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One of the best motivated hypotheses in cosmology states that most of the matter in the universe is in
the form of weakly-interacting massive particles that decoupled early in the history of the universe and
cooled adiabatically to an extremely low temperature. Nevertheless, the finite temperature and horizon
scales at which these particles decoupled imprint generic signatures on their small-scale density
fluctuations. We show that the previously recognized cut-off in the fluctuation power-spectrum due to
free-streaming of particles at the thermal speed of decoupling, is supplemented by acoustic oscillations
owing to the initial coupling between the cold dark matter (CDM) and the radiation field. The power-
spectrum oscillations appear on the scale of the horizon at kinematic decoupling which corresponds to a
mass scale of �10�4�Td=10 MeV��3M� for a CDM decoupling temperature Td. The suppression of the
power-spectrum on smaller scales by the acoustic oscillations is physically independent from the free-
streaming effect, although the two cut-off scales are coincidentally comparable for Td � 10 MeV and a
particle mass of M� 100 GeV. The initial conditions for recent numerical simulations of the earliest and
smallest objects to have formed in the universe, need to be modified accordingly. The smallest dark-matter
clumps may be detectable through �-ray production from particle annihilation, through fluctuations in the
event rate of direct detection experiments, or through their tidal gravitational effect on wide orbits of
objects near the outer edge of the solar system.
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IntroductionA broad range of observational data involv-
ing the dynamics of galaxies, the growth of large-scale
structure, and the dynamics and nucleosynthesis of the
universe as a whole, indicate the existence of dark matter
with a mean cosmic mass density that is �5 times larger
than the density of the baryonic matter [1,2]. The data is
consistent with a dark matter composed of weakly-
interacting, massive particles, that decoupled early and
adiabatically cooled to an extremely low temperature by
the present time [1]. The Cold Dark Matter (CDM) has not
been observed directly as of yet, although laboratory
searches for particles from the dark halo of our own
Milky-Way galaxy, have been able to restrict the allowed
parameter space for these particles. Since an alternative
more-radical interpretation of the dark-matter phenome-
nology involves a modification of gravity [3], it is of prime
importance to find direct fingerprints of the CDM particles.
One such fingerprint involves the small-scale structure in
the universe [4], on which we focus in this paper.

Perhaps the most popular candidate for the CDM parti-
cle is a Weakly Interacting Massive Particle (WIMP). The
lightest supersymmetric particle (LSP) could be a WIMP
(for a review see [1]). The CDM particle mass depends on
free parameters in the particle physics model but typical
values cover a range around M� 100 GeV (up to values
close to a TeV). In many cases the LSP hypothesis will be
tested at the Large Hadron Collider (e.g. [5]) or in direct
detection experiments (e.g. [6]).

The properties of the CDM particles affect their re-
sponse to the small-scale primordial inhomogeneities pro-
duced during cosmic inflation. The particle cross-section
05=71(10)=103520(7)$23.00 103520
for scattering off standard model fermions sets the epoch of
their thermal and kinematic decoupling from the cosmic
plasma (which is significantly later than the time when
their abundance freezes out at a temperature T �M).
Thermal decoupling is defined as the time when the tem-
perature of the CDM stops following that of the cosmic
plasma while kinematic decoupling is defined as the time
when the bulk motion of the two species start to differ. For
CDM the epochs of thermal and kinetic decoupling coin-
cide. They occur when the time it takes for collisions to
change the momentum of the CDM particles equals the
Hubble time. The particle mass determines the thermal
spread in the speeds of CDM particles, which tends to
smooth out fluctuations on very small scales due to the
free-streaming of particles after kinematic decoupling
[4,7]. Viscosity has a similar effect before the CDM fluid
decouples from the cosmic radiation fluid [8]. An impor-
tant effect that has been previously ignored involves the
memory the CDM fluid has of the acoustic oscillations of
the cosmic radiation fluid out of which it decoupled. Here
we consider the imprint of these acoustic oscillations on
the small-scale power spectrum of density fluctuations in
the universe. Other imprints of acoustic oscillations on
much larger scales were identified recently in maps of
the Cosmic Microwave Background (CMB) [2], and the
distribution of nearby galaxies [9].

Throughout this paper, we adopt the standard set of
cosmological parameters [2] for a universe dominated by
cold dark matter and a cosmological constant (�-CDM).

