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Gravitational perturbations of the Schwarzschild spacetime:
A practical covariant and gauge-invariant formalism
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We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The
formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations
that leave the angular coordinates unchanged. The formalism is applied to the typical problem of
calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime.
We examine the radiation escaping to future null infinity as well as the radiation crossing the event
horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in
terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the
Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector
of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-
Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of
these wave equations are presented here, complete with covariant source terms that are derived from the
stress-energy tensor of the matter responsible for the perturbation.
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I. INTRODUCTION

Metric perturbations of the Schwarzschild spacetime
have been studied for a long time, starting with the pioneer-
ing work of Regge and Wheeler [1], Vishveshwara [2], and
Zerilli [3]. The theory was summarized in an influential
monograph by Chandrasekhar [4], and it has been applied
to many different physical situations (see, for example,
Chapter 4 of the book by Frolov and Novikov [5]). In
particular, a useful application has been the computation
of gravitational waves produced by a point particle moving
in the field of a Schwarzschild black hole (see Ref. [6], the
review article of Ref. [7], and references therein). Another
has been the simulation of a collision of two black holes in
a ‘‘close-limit’’ approximation (see the review article of
Ref. [8] and references therein).

Traditionally the perturbation formalism is developed in
the standard Schwarzschild coordinates (t, r, �, �), and in
a standard choice of gauge known as the ‘‘Regge-Wheeler
gauge.’’ The tradition also makes use of Fourier-transform
techniques and presents the perturbation equations in the
frequency domain instead of the time domain. Moncrief [9]
was the first to present the formalism in a gauge-invariant
package, recognizing the practical advantages that gauge
invariance provides: While the Regge-Wheeler gauge is
useful for many purposes, it is not useful for others, and the
power to switch from one gauge to another within a gauge-
invariant framework is often required. Another refinement
of the formalism was produced by Gerlach and Sengupta
[10,11], who presented the gauge-invariant perturbation
equations in an arbitrary coordinate system, thus liberating
the formalism from the usual Schwarzschild coordinates
and their poor behavior at the event horizon.

This program to translate the traditional perturbation
formalism into a covariant, gauge-invariant language was
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recently revived by Gundlach and Martin-Garcia [12,13],
Sarbach and Tiglio [14], Clarkson and Barrett [15], as well
as Nagar and collaborators [16,17]. With this paper we
hope to deliver its final chapter. We aim to present the
formalism of metric perturbations of the Schwarzschild
spacetime in its most mature and practical incarnation
yet. Our formalism is covariant and gauge invariant, and
it goes beyond the work listed above by the development of
covariant master equations for the even-parity and odd-
parity sectors of the theory, complete with explicit source
terms that are derived from the stress-energy tensor of the
matter which is responsible for the perturbation. We note
that the Gerlach-Sengupta formalism was extended to
multidimensional black holes and brane-world models by
Kodama, Ishibashi, and Seto [18–21]. We note also that
gauge-invariant perturbation formalisms are used widely in
cosmology (see, for example, Ref. [22] and the review
article of Ref. [23]).

We have in mind a typical application of the perturbation
formalism, the calculation of gravitational waves produced
by material sources moving in the Schwarzschild space-
time. We are interested in the radiation that escapes to
future null infinity and manifests itself as waveforms h�
and h� that are directly observable to gravitational-wave
detectors, and we are interested in the radiation that crosses
the black-hole horizon. This application illustrates well the
need for a covariant and gauge-invariant formalism, as the
two types of radiation admit different descriptions. The
radiation at future null infinity is best described by casting
the perturbation in an outgoing radiation gauge and ex-
pressing it in a retarded coordinate system (u, r, �, �)
related to the usual Schwarzschild coordinates by the trans-
formation u � t� r� 2M ln�r=2M� 1�. The radiation at
the horizon, on the other hand, is best described by adopt-
ing an incoming radiation gauge and expressing the per-
-1  2005 The American Physical Society
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turbation in an advanced coordinate system (v, r, �, �)
related to the usual Schwarzschild coordinates by the trans-
formation v � t� r� 2M ln�r=2M� 1�. Our formalism
permits the use of any coordinate system xa � �x0; x1� that
can be obtained from the usual Schwarzschild coordinates
(t, r); we do not, however, consider transformations of the
angular coordinates �A � ��;��.

In the formalism developed in this paper, the radiation at
future null infinity and at the horizon are described in terms
of scalar and gauge-invariant master functions, �lm

even�x
a�

and �lm
odd�x

a�, which can be computed from the metric
perturbations. These functions are labeled by spherical-
harmonic indices l and m, and by their behavior under a
parity transformation. The function �lm

even�x
a� is con-

structed from the even-parity perturbations, and it is equal
to the gauge-invariant function that was first introduced by
Moncrief [9]; it is a close cousin to Zerilli’s original master
function [3], and it satisfies a covariant version of Zerilli’s
differential equation. The complete covariant source term
for this equation is presented explicitly for the first time in
this paper. The function �lm

odd�x
a�, on the other hand, is

constructed from the odd-parity perturbations, and it is
equal to the gauge-invariant function that was first intro-
duced by Cunningham, Price, and Moncrief [24] and re-
cently revived by Jhingan and Tanaka [25]; it is essentially
the time integral of the original Regge-Wheeler master
function [1], and it satisfies a covariant version of the
Regge-Wheeler equation. The complete covariant source
term for this equation is presented explicitly for the first
time in this paper.

The paper is organized as follows. In Sec. II we give a
covariant description of the Schwarzschild spacetime and
specify our notations and conventions. In Sec. III we
introduce the scalar, vector, and tensor spherical harmonics
that are used in the decomposition of the metric perturba-
tion. In Sec. IV we examine the even-parity sector of the
perturbation, introduce the Zerilli-Moncrief master func-
tion, and derive the one-dimensional wave equation that it
satisfies. In Sec. V we examine the odd-parity sector of the
perturbation, introduce the Cunningham-Price-Moncrief
master function, and derive the one-dimensional wave
equation that it satisfies. In Sec. VI we describe the behav-
ior of the perturbations near future null infinity, construct
the radiative part of the perturbation field, extract the
waveforms h� and h�, and compute the rates at which
the radiation carries away energy and angular momentum.
In Sec. VII we describe the behavior of the perturbations
near the black hole’s event horizon, and calculate the rates
at which they transfer energy and angular momentum to
the black hole.

Various technical details are relegated to the
Appendices. In Appendix A we expand our discussion of
vectorial and tensorial spherical harmonics. And in
Appendix B we present the perturbed Ricci tensor for a
general spherically-symmetric background spacetime.
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Because the topic of metric perturbations of the
Schwarzschild spacetime is so venerable, we will allow
ourselves in this paper to simply state our results and omit
most lengthy derivations that lead to those results. We
hope, however, that the path to the results will always be
clearly delineated. We refer the reader to the literature
reviewed in this Introduction for additional details; another
repository of relevant derivations is Martel’s PhD disserta-
tion [26]. Throughout this paper we adopt the sign con-
ventions of Misner, Thorne, and Wheeler [27], and we set
c � G � 1.

