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Anthropic predictions for neutrino masses
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It is argued that small values of the neutrino masses may be due to anthropic selection effects. If this is
the case, then the combined mass of the three neutrino species is expected to be �1 eV, neutrinos causing
a non-negligible suppression of galaxy formation.
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I. INTRODUCTION

The major ingredients of the Universe are dark energy,
�� � 0:7, and nonrelativistic matter, �m � 0:3. The latter
consists of nonbaryonic dark matter, �D � 0:25, baryons,
�B � 0:05, and massive neutrinos, �� * 0:001. The fact
that �� is comparable to �m is deeply puzzling; this is the
notorious coincidence problem that has been much dis-
cussed in the recent literature. The only plausible explana-
tion that has so far been suggested is that �� is a stochastic
variable and that the coincidence is due to anthropic se-
lection effects. Anthropic bounds on the cosmological
constant derived in [1–4] were followed by anthropic
predictions [5–8] suggesting values not far from the pres-
ently observed dark energy density. Although controver-
sial, such anthropic arguments have been bolstered by the
discovery of mechanisms that may be capable of creating
ensembles with different parameter values in the context of
both cosmic inflation [9–11] and string theory [12–15],
and have been applied to other physical parameters as well
[16–33].

Perhaps equally puzzling are the ‘‘coincidences’’ �D �
�B and �B � ��. These three matter components are
relics of apparently unrelated processes in the early
Universe, and it is very surprising that their mass densities
are comparable to one another. The mass density of neu-
trinos is �� � �m�=94 eV�h�2, where m� is the combined
mass of all three neutrino flavors. In this paper, we will
investigate the possibility that m� is a stochastic variable
taking different values in different parts of the Universe
and that the observed value is anthropically selected.

Before delving into details, let us briefly outline the
argument. A small increase of m� can have a large effect
on galaxy formation. Neutrinos stream out of the potential
wells created by cold dark matter and baryons, slowing the
growth of density fluctuations. As a result, there will be
fewer galaxies (and therefore fewer observers) in regions
with larger values of m�. If the suppression of galaxy
formation becomes important for m� * ~m�, say, then val-
ues m� � ~m� will be rarely observed because the density
of galaxies in the corresponding regions is very low.
Moreover, unless the underlying particle-physics model
strongly skews the neutrino mass distribution towards val-
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ues near zero, values m� � ~m� are also unlikely to be
observed, simply because the corresponding range of
m�-values is very small. A typical observer thus expects
to find m� � ~m�, i.e., a mild but non-negligible suppres-
sion of galaxy formation by neutrinos.

II. PROBABILITY DISTRIBUTION FOR m�

To make the analysis quantitative, we define the proba-
bility distribution P �m��dm� as being proportional to the
number of observers in the Universe who will measure m�
in the interval dm�. This distribution can be represented as
a product [5]

P �m�� � P ��m��nobs�m��: (1)

Here, P ��m��dm� is the prior distribution, which is pro-
portional to the comoving volume of those parts of the
Universe where m� takes values in the interval dm�, and
nobs�m�� is the number of observers that evolve per unit
comoving volume with a given value of m�. The distribu-
tion (1) gives the probability that a randomly selected
observer is located in a region where the sum of the three
neutrino masses is in the interval dm�.

Of course we have no idea how to estimate nobs, but
what comes to the rescue is the fact that the value of m�
does not directly affect the physics and chemistry of life.
As a rough approximation, we therefore assume that
nobs�m�� is simply proportional to the fraction of all bary-
ons that form stars, which we approximate by the fraction
FM�m�� of all matter that collapses into galaxy-scale hal-
oes (with mass greater than M � 1012M	),

nobs�m�� / FM�m��: (2)

The idea is that there is some average number of stars per
unit mass in a galaxy and some average number of observ-
ers per star. The choice of the halo mass scale is based on
the empirical fact that most stars are observed to be in large
halos.

