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Can superhorizon perturbations drive the acceleration of the Universe?
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It has recently been suggested that the acceleration of the Universe can be explained as the backreaction
effect of superhorizon perturbations using second order perturbation theory. If this mechanism is correct, it
should also apply to a hypothetical, gedanken universe in which the subhorizon perturbations are absent.
In such a gedanken universe it is possible to compute the deceleration parameter q0 measured by
comoving observers using local covariant Taylor expansions rather than using second order perturbation
theory. The result indicates that second order corrections to q0 are present, but shows that if q0 is negative
then its magnitude is constrained to be less than or of the order of the square of the peculiar velocity on
Hubble scales today. We argue that, since this quantity is constrained by observations to be small
compared to unity, superhorizon perturbations cannot be responsible for the acceleration of the Universe.
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1Note that this initial data does not itself contain superhorizon
The observed acceleration of the expansion of the
Universe [1,2] is a profound mystery. It is usually ex-
plained by positing a new form of matter with negative
pressure, so-called dark energy [3], or by a modification of
general relativity at large distance scales [4]. Recently it
has been suggested that the acceleration is instead driven
by the backreaction effect of inflation-generated superhor-
izon perturbations via second order perturbation theory
[5,6]. The backreaction of perturbations had earlier been
studied in other contexts by Brandenberger and collabora-
tors [7] and others [8].

The basic idea is the following. As is well known, scalar
perturbation modes whose wavelengths today are smaller
than �� 8 Mpc have entered the nonlinear regime and are
responsible for galaxies and galaxy clusters, while longer
wavelength modes and, in particular, superhorizon modes
(� * 3 Gpc) are still in the linear regime today. That is, the
fractional density perturbation due to these modes is small
compared to unity, so each individual mode evolves with
high accuracy according to the linearized equations.
Nevertheless the net effect of the backreaction from all
the superhorizon modes can still be significant. If we
denote by " � ��=�� 10�4 the fractional density pertur-
bation on Hubble scales today, then one naively expects
second order corrections to be of order "2 � 10�8 which is
negligible. However, a more refined estimate for some
particular second order effects obtained from integrating
over all the superhorizon modes [6] gives the scaling
"2F�kmin; kmax�, where kmin and kmax are the minimum
and maximum comoving wave numbers of the scalar per-
turbation spectrum integrated over. Here F is a function for
which F ! 1 as kmin ! 0. Thus, if the spectrum extends
to sufficiently large wavelengths (as would be generated by
a sufficiently long period of inflation), second order effects
can become significant. In particular, Refs. [5,6] argue that
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such effects can give rise to an effective cosmological
constant and drive the present acceleration of the Universe.

A potential difficulty with this idea is that it appears to
be in conflict with the locality and causality of general
relativity. Specifically, consider the finite spacelike hyper-
surface V given by the interior of the intersection of our
past light cone with the spacelike hypersurface of some
fixed redshift z � z0. We will take z0 � 5 for example so
that the observed supernova used as evidence of the uni-
verse’s acceleration are to the future of V . Then, the initial
data within V are sufficient to determine all the observa-
tions we make; in particular, the observable effect of super-
horizon perturbations must be encoded in this initial data.1

In addition observations strongly constrain this initial data:
we know that the geometry of V on large scales can be
accurately modeled as a Friedman-Robertson-Walker
(FRW) background plus fractional perturbations of order
"� 10�4. Thus the issue is whether or not the space of
initial data for the gravitational and matter fields on V
contains enough freedom, given the observational con-
straints, to mimic the effects of dark energy when no
such dark energy is present in the matter stress energy
tensor.

In this paper we shall argue that the freedom is insuffi-
cient. More precisely, we focus on the deceleration pa-
rameter q0 � �a�t� �a�t�= _a�t�2, where a�t� is the scale
factor, whose measured value is q0 ��0:5. We will argue
that (i) the local spatial curvature within V is uncon-
strained and can be altered by second order effects, giving
rise to changes in q0 that could in principle be of order
unity. However this effect cannot change a positive value of
q0 to a negative value of q0. (ii) Nonisotropy and non-
modes: V is a finite spherical region whose comoving radius is
�1:8H�1

0 for z0 � 5. So for modes which are superhorizon
today, V extends across only a small fraction of the mode
wavelength at z � z0.
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homogeneity of the initial data in V on large scales can
give rise to negative values of q0, as suggested by Ref. [9].
However, the magnitude of this effect is constrained to be
of the order of the square of the velocity perturbation on
Hubble scales, which is constrained by observations of low
order multipoles of the cosmic microwave background to
be small compared to unity.