II. SCHWARZSCHILD SPACETIME

The Schwarzschild metric is expressed as

ds2 � gabdx
adxb � r2�ABd�

Ad�B; (2.1)

in a form that is covariant under two-dimensional coordi-
nate transformations xa ! x0a. The coordinates xa span the
submanifold M2 of the Schwarzschild spacetime—the
‘‘(t, r) plane’’—and lower-case Latin indices a, b, c, etc.
run over the values 0 and 1. The coordinates �A � ��;��
span the two-spheres xa � constant, and upper-case Latin
indices A, B, C, etc. run over the values 2 and 3. The full
spacetime manifold is M � M2 � S2. The two-
dimensional tensor gab and the scalar r are functions of
the coordinates xa, and �AB � diag�1; sin2�� is the metric
on the unit two-sphere.

We shall use three different coordinate systems xa in the
applications of the perturbation formalism to be presented
below. The first is (t, r), the usual Schwarzschild coordi-
nates. The second is (u, r), where the retarded-time coor-
dinate u is defined by u � t� r� 2M ln�r=2M� 1�. The
third is (v, r), where the advanced-time coordinate v is
defined by v � t� r� 2M ln�r=2M� 1�. In these coor-
dinates the Schwarzschild metric takes the form

gabdxadxb � fdt2 � f�1dr2; (2.2)

� fdu2 � 2dudr; (2.3)

� fdv2 � 2dvdr; (2.4)

where f :� 1� 2M=r and M is the mass of the black hole.
These systems share the property that the scalar r is
adopted as one of the coordinates. Our formalism is not,
however, limited to these coordinate choices; one retains
the freedom of using any coordinate system whatever, for
example, harmonic coordinates, isotropic coordinates, or
double-null coordinates.

We introduce the dual vector

ra :�
@r
@xa

; (2.5)

which is normal to the surfaces of constant r�xa�; in the
coordinates of Eqs. (2.2), (2.3), and (2.4), ra � �0; 1�. We
use gab, the inverse to gab, to raise its index: ra � gabrb.
-2
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This allows us to give a covariant definition to the function
f that appears in Eqs. (2.2), (2.3), and (2.4):

rara �: f � 1�
2M
r
: (2.6)

We also introduce "ab, the (antisymmetric) Levi-Civita
tensor on M2; in the coordinates of Eqs. (2.2), (2.3), and
(2.4), "tr � "ur � "vr � 1. The timelike Killing vector of
the Schwarzschild spacetime is tangent to M2 and is given
by

ta � �"abrb; (2.7)

in the coordinates of Eqs. (2.2), (2.3), and (2.4), ta � �1; 0�.
We have tata � �f and tara � 0, and the vectors ra, ta

form a basis on M2. In terms of this basis we have gab �
f�1��tatb � rarb� and "ab � �f�1�tarb � ratb�.

The covariant derivative operator compatible with gab is
denoted ra; we thus have ragbc 
 0. It is easy to show
that for the Schwarzschild solution,

rarbr �
M

r2
gab; (2.8)

so that �r � 2M=r2, where � :� gabrarb is the
Laplacian operator on M2. We also have ratb �
�M=r2�"ab, which confirms that ta is a Killing vector.
The Riemann tensor on M2 is Rabcd � �2M=r3��gacgbd �
gadgbc�.

We let �AB be the inverse to �AB, the metric on the unit
two-sphere. The covariant derivative operator compatible
with �AB is denoted DA; we thus have DA�BC 
 0. The
Levi-Civita tensor on the unit two-sphere is denoted "AB,
and "�� � sin�. The Riemann tensor on the unit-sphere is
RABCD � �AC�BD ��AD�BD.

Covariant differentiation in the Schwarzschild space-
time can be defined in terms of covariant differentiation
in the submanifolds M2 and S2. If �abc is the connection
associated with ra, and if �ABC is the connection associ-
ated with DA, then it is easy to show that the nonvanishing
components of the spacetime connection are given by
4�abc � �abc,

4�aBC � �rra�BC, 4�ABc � r�1rc�AB,
and 4�ABC � �ABC. Using these rules we find that the
conservation identities for a stress-energy tensor T!" in
the Schwarzschild spacetime take the form

rbTab �DBTaB �
2

r
rbTab � rra�ABTAB � 0 (2.9)

and

raTaA �DBTAB �
4

r
raTaA � 0 (2.10)

when expressed in terms of the submanifold connections.
III. SPHERICAL HARMONICS

In this section we introduce the scalar, vector, and tensor
spherical harmonics that are used in the decomposition of
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the metric perturbation. The tensorial nature of the spheri-
cal harmonics refers to the unit two-sphere, and in this
section we use the metric �AB and its inverse �AB to lower
and raise all upper-case Latin indices. All tensorial opera-
tions (including covariant differentiation) shall refer to this
metric.

The scalar harmonics are the usual spherical-harmonic
functions Ylm��A�. They satisfy the eigenvalue equation
��ABDADB � l�l� 1��Ylm � 0.

Vectorial spherical harmonics come in two types. The
even-parity harmonics are defined by

YlmA :� DAY
lm; (3.1)

while the odd-parity harmonics are

Xlm
A :� �"A

BDBYlm: (3.2)

Their components are listed explicitly in Appendix A. The
vectorial harmonics satisfy the orthogonality relationsZ

�YAlmY
l0m0

A d� � l�l� 1��ll0�mm0 (3.3)

and Z
�XA
lmX

l0m0

A d� � l�l� 1��ll0�mm0 ; (3.4)

in which an overbar indicates complex conjugation and
d� :� sin�d�d� is an element of solid angle. We also
have Z

�YAlmX
l0m0

A d� � 0; (3.5)

which states that the even-parity and odd-parity harmonics
are always orthogonal. The definitions (3.1) and (3.2) for
the vectorial spherical harmonics are identical to those
provided by Regge and Wheeler [1].

Tensorial spherical harmonics come in the same two
types. The even-parity harmonics are �ABYlm and

YlmAB :�
�
DADB �

1

2
l�l� 1��AB

�
Ylm; (3.6)

while the odd-parity harmonics are

Xlm
AB :� �

1

2
�"A

CDB � "B
CDA�DCYlm: (3.7)

Their components are listed explicitly in Appendix A. The
tensorial harmonics satisfy the orthogonality relationsZ

�YABlm Y
l0m0

AB d� �
1

2
�l� 1�l�l� 1��l� 2��ll0�mm0 (3.8)

andZ
�XAB
lm X

l0m0

AB d� �
1

2
�l� 1�l�l� 1��l� 2��ll0�mm0 : (3.9)

We also have
-3
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Z
�YABlm X

l0m0

AB d� � 0 (3.10)

and

�ABYlmAB � 0 � �ABXlm
AB: (3.11)

The definition (3.6) for the even-parity harmonics does not
agree with that of Regge and Wheeler [1], who work
instead with the set �ABY

lm and DADBY
lm. We find it

more convenient to form the tracefree combinations YlmAB,
which have the property of being (pointwise) orthogonal to
�ABYlm. The definition (3.7) for the odd-parity harmonics
also differs from Regge and Wheeler’s, but only by an
overall minus sign, which we find convenient to introduce.