The prior distribution P ��m�� depends on the extension
of the particle-physics model which allows neutrino
masses to vary and perhaps on stochastic processes during
inflation which randomize these variable masses. Some
candidate prior distributions will be discussed in Sec. III.
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1As our galactic scale, we take M � 1012M	, specifically a
top-hat smoothing scale of R � 1:3h�1 Mpc. This corresponds
to length scales about 100 times smaller than the matter-
radiation equality scale where the matter power spectrum turns
over.
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The fraction of collapsed matter FM�m�� can be approxi-
mated using the standard Press-Schechter formalism [34].
We assume a Gaussian density fluctuation field ��x; t� with
a variance ��M; t� on the galactic scale �M � 1012M	�,

P��; t� / exp
�
�

�2

2��t�2

�
: (3)

A collapsed halo is assumed to form when the linearized
density contrast � exceeds a critical value �c determined
by the spherical collapse model. As detailed in
Appendix A, this corresponds to �c � 1:69 around the
present epoch and �c � 1:63 in the infinite future [4].
Using the Press-Schechter approximation, we obtain

FM�t� / P�� > �c �
Z 1

�c
P��; t�d� � erfc

�
�c���

2
p
�M�t�

�
:

(4)

The collapsed fraction FM thus grows over time as the rms
density fluctuations � increase.

Let us now quantify the effect of neutrino masses on this
process. For the small scale M that we are considering,
assuming a flat Universe, this fluctuation growth is well
approximated by

�M�x� �
�
1 �

3

2
A��f��G��x�

�
p�f��

�M�0�; (5)

as shown in Appendix A. The functions A�, G� and p are
defined below. Here we have replaced t by a new time
variable

x �
��

�m
�

��

�1 � z�3�m

�
1 � �m

�m
�1 � z��3; (6)

i.e., the dark-energy-to-matter density ratio—we will con-
sider several values of x below, corresponding to the infi-
nite future (x � 1), the present epoch (x � 7=3, our
default value) and redshift unity (x � 7=24). The function

G��x� � x1=3
�
1 �

�
x

G3
1

�
�
�
�1=3�

; (7)

where � � 0:795 and

G1 �
5��23���

5
6�

3
����
�

p � 1:437 28; (8)

describes how, in the absence of massive neutrinos, fluc-
tuations grow as the cosmic scale factor a as long as dark
energy is negligible [G��x� � x1=3 / a / �1 � z��1 for
x� 1] and then asymptote to a constant value as t! 1
and dark energy dominates [G��x� ! G1 as x! 1].

We are considering the case where m� varies from place
to place whereas the physics that determined the amount of
baryons and cold dark matter per photon is the same every-
where, so the neutrino fraction f� is given by

f� �
��

�m
�

��
�bc � ��

�

�
1 �

�bc

��

�
�1

�

�
1 �

mbc

m�=3

�
�1
;

(9)
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where �bc denotes the non-neutrino density, i.e., that of
baryons and cold dark matter, andmbc � �4:75 � 0:30� eV
gives the measured amount of such matter per neutrino. In
other words, increasing the neutrino mass from zero will
increase the total matter density per photon by a factor
�m=�bc � �1 � f���1:

A��f�� � x�1=3
eq �

�
�m

��

�
1=3

�1 � zeq� (10)

is the factor by which the Universe has expanded between
matter-radiation equality at x � xeq (when fluctuations
effectively start to grow) and dark energy domination at
x � 1 (when fluctuations gradually stop growing). Since
massive neutrinos boost the matter density by a factor �1 �
f���1, they delay vacuum domination until the scale factor
is larger by a factor �1 � f��

1=3 and also, in the approxi-
mation that neutrinos are nonrelativistic at the matter-
radiation equality epoch (valid for m� * 1 eV), cause
matter-radiation equality to occur earlier, when the scale
factor is smaller by a factor �1 � f��. We thus have

A��f�� � �1 � f��
�4=3A��0�: (11)

Finally, neutrinos with nonzero mass suppress the galaxy
density through the exponent p�f�� in Eq. (5), which is
given by [35]

p�f�� �

����������������������
25 � 24f�

p
� 1

4
� �1 � f��3=5; (12)

and drops from unity for f� � 0 to smaller values as f�
increases.