Method of analysis.—If the superhorizon perturbation
mechanism for driving acceleration is correct, it should
apply not just to our Universe but also to other hypothetical
universes. For ease of analysis, we will analyze a fictitious,
gedanken universe which differs from ours only in that the
perturbation spectrum at early times is modified to sup-
press the perturbations which are subhorizon today. In this
universe the subhorizon perturbations are negligible today,
while the superhorizon perturbations are taken to be the
same as those used in Refs. [5,6]. A demonstration that the
superhorizon perturbation mechanism does not work in
this context is fairly strong evidence that it cannot work
in our Universe. The only possible loophole is the possi-
bility that subhorizon perturbations somehow play an im-
portant role, which does not seem to be indicated by the
analyses of Refs. [5,6].2

In this gedanken universe, the length and time scales
over which the gravitational and matter fields are varying
are all of order H�1

0 or larger. This allows us to perform an
analysis in a local region using Taylor series expansions of
the Einstein and hydrodynamic equations, which is much
simpler than second order perturbation theory about a
FRW background.

We model the matter source by the fluid stress energy
tensor T�� � ��� p�u�u� � pg��, where �, p, u� and
g�� are the density, pressure, 4-velocity and metric.
Consider a comoving observer at an event P . Such an
observer can measure the redshift z and luminosity dis-
tance L of nearby events, and thus measure the redshift-
luminosity distance relation L � L�z; �; ’�: Here � and ’
are spherical polar coordinates in the observer’s local
Lorentz frame. The dependence on these angles arises
since we are allowing general local solutions of the
Einstein equations; there is no requirement of isotropy.
For small z this relation can be expanded as [6]

L � A��;’�z� B��;’�z2 �O�z3�: (1)

We define the Hubble constant H0 and deceleration pa-
rameter q0 as measured by the observer by comparison
with the conventional FRW relation L � H�1

0 z�
H�1

0 �1� q0�z2=2�O�z3�, as in Ref. [6]:

H0 	 hA�1i; q0 	 1� 2H�2
0 hA�3Bi: (2)
2In addition momentum conservation k 
 k1 � k2 rules out
second order corrections to low spatial frequency observables
(k & H0) from interactions between very subhorizon modes
k1 � H0 and superhorizon modes k2 & H0.
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Here the angular brackets denote an average over the
angles �;’.

The particular prescription (2) for angular averaging is
chosen for later convenience. Note that there is no unique
prescription; one could, for example, use the definitions
H�1

0 � hAi and q0 � 1� 2H0hBi. Observations that mea-
sure H0 and q0 typically assume isotropy and therefore
effectively angle average at some stage of the analysis, but
the precise nature of the averaging is not usually discussed.
We will argue below however that the effect of this ambi-
guity on the values of H0 and q0 is small.

Using local Taylor series expansions we can compute H0

and q0 in terms of the density, 4-velocity and velocity
gradients of the cosmological fluid evaluated at the ob-
server’s location P . We decompose the gradient in the
usual way as

r�u� �
1

3
��g�� � u�u�� � ��� �!�� � u�a�; (3)

where �, ���, !�� and a� are the expansion, shear,
vorticity and 4-acceleration. For H0 we find the well-
known result

H0 �
1

3
�; (4)

the locally measured Hubble constant is just the expansion
of the fluid. For q0 we obtain

q0 �
4�

3H2
0

��� 3p�

�
1

3H2
0

�
a�a

� �
7

5
����

�� �!��!
�� � 2r�a

�
�
:

(5)

Now to a good approximation in the present epoch we have
p � 0 (assuming cold dark matter and baryons with no
dark energy), which implies from r�T�� � 0 that a� � 0.
This yields

q0 �
4�

3H2
0

��
1

3H2
0

�
7

5
����

�� �!��!
��

�
: (6)

Discussion.—Consider first the first term in Eq. (6). This
reduces to the conventional value q0 � 1=2 for a flat,
matter dominated Universe when H2

0 � 8��=3. However
in the present context the relation H2

0 � 8��=3 need not
be satisfied; H0 is instead given by Eq. (4). The deviation of
this first term from 1=2 is related to the fact that the local
analysis allows spatial curvature. If we define an effective
local �k by �k � 1� 8��=�3H2

0�, then we obtain for the
first term q0 � �1��k�=2, the conventional answer for a
Universe with matter and spatial curvature.

The key point about the first term in (6) is that it is
positive. Hence this term cannot drive an acceleration.