The tensorial harmonics YlmAB and Xlm
AB can be related to

the spherical-harmonic functions of spin-weight s � 2
[28], and to the pure-spin harmonics used by Thorne [29].
These relations are explored in Appendix A.
IV. EVEN-PARITY SECTOR

A. Perturbation fields and gauge transformations

The even-parity sector refers to those components of the
metric perturbation that can be expanded in terms of the
even-parity spherical harmonics Ylm, YlmA , �ABY

lm, and
YlmAB. Introducing the notation 4gab � gab � pab, 4gaB �
paB, and 4gAB � r2�AB � pAB for the perturbed metric,
the even-parity sector of the metric perturbation is

pab �
X
lm

hlmabY
lm; (4.1)

paB �
X
lm

jlma YlmB ; (4.2)

pAB � r2
X
lm

�Klm�ABY
lm �GlmYlmAB�: (4.3)

In most of this section the sums over l are taken to begin at
l � 2; the low multipoles (l � 0 and l � 1) will be con-
sidered separately in Sec. IV D. The fields hlmab, jlma , Klm,
and Glm are defined on M2 and they depend on the
coordinates xa only. They are closely related to the quan-
tities first introduced by Regge and Wheeler [1], who
worked exclusively in terms of the usual Schwarzschild
coordinates (t, r). In these coordinates (discarding for
brevity the spherical-harmonic labels) we have htt �
fH0, htr � H1, hrr � H2=f, jt � h0, and jr � h1. The
function G introduced in Eq. (4.3) is identical to the
corresponding Regge-Wheeler quantity, but K is different:
Khere � KRW � 1

2 l�l� 1�G; the difference originates from
the fact that Regge and Wheeler work with �ABY

lm and
DADBY

lm instead of �ABY
lm and YlmAB.

Even-parity gauge transformations are generated by a
dual vector field �! � ��a;�A� that is expanded as
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�a �
X
lm

)lma Y
lm; (4.4)

�A �
X
lm

)lmYlmA ; (4.5)

the fields )lma and )lm depend on the coordinates xa only.
Under such a transformation the perturbation quantities
change according to (see Appendix B)

hab ! h0ab � hab �ra)b �rb)a; (4.6)

ja ! j0a � ja � )a �ra)�
2

r
ra); (4.7)

K ! K0 � K �
l�l� 1�

r2
)�

2

r
ra)a; (4.8)

G ! G0 � G�
2

r2
); (4.9)

where we have discarded the spherical-harmonic labels for
brevity (we shall continue with this practice until the end of
the section). It is easy to show that the combinations

~h ab :� hab �ra"b �rb"a (4.10)

and

~K :� K �
1

2
l�l� 1�G�

2

r
ra"a (4.11)

are gauge invariant, where

"a :� ja �
1

2
r2raG: (4.12)

Eqs. (4.7) and (4.9) reveal that one can always choose a
gauge in which ja � 0 � G; this is the Regge-Wheeler
gauge. Equations (4.10), (4.11), and (4.12) imply that
~hab � hab and ~K � K in the Regge-Wheeler gauge.

B. Perturbation equations

The Ricci tensor of the Schwarzschild spacetime van-
ishes, and as a consequence its perturbation is gauge
invariant. Its computation can therefore be carried out in
any convenient gauge, and the Regge-Wheeler gauge is
clearly convenient. The steps involved are as follows. We
substitute Eqs. (4.1), (4.2), and (4.3), having set ja � G �
0, into the Ricci tensor of Appendix B. We simplify the
result and find that �Rab is expanded in terms of Ylm, �RaB
in terms of YlmB , and �RAB in terms of both �ABY

lm and
YlmAB. From the Ricci tensor we compute the Einstein tensor
and set the result equal to 8*T!", which describes the
material source for the gravitational perturbations. Each
spherical-harmonic component of the field equations can
-4
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then be extracted by involving the orthonormality relations
(3.3) and (3.8) satisfied by the spherical harmonics. At the
end of this calculation we take advantage of the fact that
~hab � hab and ~K � K in the Regge-Wheeler gauge. This
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allows us to make the substitutions hab ! ~hab, K ! ~K and
therefore to express the gauge-invariant Einstein tensor in
terms of gauge-invariant quantities.

Our final results are
Qab � rcr�a
~hcb� �

1

2
gabrcrd

~hcd �
1

2
��~hab � gab ~h� �

1

2
rarb

~h�
2

r
rc�r�a

~hcb� � gabrd
~hcd�

�
1

r
rcrc�~hab � gab ~h� �

l�l� 1�

2r2
~hab �

1

r2
gabrcrd ~h

cd �
1

2

�
l�l� 1�

r2
�

2M

r3

�
gab ~h�rarb

~K � gab ~K

�
2

r
r�arb�

~K �
3

r
gabrcrc

~K �
�l� 1��l� 2�

2r2
gab ~K; (4.13)
Qa � rc
~hca �ra

~h�
1

r
ra ~h�ra

~K; (4.14)

Q[ � �~h�rarb
~hab �

2

r
rarb

~hab �
1

r
rara

~h

�
l�l� 1�

2r2
~h� ~K �

2

r
rara

~K; (4.15)

Q] � �~h; (4.16)

where ~h :� gab ~hab and � :� gabrarb. The source terms
are

Qab � 8*
Z
Tab �Ylmd�; (4.17)

Qa �
16*r2

l�l� 1�

Z
TaB �YlmB d�; (4.18)

Q[ � 8*r2
Z
TAB�AB

�Ylmd�; (4.19)

Q] �
32*r4

�l� 1�l�l� 1��l� 2�

Z
TAB �YlmABd�: (4.20)

In Eqs. (4.17), (4.18), (4.19), and (4.20) the stress-energy
tensor is imagined to be given in fully contravariant form;
Tab, TaB, and TAB are then its components in the spacetime
coordinates (xa, �A). In the event where the stress-energy
tensor would be given in covariant or mixed form, its
indices would have to be raised with (gab, r�2�AB)—the
inverse Schwarzschild metric—before evaluating the
source terms. In Eqs. (4.13), (4.14), (4.15), and (4.16) all
lower-case Latin indices are lowered and raised with gab
and gab, respectively.