FormalismKinematic decoupling of CDM occurs during
the radiation-dominated era. For example, if the CDM is
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made of neutralinos with a particle mass of �100 GeV,
then kinematic decoupling occurs at a cosmic temperature
of Td � 10 MeV [8,10]. As long as Td � 100 MeV, we
may ignore the imprint of the QCD phase transition on the
CDM power spectrum [11]. Over a short period of time
during this transition, the sound speed of the plasma van-
ishes, resulting in a significant growth for perturbations
with periods shorter than the length of time over which the
sound speed vanishes. The transition occurs when the
temperature of the cosmic plasma is �100 � 200 MeV
and lasts for a small fraction of the Hubble time. As a
result, the induced modifications are on scales smaller than
those we are considering here and the imprint of the QCD
phase transition is washed out by the effects we calculate.

At early times the contribution of the dark matter to the
energy density is negligible. Only at relatively late times
when the cosmic temperature drops to values as low as
�1 eV, matter and radiation have comparable energy den-
sities. As a result, the dynamics of the plasma at earlier
times is virtually unaffected by the presence of the dark-
matter particles. In this limit, the dynamics of the radiation
determines the gravitational potential and the dark matter
just responds to that potential. We will use this simplifica-
tion to obtain analytic estimates for the behavior of the
dark-matter transfer function.

The primordial inflationary fluctuations lead to acoustic
modes in the radiation fluid during this era. The interaction
rate of the particles in the plasma is so high that we can
consider the plasma as a perfect fluid down to a comoving
scale,

�f � �d=
����
N

p
; N � n�td; (1)

where �d �
Rtd

0 dt=a�t� is the conformal time (i.e. the
comoving size of the horizon) at the time of CDM decou-
pling, td; � is the scattering cross section and n is the
relevant particle density. (Throughout the paper we set the
speed of light and Planck’s constant to unity.) The damping
scale depends on the species being considered and its
contribution to the energy density, and is the largest for
neutrinos which are only coupled through weak interac-
tions. In that case N � �T=T�

d �
3 where T�

d � 1 MeV is the
temperature of neutrino decoupling. At the time of CDM
decoupling N �M=Td � 104 for the rest of the plasma,
where M is the mass of the CDM particle. In this paper we
will consider modes of wavelength larger than �f, and so
we neglect the effect of radiation diffusion damping and
treat the plasma (without the CDM) as a perfect fluid.

The equations of motion for a perfect fluid during the
radiation era can be solved analytically. We will use that
solution here, following the notation of Ref. [12]. As usual
we Fourier decompose fluctuations and study the behavior
of each Fourier component separately. For a mode of
comoving wavenumber k in Newtonian gauge, the gravi-
tational potential fluctuations are given by:
103520
� � 3�p

�
sin�!�� �!� cos�!��

�!��3

�
; (2)

where ! � k=
���
3

p
is the frequency of a mode and �p is its

primordial amplitude in the limit � ! 0. In this paper we
use conformal time � �

R
dt=a�t� with a�t� / t1=2 during

the radiation-dominated era. The monopole �0 and dipole
�1 of the photon distribution can be written in terms of the
gravitational potential as:

�0 � �
�
x2

6
�

1

2

�
�
x
2

�0�1 � �
x2

6

�
�0 �

1

x
�
�

(3)

where x  k� and a prime denotes a derivative with re-
spect to x.

The solutions in Eqs. (2) and (3) assume that both the
sound speed and the number of relativistic degrees of
freedom are constant over time. As a result of the QCD
phase transition and of various particles becoming non-
relativistic, both of these assumptions are not strictly cor-
rect. The vanishing sound speed during the QCD phase
transition provides the most dramatic effect, but its imprint
is on scales smaller than the ones we consider here because
the transition occurs at a significantly higher temperature
and only lasts for a fraction of the Hubble time [11].