Consider next the second and third terms in Eq. (6), the
squared shear and squared vorticity. These quantities have
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an unambiguous operational meaning; they can be mea-
sured by the observer in her local Lorentz frame. We can
estimate the sizes of these terms as �ab�ab; !ab!ab �
��v�2=l2, where �v is the typical scale of peculiar velocity
(deviation from uniform Hubble flow), and l is the length
scale over which the velocity varies. In the present context
we have l * H0, by our assumption that subhorizon modes
are negligible, which implies that the contribution from the
second and third terms in (6) to q0 is of order �q0 �
��v�2 � "� 10�4. We conclude that it is impossible in
this model to achieve the measured value q0 ��0:5 of the
deceleration parameter.

Note that the key difference between our analysis and
that of Refs. [5,6] is one of interpretation. References [5,6]
predict changes to q0 that are quadratic in the first order
perturbation variables, in agreement with our Eq. (6). The
new information provided by our analysis is that the qua-
dratic terms are in fact locally measurable and represent
degrees of freedom of the cosmological fluid rather than of
the gravitational field. In the argument above, �v charac-
terizes the total deviation of the fluid velocity from an
FRW background, including both first and second order
perturbations. The contribution of the quadratic terms in
Eq. (6) to q0 are constrained to be small since observations
constrain the total velocity perturbation �v. Thus, while an
order-unity renormalization of q0 from second order ef-
fects is possible in principle, our analysis implies that such
a renormalization would also require second order contri-
butions to the fluid velocity that violate observational
bounds.

Details of derivation.—We use the local covariant ex-
pansion formalism based on bitensors [10]. We denote by
x� the coordinates of the event P where the observer is
making observations, and by x�

0
the coordinates of an

event Q in the observer’s vicinity. We shall mostly be
interested in the case where Q is on the past light cone
of P . We denote by � an affine parameter along the
geodesic x� � z���� that joins Q and P , chosen so that
� � 0 at Q and � � 1 at P . We define Synge’s world
function (the squared geodesic interval) via

��x; x0� �
1

2

Z 1

0
d�g���z�����

dz�

d�
���

dz�

d�
���: (7)

Then �;��x; x0� � r���x; x0� is the tangent to the geodesic
at P . We define s�x; x0� � ��;��x; x0�u��x�; we will use s
as our expansion parameter. We define the vector k� by

�;��x; x
0� � s�x; x0�k��x�; (8)

this is a future directed tangent to the geodesic which is
normalized so that k�u� � �1 at P . We define g��0

�x; x0�
to be the linear operator of parallel transport from the
tangent space at Q to the tangent space at P , and we
define �u��x; x0� � g��

0
�x; x0�u�0 �x0�. This quantity can be

expanded in a local covariant Taylor series as
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�u ��x; x0� � u��x� � u���x��;��x; x
0��;��x; x

0�

�
1

2
u��#�x��;��x; x

0��;��x; x
0��;#�x; x

0�

�O�s4�: (9)

Using Eq. (B14) of Ref. [11] we can evaluate the coeffi-
cients to give u���x� � �r��u���x� and u��#�x� �
r��r�u#��x�.

The measured redshift of the event Q is given by the
ratio of the inner products ~k � ~u evaluated at Q and P .
Using the definition of �u� this can be written as

1� z �
�u�k�
u�k�

: (10)

Using the expansion (9) and the definition (8) this can be
written as

z � u��k�k�s�
1

2
u��#k�k�k#s

2 �O�s3�: (11)

Next we evaluate the luminosity distance L. This is
defined so that 4�L2 is the ratio between an energy
emitted per unit time isotropically at Q and an energy
per unit time per unit proper area received at P :

dE
dt

�Q� � 4�L2 dE

dtd2A
�P �: (12)

These quantities can be evaluated using the geometric
optics approximation to the scalar (or Maxwell) wave
equation [6]. The stress tensor for the radiation field is
T�� � A2l�l�, where l� is defined as being the set of null
vectors at Q normalized according to l�0u�

0
� �1, and

then extended along Q0s future light cone using the geo-
desic equation. We define the affine parameter �� by ~l �
d=d ��. The normalization conditions for the vectors ~k and ~l
imply that ~l � ~k=�1� z�, and hence the affine parameters s
and �� are related by s � ��=�1� z�. The amplitude A
satisfies the differential equation

d�lnA�=d �� � � ��=2; (13)

where �� � r�l� is the expansion. We choose the normal-
ization of A so that A 
 1= �� for �� ! 0 near Q.