The perturbation equations are not all independent. By
virtue of the Bianchi identities, or the conservation
Eqs. (2.9) and (2.10), they are related by

rbQ
ab �

2

r
rbQ

ab �
l�l� 1�

2r2
Qa �

1

r
raQ[ � 0 (4.21)
and

raQ
a �

2

r
raQ

a �
�l� 1��l� 2�

2r2
Q] �Q[ � 0: (4.22)

C. Master equation

The Zerilli-Moncrief function is defined by

�lm
even :�

2r
l�l� 1�

�
~Klm �

2

!
�rarb ~hlmab � rrara

~Klm�

�
;

(4.23)

where

! :� �l� 1��l� 2� �
6M
r
: (4.24)

This is a covariant and gauge-invariant generalization of
the definition provided by Lousto and Price [30], who
worked with the usual Schwarzschild coordinates and in
the Regge-Wheeler gauge. Their even-parity function
agrees, up to a normalization factor, with the gauge-
invariant function first introduced by Moncrief [9].
Moncrief’s function, in turn, is a variant of Zerilli’s origi-
nal even-parity function [3] (Zerilli worked in the fre-
quency domain instead of the Schwarzschild time
domain). Up to the same normalization factor the
Moncrief and Fourier-transformed Zerilli functions are
equal up to the presence of source terms; they are equal
only where there is no matter. (The plethora of even-parity
functions and normalization conventions is conveniently
catalogued in the review article by Nagar and Rezzolla
[17].) The normalization adopted in Eq. (4.23) will be seen
to be convenient when we discuss gravitational radiation at
future null infinity (Sec. VI) and at the horizon (Sec. VII);
our definition of the even-parity master function is well
adapted to the description of radiation fields.

The perturbation Eqs. (4.13), (4.14), (4.15), and (4.16)
give rise to a wave equation for the function �even (we
resume our practice of omitting the spherical-harmonic
labels). The manipulations are long and tedious, and we
shall not present them here (the reader may consult
Ref. [26] for details). We simply state the final result: As
-5
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a consequence of the field equations, the even-parity mas-
ter function satisfies the Zerilli equation

�� � Veven��even � Seven; (4.25)

with potential

Veven �
1

!2

�
/2

�
/� 2

r2
�

6M

r3

�
�

36M2

r4

�
/�

2M
r

��
(4.26)

and source term

Seven �
4

!
raQa �

1

r
Q] �

2

�/� 2�!

�

�
�2r2raraQ�

24M
!

rarbQab � 2rfQ[

�
r
!

�
/�/� 2� � 12�/� 3�

M
r
� 84

M2

r2

�
Q
�
;

(4.27)

where / :� �l� 1��l� 2� and Q :� gabQ
ab. The validity

of Eqs. (4.25), (4.26), and (4.27) can be verified by brute-
force evaluation of both sides of Eqs. (4.25). The general
source term for the covariant Zerilli equation has never
been presented in explicit form in the literature. We display
it here for the first time, but note that Eq. (A14) of Ref. [16]
gives an implicit expression for the source term, while their
Eqs. (A15)–(A17) give it explicitly in Schwarzschild
coordinates.

D. Low multipoles

To conclude our presentation of the even-parity sector
we now handle the special cases l � 0 and l � 1.
Additional details can be found in Appendix G of the paper
by Zerilli [3].

When l � 0 the only relevant spherical harmonic is Y00,
which is a constant. It follows that YA � YAB � 0, and the
only nonvanishing metric perturbations are

pab � habY00; pAB � r2K�ABY00; (4.28)

the fields ha and G are not defined. The freedom to perform
a gauge transformation is contained in �a � )aY00, �A �
0, and the perturbations transform as

hab ! h0ab � hab �ra)b �rb)a; (4.29)

K ! K0 � K �
2

r
ra)a: (4.30)

There is no analogue here of the gauge-invariant quantities
~hab and ~K that were introduced in the general case. The
relevant field equations for hab and K are the Qab and Q[

equations of Eqs. (4.13) and (4.15), respectively, in which
we set l � 0, ~hab � hab, and ~K � K. The Qa and Q]

equations of Eqs. (4.14) and (4.16), respectively, are not
defined. It is well known [3] that in the case of a vacuum
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perturbation, the monopole component of the metric per-
turbation represents a shift in the mass parameter of the
Schwarzschild solution.

The even-parity spherical harmonics for l � 1 are Y1m,
Y1m
A , and �ABY1m; Y1m

AB vanishes. The metric perturbation is
then

pab �
X
m

h1mab Y
1m; (4.31)

paB �
X
m

j1ma Y1m
B ; (4.32)

pAB � r2�AB

X
m

K1mY1m; (4.33)

and the fields G1m are not defined. Gauge transformations
are generated by �a �

P
m)

1m
a Y1m and �A �

P
m)

1mY1m
A .

The perturbations change according to

hab ! h0ab � hab �ra)b �rb)a; (4.34)

ja ! j0a � ja � )a �ra)�
2

r
ra); (4.35)

K ! K0 � K �
2

r2
)�

2

r
ra)a: (4.36)

There is no analogue here of the gauge-invariant fields ~hab
and ~K that were introduced in the general case. The rele-
vant field equations for hab, ja, and K are the Qab, Qa, Q[

equations of Eqs. (4.13), (4.14), and (4.15), in which
we set l � 1, ~hab � hab �rajb �rbja, and ~K �
K � 2r�1raja. TheQ] equation of Eq. (4.16) is not defined
for l � 1. It is well known [3] that in the case of a vacuum
perturbation, the dipole component of the even-parity met-
ric perturbation is pure gauge: it can always be removed by
a gauge transformation.

V. ODD-PARITY SECTOR

A. Perturbation fields and gauge transformations

The odd-parity sector refers to those components of the
metric perturbation that can be expanded in terms of the
odd-parity spherical harmonics Xlm

A and Xlm
AB. Recalling the

notation 4gab � gab � pab, 4gaB � paB, and 4gAB �
r2�AB � pAB for the perturbed metric, the odd-parity sec-
tor of the metric perturbation is

pab � 0; (5.1)

paB �
X
lm

hlma X
lm
B ; (5.2)

pAB �
X
lm

hlm2 X
lm
AB: (5.3)

In most of this section the sums over l are taken to begin at
l � 2; there is no odd-parity perturbation with l � 0, and
-6
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the case l � 1 will be considered separately in Sec. V E.
The fields hlma and hlm2 are defined on M2 and they depend
on the coordinates xa only. They are closely related to the
quantities first introduced by Regge and Wheeler [1], who
worked exclusively in terms of the usual Schwarzschild
coordinates (t, r). In these coordinates (discarding
spherical-harmonic labels) we have ht � h0 and hr � h1.
Except for a sign—refer back to the discussion following
Eq. (3.11)—the function h2 is identical to the correspond-
ing Regge-Wheeler quantity.