Before the dark matter decouples kinematically we will
treat it as a fluid which can exchange momentum with the
plasma through particle collisions. At early times, the
CDM fluid follows the motion of the plasma and is in-
volved in its acoustic oscillations. The continuity and
momentum equations for the CDM can be written as:

_� c � �c � 3 _� _�c �
_a
a
�c

� k2c2
s�c � k2�c � k2� � ��1

c ��1 � �c� (4)

where a dot denotes an �-derivative, �c is the dark-matter
density perturbation, �c is the divergence of the dark-
matter velocity field and �c denotes the anisotropic stress.
In writing these equations we have followed Ref. [13]. The
term ��1

c ��1 � �c� encodes the transfer of momentun
between the radiation and CDM fluids and ��1

c provides
the collisional rate of momentum transfer,

��1
c � n�

T
M
a; (5)

with n being the number density of particles with which the
dark matter is interacting, ��T� the average cross-section
for interaction and M the mass of the dark-matter particle.
The relevant scattering partners are the standard model
leptons which have thermal abundances. For detailed ex-
pressions of the cross section in the case of supersymmetric
(SUSY) dark matter, see Refs. [7,10]. For our purpose, it is
sufficient to specify the typical size of the cross section and
its scaling with cosmic time,
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� �
T2

M4
�
; (6)

where the coupling mass M� is of the order of the weak-
interaction scale ( � 100 GeV) for SUSY dark matter. This
equation should be taken as the definition of M�, as it
encodes all the uncertainties in the details of the particle
physics model into a single parameter. The temperature
dependance of the averaged cross section is a result of the
available phase space. Our results are quite insensitive to
the details other than through the decoupling time.
Equating ��1

c =a to the Hubble expansion rate gives the
temperature of kinematic decoupling:

Td �
�
M4

�M
Mpl

�
1=4

� 10 MeV
�

M�

10 0GeV

��
M

100 GeV

�
1=4
:

(7)

The term k2c2
s�c in Eq. (4) results from the pressure

gradient force and cs is the dark-matter sound speed. In the
tight coupling limit, �c � H�1 we find that c2

s � fcT=M
and that the shear term is k2�c � fvc2

s�c�c. Here fv and fc
are constant factors of order unity. We will find that both
these terms make a small difference on the scales of
interest, so their precise value is unimportant.

By combining both equations in (4) into a single equa-
tion for �c we get

�00
c �

1

x
�1 � Fv�x���

0
c � c2

s�x��c

� S�x� � 3Fv�x��0 �
x4
d

x5
�3�00 � �0

c�; (8)

where xd � k�d and �d denotes the time of kinematic
decoupling which can be expressed in terms of the decou-
pling temperature as,

�d � 2td�1 � zd� �
Mpl

T0Td
� 10pc

�
Td

10 MeV

�
�1

/ M�1
� M�1=4; (9)

with T0 � 2:7 K being the present-day CMB temperature
and zd being the redshift at kinematic decoupling. We have
also introduced the source function,

S�x�  �3�00 � � �
3

x
�0: (10)

For x � xd, the dark-matter sound speed is given by

c2
s�x� � c2

s�xd�
xd
x
; (11)

where c2
s�xd� is the dark-matter sound speed at kinematic

decoupling (in units of the speed of light),

cs�xd� � 10�2f1=2
c

�
Td

10 MeV

�
1=2

�
M

100 GeV

�
�1=2

: (12)

In writing (11) we have assumed that prior to decoupling
103520
the temperature of the dark matter follows that of the
plasma. For the viscosity term we have,

Fv�x� � fvc
2
s�xd�x

2
d

�
xd
x

�
5
: (13)

Free streaming after kinematic decouplingIn the limit of
the collision rate being much slower than the Hubble
expansion, the CDM is decoupled and the evolution of its
perturbations is obtained by solving a Boltzman equation:

@f
@�

�
dxi
d�

@f
@xi

�
dqi
d�

@f
@qi

� 0; (14)

where f� ~x; ~q; �� is the distribution function which depends
on time, position and comoving momentum ~q. The comov-
ing momentum 3-components are dxi=d� � qi=a. We use
the Boltzman equation to find the evolution of modes that
are well inside the horizon with x � 1. In the radiation era,
the gravitational potential decays after horizon crossing
(see Eq. (2)). In this limit the comoving momentum re-
mains constant, dqi=d� � 0 and the Boltzman equation
becomes,

@f
@�

�
qi
a

@f
@xi

� 0: (15)

We consider a single Fourier mode and write f as,

f� ~x; ~q; �� � f0�q��1 � �F� ~q; ��e
i ~k� ~x�; (16)

where f0�q� is the unperturbed distribution,

f0�q� � nCDM

�
M

2%TCDM

�
3=2

exp
�
�

1

2

Mq2

TCDM

�
(17)

where nCDM and TCDM are the present-day density and
temperature of the dark matter.