The energy flux at P can now be computed as
dE=�dtd2A� � T��u�u� � A2�k�u��2 � A2�1� z��2.
The luminosity at Q can be evaluated by integrating the
energy flux over a small sphere about Q of radius ��; this
gives dE=dt � A2�l�0u�

0
�2�4� ��2� � 4�. Combining these

results yields L � �1� z�=A. Using the relation s �
��=�1� z� we can rewrite this as

L � �1� z�2s��x; x0��1=2; (14)

where we have defined � � A2 ��2. This quantity satisfies
� ! 1 as Q ! P and also from Eq. (13) satisfies the
differential equation d ln�=�d ��� � 2= ��� ��. By compar-
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ÉANNA É. FLANAGAN PHYSICAL REVIEW D 71, 103521 (2005)
ing with Eq. (32) of Ref. [12] we see that ��x; x0� is the van
Vleck determinant [10,12]. Using the expansion ��x; x0� �
1�O�s2� given in Ref. [12] and combining Eqs. (11) and
(14) gives a relation between redshift z and luminosity
distance L of the form (1), where the coefficients are

A��; ’� �
1

�r�u��k�k�
; (15)

B��; ’� �
2

�r�u��k�k�
�

�r�r�u#�k�k�k#
2��r�u��k�k��

3 : (16)

We now evaluate the averages over angles. Using the
definition H0 � hA�1i together with hk�k�i � �g�� �

4u�u��=3 yields the result (4), using �r�u��u�u� �

a�u� � 0. Note that if we use the alternative angle-
averaging definition H�1

0 � hAi we instead obtain H�1
0 �

h��=3� �ijninj � aini��1i, where k� � �1; ni� in the
local comoving frame at P . Evaluating this average treat-
ing the shear and acceleration as small compared to the
expansion yields H0 � �=3� 2�ij�ij=�5�� � aiai=��

O��4=�3� �O��aiai�2=�3�. Thus the different averaging
prescriptions give different answers. However, the frac-
tional differences are of order �2=�2, which we have
argued above is of order " and is small.

We now evaluate the angular average of the quantity
A�3B. We write this as hA�3Bi � I=2� J, where I 	
h�r�r�u#�k�k�k#i and J 	 2h�r�u�k�k��

2i. For J
we obtain J � 2h��=3� �ijninj � ainj�2i � 2�2=9�
4�ij�ij=15� 2aiai=3. Using the formula hk�k�k#i �
�g��u# � g�#u� � g�#u��=3� 2u�u�u#, we obtain for
I the formula

3I � u#r
#r�u

� � u#r�r
#u� � u�r#r

#u�

� 6u�u�u#r�r�u#: (17)

We can rewrite the first term by commuting the covariant
derivatives, which gives u#r�r

#u� � R��u
�u� �

r�a
� � �r�u#�r

#u� � R��u
�u�. Using the decomposi-
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tion (3), this term can be written as r#a
# � �2=3�

����
�� �!��!

�� � R��u
�u�. Similarly the second

term in Eq. (17) evaluates to r#a# � �2=3� ������ �

!��!��. By differentiating twice the identity u�u� �

�1, the third term can be written as ��r�u��r�u�, which
using the decomposition (3) evaluates to ��2=3�
����

�� �!��!
�� � a�a

�. Finally a similar manipula-
tion of the fourth term shows that it reduces to �6a�a�.
Combining these results and using the Einstein equation to
replace R��u

�u� with 4���� 3p� gives

I �
2

3
r�a

� �
1

3
�2 � ����

�� �
1

3
!��!

��

�
5

3
a�a� �

4�
3

��� 3p�: (18)

Now combining the results for I and J and substituting into
the formula (2) for q0 gives the result (5).

Finally we note that using the alternative angular aver-
aging definition q0 � 1� 2H0hBi would not change our
conclusions. This average can be evaluated by expanding
the denominators in Eq. (16) treating the last three terms
in Eq. (3) as small compared to the expansion term,
using the identity hk�k�k#k�k"i � 16u�u�u#u�u"=3�
16g���u#u�u"�=3� g���g#�u"�, and performing manipu-
lations similar to those used above. The modifications to
Eq. (6) that result are: (i) changes to the numerical
coefficients of the shear squared and vorticity squared
terms; (ii) the addition of a term proportional to
H�3

0 u�r����#��#� which is of the same order as the
shear squared term; and (iii) the addition of terms that
are smaller than the terms retained by one or more powers

of the small parameters
������������������
����

��
q

=� or
�������������������
!��!

��
q

=�.
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