In summary, Eq. (5) shows that the galaxy fluctuation
evolution �M�x� depends on the three cosmological pa-
rameters A��0�, �M�0� and f�. To study the galaxy density
as a function of neutrino fraction f� using Eq. (4), we thus
need to measure A��0� and �M�0� from observational data
without making any assumptions about f�. We cannot do
this using the values of �m and zeq reported by, say, the
WMAP team [36], since these assume that f� � 0 in our
part of the Universe; if f� > 0 here, then matter-radiation
equality occurred earlier. We therefore repeat the Monte
Carlo Markov Chain (MCMC) analysis reported in col-
umn 5 of Table 3 in [37], measuring A��0� and �M�0� from
the WMAP cosmic microwave background (CMB) power
spectrum [38] combined with the Sloan Digital Sky Survey
galaxy power spectrum [39]. These measurements are
independent of f� since this is a free parameter in the
analysis and therefore effectively marginalized over. This
gives A��0� � 3057 � 502, �M�0� � 0:000 579�
0:000 064.1 The above-mentionedmbc-value was measured
using this same MCMC analysis. We will use the central
-2
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values for our main analysis and quantify the effect of the
uncertainties in the discussion section. Equation (5) thus
shows that, for f� � 0, fluctuations grow by a factor 1 �
1:5A��0�G��x� � 4700 by the present epoch, which we
take to be x � ��=�m � 0:7=0:3 � 2:3, giving �M �
2:7. In the infinite future x! 1, fluctuations will have
grown by a factor 6600, giving�M � 3:8. The basic reason
that neutrinos have such a dramatic effect is that these
growth factors are so large, implying that even a modest
change in the exponent p�f�� makes a large difference.
Taylor expanding Eq. (5) in f� gives

�M�x; f�� � �M�x; 0�e
�"�x�f� (13)

for f� � 1, where "�x� � 0:6 ln�1 � 1:5A��0�G��x� �
4=3 � 3:7 for the present epoch and " � 3:9 for the infi-
nite future. Although Eq. (13) is quite a crude approxima-
tion, underestimating the suppression, it shows that small
changes in A� or x are unimportant since they affect this
exponential fluctuation suppression only logarithmically.

The effect of neutrino free streaming on the galactic
density is illustrated in Fig. 1 (top), which shows that the
suppression is non-negligible already for m� � 1 eV. We
use Eq. (5) in our calculations for the plots—the approxi-
mation Eq. (13) was merely to provide qualitative intuition
for the effect.
FIG. 1 (color online). The upper panel shows the factor by
which the neutrino fraction f� (dashed curve) suppresses the
current fluctuation amplitude �M (upper solid curve) and con-
sequently the galaxy number density nG (lower solid curve). The
lower panel shows the resulting probability distribution for the
neutrino mass sum for priors mn

� with n � 0, 1, 2, 3 and 4,
peaking from left to right, respectively.
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The probability distribution P �m�� is shown in Fig. 1
(bottom) for power law priors

P ��m�� / m
n
�; (14)

with n ranging from 0 to 4. For n � 1, these distributions
are peaked at m� * 2 eV, while in the case of a flat prior,
P ��m�� � const, the expected values are m� � 1 eV. This
is also seen in Fig. 2, where the distribution for a flat prior
is shown using a logarithmic scale for m�.

In this discussion, we have assumed that f� � 1, that is,
m� � 10 eV. Very heavy neutrinos (with m� � 1 MeV)
would annihilate well before nucleosynthesis and cause no
problems with structure formation. If all neutrinos were
heavy, neutrons would be stable, leading to an equal num-
ber of protons and neutrons. As a result, most of the matter
would end up in helium instead of hydrogen. This lack of
hydrogen would clearly suppress nobs�m�� for observers
like us who rely on long-lived (hydrogen burning) stars and
water-based chemistry. Moreover, heavy neutrinos would
not be able to blow off the envelope in supernova explo-
sions. This means that heavy elements formed in stellar
interiors would not be dispersed to form planets and ob-
servers. The possibility of the electron neutrino being light
and one or two others very heavy is allowed anthropically,
but it is already ruled out by the neutrino oscillation experi-
ments, which constrain the mass differences to be within
0:05 eV.