Our approach is to solve the Boltzman equation with
initial conditions given by the fluid solution at a time ��

(which will depend on k). The simplified Boltzman equa-
tion can be easily solved to give �F� ~q; �� as a function of
the initial conditions �F� ~q; ���,

�F� ~q; �� � �F� ~q; ��� exp
�
�i ~q � ~k

��

a����
ln��=���

�
:

(18)

The CDM overdensity �c can then be expressed in terms
of the perturbation in the distribution function as,

�c��� �
1

nCDM

Z
d3qf0�q��F� ~q; ��: (19)

We can use (18) to obtain the evolution of �c in terms of its
value at ��,

�c��� � exp
�
�

1

2

k2

k2
f

ln2

�
�
��

��

�

�
�j��

�
d�
d�

j��
�� ln

�
�
��

��
; (20)
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FIG. 1 (color online). The normalized amplitude of CDM
fluctuations �=�P for a variety of modes with comoving wave-
numbers log�k�d� � �0; 1=3; 2=3; 1; 4=3; 5=3; 2� as a function of
x  k�, where � �

R
t
0 dt=a�t� is the conformal time coordinate.

The dashed line shows the temperature monopole 3�0 and the
dotted curve shows the evolution of a mode that is uncoupled to
the cosmic plasma.
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where k�2
f �

����������������
�Td=M�

p
�d. The exponential term is respon-

sible for the damping of perturbations as a result of free
streaming and the dispersion of the CDM particles after
they decouple from the plasma. The above expression is
only valid during the radiation era. The free streaming
scale is simply given by

R
dt�v=a� /

R
dta�2 which grows

logarithmically during the radiation era as in Eq. (20) but
stops growing in the matter era when a / t2=3.

Equation (20) can be used to show that even during the
free-streaming epoch, �c satisfies Eq. (8) but with a modi-
fied sound speed and viscous term. For x � xd one should
use,

c2
s�x� � c2

s�xd�
�
xd
x

�
2
�
1 � x2

dc
2
s�xd�ln2

�
x
xd

��
Fv�x�

� 2c2
s�xd�x2

d ln
�
xd
x

�
(21)

The differences between the above scalings and those
during the tight coupling regime are a result of the fact
that the dark-matter temperature stops following the
plasma temperature but rather scales as a�2 after thermal
decoupling, which coincides with the kinematic decou-
pling. We ignore the effects of heat transfer during the
fluid stage of the CDM because its temperature is con-
trolled by the much larger heat reservoir of the radiation-
dominated plasma at that stage.

To obtain the transfer function we solve the dark-matter
fluid equation until decoupling and then evolve the over-
density using Eq. (20) up to the time of matter-radiation
equality. In practice, we use the fluid equations up to x� �
10 max�xd; 10� so as to switch into the free-streaming
solution well after the gravitational potential has decayed.
In the fluid equations, we smoothly match the sound speed
and viscosity terms at x � xd. As mentioned earlier, be-
cause cs�xd� is so small and we are interested in modes that
are comparable to the size of the horizon at decoupling, i.e.
xd � few, both the dark-matter sound speed and the asso-
ciated viscosity play only a minor role, and our simplified
treatment is adequate.

In Fig. 1 we illustrate the time evolution of modes during
decoupling for a variety of k values. The situation is clear.
Modes that enter the horizon before kinematic decoupling
oscillate with the radiation fluid. This behavior has two
important effects. In the absence of the coupling, modes
receive a ‘‘kick’’ by the source term S�x� as they cross the
horizon. After that they grow logarithmically. In our case,
modes that entered the horizon before kinematic decou-
pling follow the plasma oscillations and thus miss out on
both the horizon kick and the beginning of the logarithmic
growth. Second, the decoupling from the radiation fluid is
not instantaneous and this acts to further damp the ampli-
tude of modes with xd � 1. This effect can be understood
as follows. Once the oscillation frequency of the mode
becomes high compared to the scattering rate, the coupling
to the plasma effectively damps the mode. In that limit one
103520
can replace the forcing term �0
0 by its average value, which

is close to zero. Thus in this regime, the scattering is
forcing the amplitude of the dark-matter oscillations to
zero. After kinematic decoupling the modes again grow
logarithmically but from a very reduced amplitude. The
coupling with the plasma induces both oscillations and
damping of modes that entered the horizon before kine-
matic decoupling. This damping is different from the free-
streaming damping that occurs after kinematic decoupling.