Odd-parity gauge transformations are generated by a
dual vector field �! � �0;�A� that is expanded as

�A �
X
lm

)lmXlm
A ; (5.4)

in which )lm depends on the coordinates xa only. Under
such a transformation the perturbation quantities change
according to (see Appendix B)

ha ! h0a � ha �ra)�
2

r
ra); (5.5)

h2 ! h02 � h2 � 2); (5.6)

where we have discarded the spherical-harmonic labels for
brevity (we shall continue with this practice until the end of
the section). It is easy to show that the combinations

~h a � ha �
1

2
rah2 �

1

r
rah2 (5.7)

are gauge invariant. Equation (5.6) reveals that one can
always choose a gauge in which h2 � 0; this is the Regge-
Wheeler gauge. Equation (5.7) implies that ~ha � ha in the
Regge-Wheeler gauge.

B. Perturbation equations

The Ricci tensor of the Schwarzschild spacetime van-
ishes, and as a consequence its perturbation is gauge-
invariant. Its computation can therefore be carried out in
any convenient gauge, and as in the preceding section we
shall adopt the Regge-Wheeler gauge. We substitute
Eqs. (5.1), (5.2), and (5.3), having set h2 � 0, into the
Ricci tensor of Appendix B. We simplify the result and
find that �Rab vanishes, �RaB is expanded in terms of Xlm

B ,
and �RAB in terms of Xlm

AB. From the Ricci tensor we
compute the Einstein tensor and set the result equal to
8*T!". Each spherical-harmonic component of the field
equations can then be extracted by involving the orthonor-
mality relations (3.4) and (3.9) satisfied by the odd-parity
harmonics. At the end of this calculation we take advan-
tage of the fact that ~ha � ha in the Regge-Wheeler gauge.
This allows us to make the substitution ha ! ~ha and there-
fore to express the gauge-invariant Einstein tensor in terms
of gauge-invariant quantities.
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Our final results are

Pa � ��~ha �rarb
~hb �

2

r
�rbra

~hb � rarb
~hb�

�
2

r2
rarb ~h

b �
l�l� 1�

r2
~ha; (5.8)

P � ra
~ha; (5.9)

where � :� gabrarb. The source terms are

Pa �
16*r2

l�l� 1�

Z
TaB �Xlm

B d�; (5.10)

P �
16*r4

�l� 1�l�l� 1��l� 2�

Z
TAB �Xlm

ABd�: (5.11)

In Eqs. (5.10) and (5.11) the stress-energy tensor is imag-
ined to be given in fully contravariant form; TaB and TAB

are its relevant components in the spacetime coordinates
(xa, �A). In the event where the stress-energy tensor would
be given in covariant or mixed form, its indices would
have to be raised with (gab, r�2�AB)—the inverse
Schwarzschild metric—before evaluating the source
terms. In Eqs. (5.8) and (5.9) all lower-case Latin indices
are lowered and raised with gab and gab, respectively.

The perturbation equations are not all independent. By
virtue of the Bianchi identities, or the conservation
Eq. (2.10), they are related by

raPa �
2

r
raPa �

�l� 1��l� 2�

r2
P � 0: (5.12)
C. Master equation

The Cunningham-Price-Moncrief function is defined by

�lm
odd

:�
2r

�l� 1��l� 2�
"ab

�
ra

~hlmb �
2

r
ra ~h

lm
b

�
; (5.13)

where "ab is the Levi-Civita tensor on the submanifold
M2. Apart from a different normalization factor, this is a
covariant generalization (first formulated by Gerlach and
Sengupta [10]) of the definition provided by Cunningham,
Price, and Moncrief [24], who worked with the usual
Schwarzschild coordinates. Our definition (and normaliza-
tion) agrees with the odd-parity function considered by
Jhingan and Tanaka [25], who also worked with the
Schwarzschild coordinates, but in the frequency domain.
(The plethora of odd-parity functions and normalization
conventions is conveniently catalogued in the review ar-
ticle by Nagar and Rezzolla [17].) The normalization
adopted in Eq. (5.13) will be seen to be convenient when
we discuss gravitational radiation at future null infinity
(Sec. VI) and at the horizon (Sec. VII); our definition of
the odd-parity master function is well adapted to the de-
scription of radiation fields. It is noteworthy that it can also
be expressed as
-7
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�lm
odd

:�
2r

�l� 1��l� 2�
"ab

�
@ahlmb �

2

r
rahlmb

�
;

in terms of the original (gauge-dependent) perturbation
quantities, and in terms of the partial differentiation opera-
tor; the function is nonetheless gauge-invariant and a
scalar.

The perturbation Eqs. (5.8) and (5.9) give rise to a wave
equation for the function �odd (we resume our practice of
discarding the spherical-harmonic labels). As in the pre-
ceding section we simply state the final result: As a con-
sequence of the field equations, the odd-parity master
function satisfies the Regge-Wheeler equation

�� � Vodd��odd � Sodd; (5.14)

with potential

Vodd �
l�l� 1�

r2
�

6M

r3
(5.15)

and source term

Sodd � �
2r

�l� 1��l� 2�
"abraPb: (5.16)

The validity of Eqs. (5.14), (5.15), and (5.16) can be
verified by brute-force evaluation of both sides of
Eqs. (5.14). The general source term for the covariant
Regge-Wheeler equation has never been presented in ex-
plicit form in the literature; it is given only implicity by
Eq. (17) of Ref. [10]. We display it here for the first time,
and note that in the usual Schwarzschild coordinates (and
in the frequency domain), Sodd agrees with the source term
presented in Eq. (18) of Jhingan and Tanaka [25].

D. Regge-Wheeler function

The Cunningham-Price-Moncrief function is a close
cousin to the more familiar Regge-Wheeler function [1],
whose covariant and gauge-invariant definition is

�lm
RW

:�
1

r
ra ~hlma : (5.17)

As we shall see in Secs. VI and VII, the Regge-Wheeler
function is not well suited to describe the gravitational
radiation field, and in this paper we adopt the function
�lm

odd of Eq. (5.13) as the fundamental odd-parity master
function. It is straightforward to use the perturbation equa-
tions to show that these functions are related by

�RW �
1

2
tara�odd �

r
�l� 1��l� 2�

raPa; (5.18)

where ta � �"abrb is the Killing vector of Eq. (2.7).
Outside of sources, and apart from a factor of one-half,
the Regge-Wheeler function is the time derivative of the
Cunningham-Price-Moncrief function.

The function of Eq. (5.17) also satisfies the Regge-
Wheeler equation,
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�� � Vodd��RW � SRW; (5.19)

with the potential of Eq. (5.15) and a new source term given
by

SRW �
1

r

�
ra�raP� Pa� �

2

r

�
1�

3M
r

�
P
�
: (5.20)

This covariant form for the source term is also a new result.

E. Low multipoles

To conclude our presentation of the odd-parity sector
we now handle the special cases l � 0 and l � 1.
Additional details can be found in Appendix G of the paper
by Zerilli [3].

When l � 0 the only relevant spherical harmonic is Y00,
which is a constant. It follows that XA � XAB � 0, and
we conclude that there is no odd-parity perturbation with
l � 0.