For m� � 100 eV (but � 1 MeV), keeping all other
physical parameters fixed, neutrinos would have suffi-
ciently low thermal velocities to act approximately as
cold dark matter, thereby allowing galaxy-size halos to
form. However, the baryon fraction in these halos would
be strongly diluted, and it is therefore far from clear
whether they would be able to cool and form self-
FIG. 2 (color online). The probability distribution for the
neutrino mass sum for flat prior �n � 0�. The dark/red tails
contain 5% probability each. The dotted line shows the lower
limit 0.05 eV from atmospheric neutrino oscillations [49–52].
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2A very different model for the prior distribution was consid-
ered by Rubakov and Shaposhnikov [48]. They assumed that
P prior�X� is a sharply peaked function with a peak outside the
anthropic range A and argued that the observed value of X
should then be very close to the boundary of A. We note that
this is unlikely to be the case for the neutrino mass, since it is
observed to be comfortably inside the anthropically allowed
range. If the model of [48] applied, the peak of the full distri-
bution would most likely be in a life-hostile environment, where
both P prior�X� and nobs�X� are very small. In the case of the
neutrino mass, this would mean that the number density of
galaxies is very low. This is not the case in our observable
region, indicating that the model of [48] does not apply.
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gravitating baryonic disks, let alone stars or observers, with
an efficiency comparable to that in our observable uni-
verse. In other words, the calculation of anthropic con-
straints on very large neutrino masses becomes essentially
equivalent to the calculation of an anthropic upper bound
on the dark matter abundance. We will not attempt to
address this issue here, but simply assume that the number
of observers nobs�m�� is strongly suppressed for m� �
10 eV.

We have also assumed that there are N� � 3 stable
neutrinos. Generalizing our result to N� > 3 is straightfor-
ward: as long as the masses are low enough for neutrino
infall to be negligible, the galaxy number density depends
only on the total neutrino mass density, which for standard
neutrino freeze-out is proportional to the sum of the neu-
trino masses. If the neutrinos are unstable on cosmological
time scales, they suppress fluctuation growth only before
decaying, with their decay radiation redshifting away to
gravitationally negligible levels within a few expansion
times.

III. PRIOR DISTRIBUTION

Following [40], we shall now discuss possible modifi-
cations of the standard particle-physics model that could
make neutrino masses variable. For early work on how
masses of elementary particles can vary randomly in the
context of stochastic gauge theories, see [41–43].

Dirac-type neutrino masses can be generated if the
standard model neutrinos �� mix through the Higgs dou-
blet vacuum expectation value � to some gauge-singlet
fermions �$c ,

g�$� ���$c : (15)

The couplings g�$ will generally be variable in string
theory inspired models involving antisymmetric form
fields Fa interacting with branes. (Here, the index a labels
different form fields.) Fa changes its value by !Fa � qa
across a brane, where qa is the brane charge. In the low-
energy effective theory, the Yukawa couplings g�$ become
functions of the form fields,

g�$ � g�0��$ �
X
ga�$

Fa
M2
p
� � � � ; (16)

where the summation is over all form fields, the coeffi-
cients g�0��$, ga�$ are assumed to be numbers �1, and Mp is
the effective cutoff scale, which we assume to be the
Planck mass.

In such models, closed brane bubbles nucleate and ex-
pand during inflation [44], creating exponentially large
regions with different values of the neutrino masses.
When Fa changes in increments of qa, m� changes in
increments of

!m� � �qa=M
2
p: (17)

To be able to account for neutrino masses & 1 eV, we have
to require that !m� & 1 eV, that is,
103523
qa & 10�11M2
p; (18)

for at least some of the brane charges. Such small values of
the charges can be achieved using the mechanisms dis-
cussed in [12,13,45,46].

It should be noted that the Higgs potential and the Higgs
expectation value � will also generally depend on Fa.
Moreover, each field Fa contributes a term F2

a=2 to the
vacuum energy density ��, and regions with different
values of Fa will generally have different values of ��.
However, in the presence of several form fields with suffi-
ciently small charges, variations of all these parameters are
not necessarily correlated, and here we shall assume that
there are enough form fields to allow independent variation
of the relevant parameters. We can then consider a sub-
ensemble of regions withm� variable and all other parame-
ters fixed. The probability distribution for m� that we
calculated in Sec. II corresponds to such a subensemble.