In Fig. 2 we show the resulting transfer function of the
CDM overdensity. The transfer function is defined as the
ratio between the CDM density perturbation amplitude �c
when the effect of the coupling to the plasma is included
and the same quantity in a model where the CDM is a
perfect fluid down to arbitrarily small scales (thus, the
power spectrum is obtained by multiplying the standard
result by the square of the transfer function). This function
shows both the oscillations and the damping signature
mentioned above. The peaks occur at multipoles of the
horizon scale at decoupling,

kpeak � �8; 15:7; 24:7; . . .���1
d /

Mpl

T0Td
: (22)

This same scale determines the ‘‘oscillation’’ damping.
The free-streaming damping scale is,
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FIG. 2 (color online). Transfer function of the CDM density
perturbation amplitude (normalized by the primordial amplitude
from inflation). We show two cases: (i) Td=M � 10�4 and
Td=Teq � 107; (ii) Td=M � 10�5 and Td=Teq � 107. In each
case the oscillatory curve is our result and the other curve is
the free-streaming only result that was derived previously in the
literature [4,7,8].

1Our definition of the cut-off mass follows the convention of
the Jeans mass, which is defined as the mass enclosed within a
sphere of radius �J=2 where �J  2%=kJ is the Jeans wavelength
[14].
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�dcd��d� ln��eq=�d� /
MplM

1=2

T0T
3=2
d

ln�Td=Teq�; (23)

where Teq is the temperature at matter radiation equality,
Teq � 1 eV. The free-streaming scale is parametrically
different from the oscillation damping scale. However for
our fiducial choice of parameters for the CDM particle they
roughly coincide.

The vanishing of the sound speed during the QCD phase
transition amplifies perturbations which have !'�QCD >
1, where '�QCD is the duration of the transition. In Fig. 2
the affected modes are those with xd � k�d >���

3
p

��QCD='�QCD���d=�QCD�. Typical values of
�d=�QCD � 10 � 15 and �QCD='�QCD � 3 � 10 relate
this condition to modes with xd > 50 � 260. Thus the
affected scales are severely damped by the effects consid-
ered in this paper.

Finally we want to stress the fact that the damping scale
is significantly smaller than the scales observed directly in
the Cosmic Microwave Background or through large-scale
structure surveys. For example, the ratio of the damping
scale to the scale that entered the horizon at equality is
�d=�eq � Teq=Td � 10�7 and to our present horizon
�d=�0 � �TeqT0�

1=2=Td � 10�9. In the context of infla-
tion, these scales were created 16 and 20 e-folds apart.
103520
Given the large extrapolation, one could certainly imagine
that a change in the spectrum could alter the shape of the
power spectrum around the damping scale. However, for
smooth inflaton potentials with small departures from scale
invariance this is not likely to be the case. On scales much
smaller than the horizon at matter radiation equality, the
spectrum of perturbations density before the effects of the
damping are included is approximately,

'2�k� / exp��n� 1� ln�k�eq� �
1

2
+2 ln�k�eq�

2 � � � ��

� ln2�k�eq=8� (24)

where the first term encodes the shape of the primordial
spectrum and the second the transfer function. Primordial
departures from scale invariance are encoded in the slope n
and its running +. The effective slope at scale k is then,

@ ln'2

@ lnk
� �n� 1� � + ln�k�eq� �

2

ln�k�eq=8�
: (25)

For typical values of �n� 1� � 1=60 and +� 1=602 the
slope is still positive at k� ��1

d , so the cut-off in the power
will come from the effects we calculate rather than from
the shape of the primordial spectrum. However given the
large extrapolation in scale, one should keep in mind the
possibility of significant effects resulting from the mecha-
nisms that generates the density perturbations.

