

-	A �
Z
H
	T�� �matter���k�: (31)

In the light of what has been shown we obtained the
physical process version of the first law of black hole
mechanics in Einstein �n� 2�-gauge form fields gravity
of the same form as known from Ref. [4], namely

�	M�
X
i

��i�	J
�i� � 	EF � -	A: (32)

Like in four-dimensional case a proof of the physical
process version of the first law of thermodynamics for
n-dimensional black hole also provides support for cosmic
censorship.
[1] J. M.Bardeen, B.Carter, and S. W.Hawking, Commun.
Math. Phys. 31, 161 (1973).

[2] D. Sudarsky and R. M. Wald, Phys. Rev. D 46, 1453
(1992).

[3] M. Rogatko, Phys. Rev. D 58, 044011 (1998).
[4] M. Rogatko, Phys. Rev. D 71, 024031 (2005).
[5] R. M. Wald, Phys. Rev. D 48, R3427 (1993),V. Iyer and

R. M. Wald, Phys. Rev. D 50, 846 (1994),V. Iyer and R. M.
Wald, Phys. Rev. D 52, 4430 (1995); V. Iyer, Phys. Rev. D
55, 3411 (1997).

[6] S. Gao, Phys. Rev. D 68, 044016 (2003).
[7] T. Jacobsen, G. Kang, and R. C. Myers, Phys. Rev. D 49,
6587 (1994); T. Jacobsen, G. Kang, and R. C. Myers, Phys.
Rev. D 52, 3518 (1995).

[8] J. Koga and K. Maeda, Phys. Rev. D 58, 064020 (1998).
[9] R. M. Wald, Quantum Field Theory in Curved Spacetime

and Black Hole Thermodynamics (University of Chicago
Press, Chicago, 1994).

[10] S. Gao and R. M. Wald, Phys. Rev. D 64, 084020 (2001).
[11] M. Rogatko, Class. Quant. Grav. 19, 3821 (2002).
[12] R. M. Wald, General Relativity (University of Chicago

Press, Chicago, 1984).
-4