Let us now turn to the prior distribution P ��m��. The
natural range of variation of Fa in Eq. (16) is the Planck
scale, and the corresponding range of the neutrino masses
is 0 � m�i�

� & �. (Here, the index i labels the three neu-
trino mass matrix eigenvalues.) Only a small fraction of
this range corresponds to values of anthropic interest,
m� & 10 eV. In this narrow anthropic range, we expect
that the probability distribution for Fa after inflation is
nearly flat [47],2

dP � � const � dF1dF2 . . . ; (19)

and that the functions g�$�Fa� are well approximated by
linear functions. If all three neutrino masses vary indepen-
dently, this implies that

dP � � const � dm�e�
� dm

�(�
� dm�)�

� : (20)

The probability for the combined mass m� �
P
m�i�
� to be

between m� and m� � dm� is then proportional to the
volume of the triangular slab of thickness �dm� in the
3-dimensional mass space,

dP � / m
2
�dm�: (21)

Alternatively, the neutrino masses can be related to one
another, for example, by a spontaneously broken family
symmetry. If all three masses are proportional to a single
-4
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variable mass parameter, then we expect

dP � / dm�: (22)

Let us now assess how well the predictions derived from
the prior distributions (21) and (22) agree with observa-
tions. We first consider the distribution (21), corresponding
to independently varying neutrino masses. The most prob-
able value of m� for n � 2 is m� � 3 eV, and we expect
both the neutrino masses and mass differences to be
�1 eV. This expectation, however, is in conflict both
with neutrino oscillation experiments suggesting !m� &

0:05 eV [49–52] and with astrophysical bounds [36,37]
which indicate a combined mass m� & 1 eV.

For a flat prior distribution (22), the most probable value
is m� � 1 eV. If m� is close to this value, then the three
neutrino masses must be nearly degenerate, with !m� �
m�. This could be interpreted as a sign of a family sym-
metry. A 90% confidence level prediction for m� based on
this distribution can be obtained as outlined in Sec. II. This
gives

0:1 eV<m� < 5 eV: (23)

The lower bound in (23) is somewhat stronger than the
bound from the neutrino oscillation data [49–52] (m� *

0:05 eV), while the upper bound is somewhat weaker than
the current astrophysical bounds (e.g., [36,37,53–56]).
Note that the strength of current astrophysical bounds is
limited not by statistical errors but by systematic uncer-
tainties in non-CMB data. For instance, the recently
claimed evidence for m� > 0 [57] may result from under-
estimated galaxy cluster modeling uncertainties.

We finally mention the possibility that the right-handed
neutrinos ��c have a large Majorana mass MR � �. In this
case, small neutrino masses can be generated through the
seesaw mechanism,

m� � g2�2=MR: (24)

If MR is variable, say, within a range MR & Mp, then its
most probable values are likely to be �Mp, and the prior
distribution will be peaked at very small values of m� �
10�6 eV.

This discussion suggests that the most promising sce-
nario with variable neutrino masses is the one with Dirac-
type masses determined by a single variable mass parame-
ter. It yields a flat prior distribution for m�, Eq. (22), and
the prediction (23) at 90% confidence level.

After we submitted the original version of this paper,
Jaume Garriga pointed out to us that seesaw-type models
can yield cosmologically interesting prior distributions for
m� if the Majorana mass is restricted to the range MR <

M�max�
R � Mp. Assuming first that MR is a fixed constant,

while g is variable, Eq. (24) yields the distribution

dP prior / dg / m�1=2dm: (25)

This would give a somewhat smaller predicted neutrino
103523
mass than the distribution (22) that we used in most of our
calculations.

The distribution (25) applies up to mmax � �2=MR. In
order to have mmax * 0:1 eV, we need MR & 1013 GeV.

If bothMR and g are variable, then, assuming a flat prior
for MR, Eq. (25) still applies, but now mmax � �2=M�max�

R ,
so we need M�max�

R & 1013 GeV. An attractive feature of
this scenario is that the increment of m� in Eq. (17) gets
suppressed by an additional factor �=MR, and Eq. (18)
gets replaced by a much weaker constraint qa=M2

p &

�MR=1013 GeV��1.
IV. DISCUSSION

In conclusion, we have found that the small values of the
neutrino masses may be due to anthropic selection. If so,
then the most promising model appears to be the one with a
flat prior distribution, P ��m�� � const. The range of m�
predicted in this model, Eq. (23), has interesting implica-
tions for both particle physics and cosmology. On the
particle-physics side, neutrino masses in this range are
nearly degenerate, suggesting extensions of the standard
model involving a spontaneously broken family symmetry.
On the cosmological side, a combined neutrino mass of *

1 eV has a non-negligible effect on galaxy formation. This
means that it must be taken into account in precision tests
of inflation that measure the shape of the primordial power
spectrum by combining microwave background and large-
scale structure data.