ImplicationsWe have found that acoustic oscillations, a
relic from the epoch when the dark matter coupled to the
cosmic radiation fluid, truncate the CDM power spectrum
on a comoving scale larger than effects considered before,
such as free-streaming and viscosity [4,7,8]. For SUSY
dark matter, the minimum mass of dark-matter clumps that
form in the universe is therefore increased by more than an
order of magnitude to a value of 1

Mcut �
4%
3

�
%
kcut

�
3
+M,crit ’ 10�4

�
Td

10 MeV

�
�3
M�; (26)

where ,crit � �H2
0=8%G� � 9 � 10�30 g cm�3 is the criti-

cal density today, and +M is the matter density for the
concordance cosmological model [2]. We define the cut-off
wavenumber kcut as the point where the transfer function
first drops to a fraction 1=e of its value at k ! 0. This
corresponds to kcut � 3:3��1

d .
Recent numerical simulations [15,16] of the earliest and

smallest objects to have formed in the universe [17], need
to be redone for the modified power spectrum that we
calculated in this paper. Although it is difficult to forecast
the effects of the acoustic oscillations through the standard
Press-Schechter formalism [18], it likely that the results of
such simulations will be qualitatively the same as before
-5
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except that the smallest clumps would have a mass larger
than before (as given by Eq. (26)).

Potentially, there are several observational signatures of
the smallest CDM clumps. As pointed out in the literature
[15,19], the smallest CDM clumps could produce �-rays
through dark-matter annihilation in their inner density
cusps, with a flux in excess of that from nearby dwarf
galaxies. If a substantial fraction of the Milky Way halo
is composed of CDM clumps with a mass �10�4M�, the
nearest clump is expected to be at a distance of
�4 � 1017 cm. Given that the characteristic speed of
such clumps is a few hundred km s�1, the �-ray flux would
therefore show temporal variations on the relatively long
timescale of a thousand years. Passage of clumps through
the solar system should also induce fluctuations in the
detection rate of CDM particles in direct search
experiments.

Other observational effects have rather limited prospects
for detectability. Because of their relatively low-mass and
large size ( � 1017 cm), the CDM clumps are too diffuse to
produce any gravitational lensing signatures (including
femto-lensing [20]), even at cosmological distances. They
could, however, have an effect on the time delay of the
signal from transient cosmological sources. We illustrate
this effect by considering a characteristic CDM clump with
a size �1017cm and a mass of 10�4M� (corresponding to
formation redshift �50). If a major fraction of the inter-
galactic CDM is in the form of these clumps (amounting to
a mean mass density of �3 � 10�30 g cm�3), then the
mean separation between clumps is �6 � 1019 cm �
20pc. The gravitational potential would then fluctuate on
this length scale everywhere in the universe with an am-
plitude of ��=c2� � 2 � 10�19. Now, consider a compact
source at cosmological distances with a size comparable to
the distance between clumps, �10 pc. Photons emerging
from different regions of the source will encounter differ-
ent gravitational potential delays (the so-called Shapiro
time delay [21]) along their path due to the fact that they
traverse CDM clumps at different impact parameters. For a
source that is much larger than �20 pc, the effect of
multiple CDM clumps would average out because the
103520
source would sample the full distribution of impact pa-
rameters with small statistical fluctuations around the mean
time delay. The mean Shapiro delay from the network of
CDM clumps along the line-of-sight to a cosmological
source is ���=c2�tH � 0:1 sec, where tH is the light travel
time across the observable universe. The total number of
clumps along the line-of-sight is N � �4Gpc=20pc� � 2 �
108. This implies that the variance in time delays across a
source of size �10 pc would be suppressed by a factor of
�1=

����
N

p
� 10�4 relative to the mean time delay, i.e. it

would have a magnitude �10. sec . �-ray bursts may
possess variability on such a timescale (which would
have been smoothed out if their source had a size
�10 pc), but their estimated source size is R< 0:1 pc
[22] and so the temporal smoothing effect for them is
smaller by another factor >�20=0:1� � 2 � 102, which
leads to a variance in the delay timescale of less than a
microsecond. Unfortunately this time delay appears un-
measurable, since the variability of any source of apparent
dimension R would be expected to be smoothed out on a
timescale, �R=�c, where � is the Lorentz factor of the
emitting material (which is <103 for �-ray bursts).

The smallest CDM clumps should not affect the inter-
galactic baryons which have a much larger Jeans mass
[17]. However, once objects above �106M� start to col-
lapse at redshifts z < 30, the baryons would be able to cool
inside of them via molecular hydrogen transitions and the
interior baryonic Jeans mass would drop. The existence of
dark-matter clumps could then seed the formation of the
first stars inside these objects [23].

Finally, we note that the smallest CDM clumps may
have a dynamical effect on wide orbits of test particles
near the outer edge the solar system after the effects of
the known planets have been modeled to a high precision
[24].
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