The only surviving odd-parity spherical harmonics for
l � 1 are X1m

A , which are obtained from Y1m using
Eq. (3.2). The tensorial harmonics X1m

AB vanish, and the
only surviving components of the metric perturbation are

paB �
X
m

h1ma X1m
B : (5.21)

The perturbations h1ma can be altered by a gauge trans-
formation generated by �a � 0, �A �

P
m)

1mX1m
A ; they

change according to

ha ! h0a � ha �ra)�
2

r
ra): (5.22)

There is no analogue here of the gauge-invariant fields ~ha
that were introduced in the general case. The relevant field
equation for ha is the Pa equation of Eq. (5.8), in which we
set l � 1 and ~ha � ha. The P equation of Eq. (5.9) is not
defined. It is well known [3] that in the case of a vacuum
perturbation, the dipole component of the odd-parity met-
ric perturbation represents a shift (away from zero) in the
angular-momentum parameter of the black hole.

VI. RADIATION AT FUTURE NULL INFINITY

To examine the gravitational perturbations near future
null infinity we adopt the retarded coordinates (u, r, �, �)
and express the two-dimensional Schwarzschild metric in
the form of Eq. (2.3). In these coordinates, future null
infinity corresponds to taking the limit r ! 1 keeping u
fixed, and our strategy will be to expand the metric pertur-
bations in powers of r�1. In asymptotically Cartesian
coordinates the radiative part of the metric would scale
as r�1; transforming to spherical coordinates produces the
scalings

prad
ab � O�r�1�; prad

aB � O�r0�; prad
AB � O�r�

(6.1)

for the radiative part of the metric perturbations. Our goal
-8
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is to isolate this, and to calculate how much energy and
angular momentum is carried away by the radiation. We
find it advantageous to work in gauge in which

tapab � 0 � tapaB; (6.2)

where ta is the Killing vector of Eq. (2.7). In spite of the
fact that ta is not a null vector (except on the even horizon,
which is well outside our domain of consideration), this
gauge happens to be a perfectly respectable ‘‘radiation
gauge.’’

In this section we take l � 2; as is well known, the low
multipoles l � 0 and l � 1 do not contain radiative de-
grees of freedom. We assume that the matter distribution
responsible for the radiation is confined to a bounded
volume, and that our domain of consideration is outside
this volume; we shall therefore be solving the vacuum field
equations.

We begin with the even-parity sector of Sec. IV. The
gauge conditions imply huu � hur � ju � 0, and the scal-
ings of Eq. (6.1) imply that we are looking for the r�1 part
of hrr, K, and G, as well as the r0 part of jr. These can be
determined by expanding the components of the metric
perturbation in powers of r�1 and substituting them into
the field equations of Eqs. (4.13), (4.14), (4.15), and (4.16).
The expansions for hrr, K, and G begin at order r�1 and
each coefficient is a to-be-determined function of u; the
expansion for jr begins instead at order r0. The field
equations return Qab, Qa, Q[, and Q] expanded in powers
of r�1, and setting each coefficient to zero determines the
metric perturbation. We obtain

hrr � �
l�l� 1�

r3
Z u

a�u0�du0 �O�r�4�; (6.3)

jr �
a�u�
r

�O�r�2�; (6.4)

K �
l�l� 1�

2r3
Z u

a�u0�du0 �O�r�4�; (6.5)

G � �
2

�l� 1��l� 2�

_a�u�
r

�O�r�2�; (6.6)

where a�u� is a function that is not determined by the
vacuum field equations, and _a :� da=du. We see that the
radiative part of the perturbation is contained entirely in
the function G�u; r�. With the metric perturbation of
Eqs. (6.3), (6.4), (6.5), and (6.6) we may evaluate the
Zerilli-Moncrief function of Eq. (4.23). The result is

�even � �
2

�l� 1��l� 2�
_a�u� �O�r�1�; (6.7)

and we conclude that the radiative part of the even-parity
sector is given by
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prad;even
AB � r

X
lm

�lm
even�u; r � 1�YlmAB: (6.8)

It is obtained by integrating the Zerilli Eq. (4.25) and
evaluating the Zerilli-Moncrief function at r � 1.

We turn next to the odd-parity sector of Sec. V. The
gauge conditions imply hu � 0, and the scalings of
Eq. (6.1) imply that we are looking for the r0 part of hr
and the r1 part of h2. These are determined by following
the same procedure as in the even-parity case, and we
obtain

hr � �
�l� 1��l� 2�

2r

Z u
b�u0�du0 �O�r�2�; (6.9)

h2 � b�u�r�O�r0�; (6.10)

where b�u� is not determined by the vacuum field equa-
tions. We see that the radiative part of the perturbation is
contained entirely in the function h2�u; r�. With the metric
perturbation of Eqs. (6.9), (6.10) we may evaluate the
Cunningham-Price-Moncrief function of Eq. (5.13). The
result is

�odd � b�u� �O�r�1�; (6.11)

and we conclude that the radiative part of the odd-parity
sector is given by

prad;odd
AB � r

X
lm

�lm
odd�u; r � 1�Xlm

AB: (6.12)

It is obtained by integrating the Regge-Wheeler Eq. (5.14)
and evaluating the Cunningham-Price-Moncrief function
at r � 1. Notice that by virtue of Eq. (5.18), the radiative
field could instead be expressed in terms of the u-integral
of the Regge-Wheeler function. The need to perform this
integration is inconvenient, and it is the simple relationship
of Eq. (6.12) that has motivated the adoption of the
Cunningham-Price-Moncrief function as the fundamental
odd-parity master function.

The full radiative field is obtained from Eqs. (6.8) and
(6.12). We have prad

ab � 0 � prad
aB and

prad
AB � r

X
lm

��lm
evenYlmAB ��lm

oddX
lm
AB�; (6.13)

where �lm
even 
 �lm

even�u; r � 1� and �lm
odd 
 �lm

odd�u; r �
1�. As expected, the radiative field is transverse, and
tracefree by virtue of Eqs. (3.11). The two fundamental
polarizations of the gravitational wave can be defined by
h� :� p��=r

2 and h� :� p��=�r
2 sin��. Using the compo-

nents of the tensorial spherical harmonics listed in
Appendix A, we obtain

h� �
1

r

X
lm

�
�lm

even

�
@2

@�2
�

1

2
l�l� 1�

�
Ylm

��lm
odd

im
sin�

�
@
@�

�
cos�
sin�

�
Ylm

�
(6.14)
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and

h� �
1

r

X
lm

�
�lm

even
im
sin�

�
@
@�

�
cos�
sin�

�
Ylm

��lm
odd

�
@2

@�2
�

1

2
l�l� 1�

�
Ylm

�
: (6.15)