Let us close by discussing the importance of the assump-
tions we have made and outlining some open problems for
future work. The purpose of this brief paper and the
prediction of Eq. (23) is merely to demonstrate that an-
thropic selection effects may be able to explain the neutrino
masses, and much work needs to be done to place this
hypothesis on a firmer footing.

A. Robustness to approximations
and measurement errors

To quantify the robustness of our results, Fig. 3 shows
how the probability distribution for m� changes when
various assumptions are altered.

First of all, the parameters A� and �M�0� that we used
have non-negligible measurement uncertainties. We see
that lowering �M�0� by 25% (by about twice its measure-
ment uncertainty) lowers the m�-prediction slightly.
Changing A� within its observational uncertainty has an
even weaker effect since, as we saw, it enters only loga-
rithmically. Altering the galactic scale M affects �M and
hence the results only weakly, because of the flatness of the
dimensionless power spectrum k3P�k� on galactic scales.

Second, our calculations involved various approxima-
tions. We used the Press-Schechter approximation with
density threshold �c � 1:69 as per Appendix A; lowering
this to account for postvirialization infall as discussed in
-5



FIG. 3 (color online). Same as Fig. 2, but showing the robust-
ness of the results to changing various assumptions. We have
changed the baseline calculation from Fig. 2 (heavy black curve)
by evaluating the galaxy density in the infinite future x! 1
(dotted red/ gray curve) and at redshift unity, x � 7=3�1 � z�3 �
7=24 (dot-long-dashed blue/ gray curve), decreasing the density
threshold to �c � 1:5 (short-dashed magenta/ gray curve), low-
ering the primordial fluctuation amplitude on the galactic scale
by 25% (solid blue/ gray curve), including the baryon correction
as per Eisenstein and Hu (long-dashed green curve) and addi-
tionally including the neutrino infall correction as per Eisenstein
and Hu (dot-dashed cyan/ gray curve).
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[7] is seen to raise the m�-prediction slightly. Our fluctua-
tion growth treatment of Eq. (5) is highly accurate in the
limit of small mass scales M and low baryon fraction
�b=�m � 1, agreeing with a CMBFAST [58] numerical
calculation to within a few percent. Figure 3 shows that
for the observed baryon fraction �b=�m � 0:15, switch-
ing to an exact treatment of baryon effects makes virtually
no difference. The cosmic expansion eventually slows
neutrinos enough for them to start clustering on galaxy
scales, and if this happens before dark energy domination,
then it reduces " [Eq. (13)]. Since a small fraction of the
neutrinos will be in the low tail of their velocity distribu-
tion, there is a slight infall correction even for the low
m�-range we have considered, and Fig. 3 shows that this
increases our m�-prediction slightly. Finally, we have used
the cutoff value of x � 7=3, which amounts to using the
reference class of observers in galaxies that have formed
by now. Figure 3 shows that if we ask instead what would
be observed from a random galaxy among all galaxies that
ever form (setting x � 1), then the m�-prediction in-
creases slightly. Conversely, it also shows that considering
only observers in galaxies that formed by redshift unity
decreases the m�-prediction. In conclusion, Fig. 3 shows
that although many of these assumptions make marginal
differences, none of them affect the qualitative conclu-
sions, since they all shift the predicted probability distri-
bution by much less than 1 standard deviation.
103523
B. Effects of other parameters

The standard models of cosmology and particle physics
involve of order 10 and 28 free parameters, respectively. In
order to apply anthropic constraints to them, it is crucial to
know both which of them can vary, and what the interde-
pendencies or correlations between them are. It is likely
that at least some of the cosmological parameters (the
baryon-to-photon ratio, say, via baryogenesis) are deter-
mined by particle-physics parameters in a way that we
have yet to understand, and many particle-physics parame-
ters may in turn be determined by a smaller number of
parameters or vacuum expectation values of some deeper
underlying theory. A proper analysis of anthropic predic-
tions should therefore be done in the multidimensional
space spanned by all fundamental variable parameters.

Such correlations between parameters must ultimately
be taken into account not only for computing the theoreti-
cal prior P � of Eq. (1), but also when computing the factor
nobs in this equation, which incorporates the observational
selection effect. The reason is that strong degeneracies are
present which can in many cases offset a detrimental
change in one parameter by changes in others. For in-
stance, suppressed galaxy formation caused by increased
m� can to some extent be compensated by decreasing ��,
by increasing the dark-matter-to-photon ratio or by in-
creasing the CMB fluctuation amplitude Q above the value
�10�5 that we observe [24,32]—if any of these three
parameters can vary, that is. In the present paper, we
have merely considered the simple case where all relevant
parameters except m� (i.e., the comoving densities of
baryons and dark matter, the physical density of dark
energy, and the fluctuation amplitude Q) are kept fixed at
their observed values, with no account for scatter due to
variation across an ensemble or from measurement uncer-
tainties. A more detailed study of this issue is given in [59]
and shows that our present results for f� are rather robust to
assumptions about ��.

This is closely related to the issue of how much infor-
mation one wishes to include in the factor nobs in Eq. (1)
[32,60]. One extreme is including only the existence of
observers, the other extreme is including all available
knowledge (even, say, experimental constraints on m�).
As one includes more such information, the anthropic
factor becomes progressively less important, and the cal-
culation acquires the flavor of a prediction rather than an
explanation. In the context of a multiparameter analysis,
the question is whether to use the measured values of other
parameters (in our case non-neutrino parameters) or mar-
ginalize over them. Our fixing non-neutrino parameters at
their observed values is therefore equivalent to factoring in
the information from the measurements of these
parameters.

Arguably the most interesting outstanding question is
whether the fundamental equations that govern our
Universe do or do not allow physical quantities such as
-6
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the neutrino masses to vary from place to place.
Calculations of anthropic selection effects may prove use-
ful for shedding light on this. In any case, for quantities that
do vary, the inclusion of anthropic selection effects such as
the one we have evaluated in this paper is clearly not
optional when calculating what the theory predicts that
we should observe.
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FIG. 4 (color online). The �CDM growth function G� is
shown as a function of cosmic time, first growing as the scale
factor a / x1=3, then asymptoting to 1:44 as dark energy halts the
fluctuation growth at x * 1. The middle panel shows the exact
result of Eq. (A1) (solid curve), our approximation given by
Eq. (7) (green thick dashed curve), the Carroll, Press and Turner
approximation [63] (red dotted curve) and the power law ap-
proximation G� � �0:21

m [66] (blue long-dashed curve). In the
bottom panel, the various approximations have been divided by
the exact result, showing that Eq. (5) is accurate to better than
1.5% for all x. The top panel shows the collapse density
threshold �c�x� dropping from 1:6865 early on to 1:629 78 in
the infinite future.
APPENDIX A: GROWTH OF LINEAR
PERTURBATIONS

In this appendix, we derive and test the approximation
given by Eq. (5) for how small-scale matter fluctuations
grow in the presence of radiation, cold dark matter and
neutrinos. There are two reasons why this simple approxi-
mation complements an exact ‘‘black box’’ calculation
with CMBFAST [58] or a nearly exact approximation with
the Eisenstein and Hu fitting software [61]. First, for a
qualitative argument like the one we make in this paper, it
is desirable to have a simple intuitive understanding of the
underlying physics that includes only those complications
that really matter for the argument. Second, neither
CMBFAST nor the Eisenstein and Hu package were designed
to be valid for extreme cosmological parameters such as
those corresponding to the infinite future, and indeed break
down in this limit.