The energy and angular momentum carried away by the
gravitational radiation can be calculated using the tech-
niques developed by Thorne [29]. We compare our
Eq. (6.13) to his Eq. (4.3), taking into account the relation-
ship between our tensorial harmonics and his pure-spin
harmonics (this is spelled out in Appendix A). Thorne’s
mass multipole moments are thus seen to be proportional to
�lm

even�u; r � 1�, and his current moments are proportional
to �lm

odd�u; r � 1�. Substituting these into Thorne’s
Eq. (4.16) we obtain


dE
du

�
�

1

64*

X
lm

�l� 1�l�l� 1��l� 2�

� hj _�lm
evenj

2 � j _�lm
oddj

2i (6.16)

for the averaged rate at which the energy escapes to future
null infinity. Substituting instead into Thorne’s Eq. (4.23)
returns


dJ
du

�
�

1

64*

X
lm

�l� 1�l�l� 1��l� 2��im�

� h ��lm
even

_�lm
even � ��lm

odd
_�lm
oddi (6.17)

for the averaged rate at which the angular momentum
escapes to infinity. This is the component of the angular-
momentum vector in the arbitrary z direction which defines
the orientation of the angles � and �. The overbar indicates
complex conjugation, and it is not difficult to show that
hdJ=dui is real. The averaging carried out in Eqs. (6.16)
and (6.17) is over a characteristic time scale associated
with the gravitational wave.
VII. RADIATION AT THE EVENT HORIZON

To examine the gravitational perturbations near the
event horizon we adopt the advanced coordinates (v, r,
�, �) and express the two-dimensional Schwarzschild
metric in the form of Eq. (2.4). We want to calculate how
much energy and angular momentum is transferred to the
black hole by the perturbation, and we shall do so by
following the methods devised by Poisson [31]. As in the
preceding section we impose the gauge conditions

tapab � 0 � tapaB (7.1)

on the metric perturbation; ta is still the Killing vector of
Eq. (2.7). Recall that this vector is null on the event
horizon, and Eq. (7.1), evaluated at r � 2M, is equivalent
to Poisson’s Eq. (6.5). Poisson then shows that the part of
the metric perturbation which is associated with the trans-
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port of energy and angular momentum across the horizon is
pAB. [Refer to Poisson’s Eq. (6.10), which establishes the
equality between pAB and 61

AB, the perturbation of the
horizon’s intrinsic metric.]

In this section we take l � 2, as the low multipoles l � 0
and l � 1 do not contain radiative degrees of freedom. We
assume that the matter distribution responsible for the
radiation does not come near the event horizon; we shall
therefore be solving the vacuum field equations in an
empty neighborhood of the event horizon.

We begin with the even-parity sector of Sec. IV. The
gauge conditions of Eq. (7.1) imply that hvv � hvr � jv �
0, so that hrr, jr, K, and G are the only nonvanishing
components of the metric perturbation. As stated above,
the radiation crossing the event horizon is described en-
tirely by K and G evaluated at r � 2M. The field equa-
tions, however, imply that K vanishes on the horizon. This
is verified by expanding hrr, jr, K, and G in powers of f �
1� 2M=r and substituting them into the field equations of
Eqs. (4.13), (4.14), (4.15), and (4.16). This calculation
reveals also that G�v; r � 2M� � a�v�, a function that is
not determined by the vacuum field equations. On the other
hand, the expansions allow us to evaluate the Zerilli-
Moncrief function of Eq. (4.23), and the result is �even�r �
2M� � 2Ma�v�. We conclude that on the horizon, the
radiative part of the even-parity sector is given by

prad;even
AB � 2M

X
lm

�lm
even�v; r � 2M�YlmAB: (7.2)

It is obtained by integrating the Zerilli Eq. (4.25) and
evaluating the Zerilli-Moncrief function at r � 2M.

We turn next to the odd-parity sector of Sec. V. The
gauge conditions imply hu � 0, so that hr and h2 are the
only nonvanishing components of the metric perturbation.
The radiation crossing the event horizon is described en-
tirely by h2 evaluated at r � 2M, and the field equations
imply that b�v� :� h2�v; r � 2M� remains as an undeter-
mined function. They also imply that hr�v; r � 2M� �
c�v�, with

c�v� :�
�l� 1��l� 2�

8M2

Z v
b�v0�dv0:

These statements are verified by expanding hr and h2 in
powers of f � 1� 2M=r and substituting them into
Eqs. (5.8) and (5.9). The expansions allow us also to
evaluate the Cunningham-Price-Moncrief function of
Eq. (5.13), and the result is

�odd�r � 2M� � �
4M

�l� 1��l� 2�

dc
dv

� �
1

2M
b�v�:

We conclude that on the horizon, the radiative part of the
odd-parity sector is given by

prad;odd
AB � �2M

X
lm

�lm
odd�v; r � 2M�Xlm

AB: (7.3)
-10
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It is obtained by integrating the Regge-Wheeler Eq. (5.14)
and evaluating the Cunningham-Price-Moncrief function
at r � 2M. Notice that by virtue of Eq. (5.18), the radiative
field could instead be expressed in terms of the v-integral
of the Regge-Wheeler function; this would give rise to
Poisson’s Eq. (7.3), a less convenient expression.

The full radiative field is obtained by adding Eqs. (7.2)
and (7.3). We have

prad
AB � 2M

X
lm

��lm
evenY

lm
AB ��lm

oddX
lm
AB�; (7.4)

where �lm
even 
 �lm

even�v; r � 2M� and �lm
odd 
 �lm

odd�v; r �
2M�. This result should be compared with Eq. (6.13). The
rates at which the gravitational perturbation transfers en-
ergy and angular momentum to the black hole can now be
calculated using the method described in Sec. VII of
Poisson [31]. Our Eq. (7.4) replaces his Eq. (7.5), and the
rest of the calculation is identical. The final results are


dE
dv

�
�

1

64*

X
lm

�l� 1�l�l� 1��l� 2�

� hj _�lm
evenj

2 � j _�lm
oddj

2i (7.5)

and 

dJ
dv

�
�

1

64*

X
lm

�l� 1�l�l� 1��l� 2��im�

� h ��lm
even

_�lm
even � ��lm

odd
_�lm
oddi: (7.6)

These equations replace Poisson’s Eqs. (7.8) and (7.9).
Notice the similarity between Eqs. (7.5) and (6.16), and
between Eqs. (7.6) and (6.17). In Eq. (7.6), J represents the
component of the hole’s angular-momentum vector in
the arbitrary z direction which defines the orientation of
the angles � and �. The overbar indicates complex con-
jugation. The averaging carried out in Eqs. (7.5) and (7.6) is
over a characteristic time scale associated with the gravi-
tational perturbation.
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APPENDIX A: COMPONENTS OF THE VECTOR
AND TENSOR SPHERICAL HARMONICS, AND

RELATIONSHIP WITH OTHER SPHERICAL
HARMONICS

We first list the components of the tensorial harmonics
introduced in Sec. III. According to Eq. (3.1) we have