1. The �CDM case

For a flat Universe with only pressureless matter (dark
and baryonic) and a cosmological constant, the growth of
density fluctuations is given by � / G��x�, where [7,62]

G��x� �
5

6

������������
1 �

1

x

s Z x

0

dy

y1=6�1 � y�3=2
: (A1)

We find that our G��x� fit defined by Eq. (7) is accurate to
better than 1.5% for all x and becomes exact both in the
limits x! 0 (when G� ! x1=3) and x! 1 (when G� !
G1). Figure 4 shows that this approximation greatly im-
proves on the standard Carroll, Press and Turner [63] and
power law fits for our present purposes, since these were
designed to be accurate only in the past and present and
have the wrong limiting behavior in the future as x! 1,
�m ! 0 and �� ! 1. For flat models, we have �m �
1=�1 � x�, �� � x=�1 � x� and x � ���1

m � 1��1, so in
103523
terms of the standard linear growth factor D � G�=x1=3,
the three approximations shown in Fig. 4 are

D �

�
1 �

�
1 � �m

�mG
3
1

�
"
�
�1=3"

; (A2)

D �
5

2
�m

�
�4=7

m � �� �

�
1 �

�m

2

��
1 �

��

70

��
�1

�
350�m

140�4=7
m � �209 � �m��m � 2

(A3)

and

D � ��0:21
m ; (A4)

respectively.

2. Including radiation

Early on, dark energy was negligible but radiation was
gravitationally important, causing density fluctuations to
grow as � / G"�x�, where [64]

G"�x� � 1 �
3

2

�
x
xeq

�
1=3
: (A5)
-7



MAX TEGMARK, ALEXANDER VILENKIN, AND LEVON POGOSIAN PHYSICAL REVIEW D 71, 103523 (2005)
Since bothG"�x� andG��x� accurately describe the growth
during the matter-dominated epoch xeq � x� 1, with
G" / G� / x1=3 during this period, we can combine
them to obtain the approximation

G�x� � 1 �
3

2
A�G��x�; (A6)

which is accurate for all x. Here the constant A� is defined
by Eq. (10). In essence, fluctuations grow as � / a / x1=3

between matter domination (x � xeq) and dark energy

domination (x � 1), giving a net growth of A� � x�1=3
eq .

Equation (A6) shows that they grow by an extra factor of
1.5 by starting slightly before matter domination and by an
extra factor G��1� � 1:44 by continuing to grow slightly
after dark energy domination.

3. Including neutrinos

As shown by [35], the result � / a is generalized to � /
ap when a fraction of the matter is clustering inert and
remains spatially uniform. The new exponent p < 1 is
given by Eq. (12) where, in the case that we are focusing
on here, the inert fraction is the neutrino fraction f�.3 This
motivates our approximation in Eq. (5), which simply
3The result is more general [61,65], and applies also when the
inert density components correspond to dark energy or spatial
curvature. If we let �m denote the density fraction that is not
inert (that clusters), then the approximation to Eq. (12) given by
p � �3=5

m is quite accurate, being exact both for �m � 0 and to
first order in �1 � �m� for all 1 � �m � 1. This is the familiar
result that d ln�=d lna � �0:6

m .

103523
generalizes Eq. (A5) by introducing the neutrino-
dependent exponent p�f��.

We have tested this approximation by comparing Eq. (5)
with exact results using the CMBFAST software [58] and the
semianalytic approximation of Eisenstein and Hu [61],
finding excellent agreement (to within a few percent)
with both in the small-scale limit for x� 1 and negligible
baryon fraction. In the distant future limit x! 1, both
CMBFAST and the Eisenstein and Hu software break down,
since they were not designed to be accurate for such
unusual parameter values (�� � 1, etc.). For the parame-
ter ranges of interest to us, there are small corrections for
the effects of both baryons and neutrino infall, which we
quantified in Fig. 3 in the discussion section.

4. The collapse density threshold �c

In the top panel of Fig. 4, we have numerically computed
the collapse density threshold �c as a function of cosmic
time x, defined as the linear perturbation theory overden-
sity that a top-hat fluctuation would have had at the time
when it collapses. We see that it varies only very weakly
with time (note the expanded vertical scale in the figure),
dropping from the familiar cold dark matter value �c�0� �
�3=20��12��2=3 � 1:686 47 early on to the limit �c�1� �

�9=5�2�2=3G1 � 1:629 78 [4] in the infinite future. This
calculation neglects the effect of neutrinos. Since their
effect is to contribute a gravitationally inert component
just as dark energy, we will ignore their effect on �c�x�,
assuming that they merely cause a slight horizontal stretch-
ing of the curve (which is seen to be almost constant
anyway).
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