Ylm� �
@
@�

Ylm; Ylm� �
@
@�

Ylm:

According to Eq. (3.2) we have
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Xlm
� � �

1

sin�
@
@�

Ylm; Xlm
� � sin�

@
@�

Ylm:

According to Eq. (3.6) we have

Ylm�� �

�
@2

@�2
�

1

2
l�l� 1�

�
Ylm;

Ylm�� �

�
@2

@�@�
�

cos�
sin�

@
@�

�
Ylm;

Ylm�� �

�
@2

@�2 � sin� cos�
@
@�

�
1

2
l�l� 1�sin2�

�
Ylm:

And according to Eq. (3.7) we have

Xlm
�� � �

1

sin�

�
@2

@�@�
�

cos�
sin�

@
@�

�
Ylm;

Xlm
�� �

1

2

�
sin�

@2

@�2
�

1

sin�
@2

@�2 � cos�
@
@�

�
Ylm;

Xlm
�� �

�
sin�

@2

@�@�
� cos�

@
@�

�
Ylm:

The tensorial harmonics YlmAB and Xlm
AB can be related to

the spherical-harmonic functions of spin-weight s � 2
[28]. LetmA and �mA be a complex orthonormal basis on the
unit two-sphere, with mA � 2�1=2�1; i sin��. The relation-
ship is then

YlmAB �
1

2

��������������������������������������������
�l� 1�l�l� 1��l� 2�

p
� ��2Y

lmmAmB �2 Y
lm �mA �mB�

and

Xlm
AB � �

i
2

��������������������������������������������
�l� 1�l�l� 1��l� 2�

p
� ��2YlmmAmB �2 Ylm �mA �mB�;

where sY
lm are the spin-weighted spherical harmonics.

These equations can be compared with Eqs. (2.38e) and
(2.38f) of Ref. [29]. This reveals that our tensorial har-
monics are intimately related to the ‘‘pure-spin’’ harmon-
ics used by Thorne. The relationship is

YlmAB �

�����������������������������������������������
1

2
�l� 1�l�l� 1��l� 2�

s
TE2;lmAB

and

Xlm
AB �

�����������������������������������������������
1

2
�l� 1�l�l� 1��l� 2�

s
TB2;lmAB :

Notice that the pure-spin harmonics TE2;lmAB and TB2;lmAB are
normalized on the unit two-sphere. Our convention here
differs from Thorne’s, who inserts a factor of r�1 inmA and
�mA in order to normalize them on a two-sphere of radius r.
-11



KARL MARTEL AND ERIC POISSON PHYSICAL REVIEW D 71, 104003 (2005)
APPENDIX B: PERTURBATION OF THE RICCI
TENSOR FOR A GENERAL SPHERICALLY-
SYMMETRIC BACKGROUND SPACETIME

The perturbed spacetime metric is written as

4gab � gab � pab; 4gaB � paB;

4gAB � r2�AB � pAB;

where (gab, r2�AB) are the components of the background
metric and (pab, paB, pAB) are the components of the
perturbation. In this Appendix we allow the background
metric to be completely general, so long as it is spherically
symmetric; we do not restrict it to be the Schwarzschild
metric. We raise lower-case Latin indices with gab, the
inverse to gab, and we raise upper-case Latin indices with
�AB, the inverse to �AB. The inverse perturbed metric is
thus

4gab � gab � pab; 4gaB � �
1

r2
paB;

4gAB �
1

r2
�AB �

1

r4
pAB;

up to terms quadratic in the perturbations.
Covariant differentiation with respect to the coordinates

xa on the submanifold M2 is indicated with ra:ragbc �
0. Covariant differentiation with respect to the coordinates
�A on the unit two-sphere is indicated with DA:DA�BC �
0. Quantities which depend only on xa are covariantly
constant relative to the connection �ABC; for example
DAr 
 0. Quantities which depend only on �A are cova-
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riantly constant relative to the connection �abc; for ex-
ample ra�AB 
 0.

A straightforward calculation returns the components of
the perturbed connection, which we denote 4�!"6 �

��!"6. We obtain

��abc � Ca
bc;

��abC �
1

2
�DCp

a
b �rbp

a
C �rapbC� �

1

r
rbp

a
C;

��aBC �
1

2
�DBpaC �DCpaB �rapBC� � rrm�BCpam;

��Abc �
1

2r2
�rbpc

A �rcpb
A �DApbc�;

��AbC �
1

2r2
�DCpb

A �DApbC �rbp
A
C� �

1

r3
rbp

A
C;

��ABC �
1

r2
CA

BC �
1

r
rm�BCpmA;

where ra :� rar,

Ca
bc :�

1

2
�rcpab �rbpac �rapbc�;

and

CA
BC :�

1

2
�DCp

A
B �DBp

A
C �DApBC�:

The Ricci tensor for the perturbed spacetime is equal to
the background Ricci tensor R!" plus its perturbation
�R!". We obtain
�Rab � rmC
m
ab �

2

r
rmC

m
ab �

1

2
rarbp

m
m �

1

2r2
DMDMpab �

1

2r2
DM�rapb

M �rbpa
M� �

1

2r2
rarbp

M
M

�
1

2r3
�rarbp

M
M � rbrap

M
M� �

1

r4
�rarb � rrarbr�p

M
M;

�RaB �
1

2
DB�rmp

m
a �rap

m
m �

1

r
rap

m
m� �

1

2
��paB �rmrap

m
B� �

1

r
�rarmp

m
B � rmrap

m
B�

�
1

r2
�rarm � rrarmr�pmB �

1

2r2
DM�DBpaM �DMpaB� �

1

2r2
ra�DMpMB �DBpMM�

�
1

r3
ra�DMpMB �DBpMM�;

�RAB � �AB

�
rrmrn

�
pmn �

1

2
gmnpkk

�
� �rmrn � rrmrnr�pmn

�
�

1

2
DADBpmm �

1

2
rm�DApmB �DBpmA�

�
1

r
rm�ABDMp

mM �
1

2
�pAB �

1

r2
DMC

M
AB �

1

2r2
DADBp

M
M �

1

r
rmrm

�
pAB �

1

2
�ABp

M
M

�

�
2

r2
rmrm

�
pAB �

1

2
�ABpMM

�
;

where � :� gabrarb. These expressions can be simpli-
fied by involving Eqs. (2.6) and (2.8) when the background
spacetime is the Schwarzschild spacetime.
Under a gauge transformation generated by the dual
vector field �! � ��a;�A�, the components of the metric
perturbation change according to
-12
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pab ! p0
ab :� pab �ra�b �rb�a;

paB ! p0
aB :� paB �ra�B �DB�a �

2

r
ra�B;

pAB ! p0
AB :� pAB �DA�B �DB�A � 2rrm�m�AB:
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It can be shown that when the background Ricci tensor
vanishes, �Rab, �RaB, and �RAB are all invariant under this
transformation. We use this property in Secs. IV and V.
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