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We propose a model of cosmology and particle physics in which all relevant scales arise in a natural
way from an intermediate string scale. We are led to assign the string scale to the intermediate scale
M� � 10

13 GeV by four independent pieces of physics: electroweak symmetry breaking; the� parameter;
the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N
being responsible for generating the � term, the right-handed neutrino mass scale, and the Peccei-Quinn
symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-
handed sneutrino playing the rôle of a coupled curvaton. We show that the correct curvature perturbations
may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the
seesaw mechanism, consistent with sequential dominance.
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I. INTRODUCTION

WMAP [1] has provided an unprecedented glimpse into
the early universe at the time of radiation decoupling,
which strengthens the case for a period of cosmological
inflation [2]. With inflation becoming increasingly estab-
lished, the need for a synthesis between cosmology and
particle physics becomes ever more pressing. Such a syn-
thesis should provide a successful cosmological model of
inflation, and cosmological perturbations which can pro-
vide the seed of large scale structure. It should give suc-
cessful baryogenesis, for example, via leptogenesis, and
should generate the required cold dark matter abundance.
Ultimately it should also explain the dark energy, but this is
more ambitious since it first requires a solution to the
cosmological constant problem, which from our present
perspective seems very far away.

To achieve such a synthesis the theory should also give a
successful description of particle physics phenomena such
as right-handed neutrino masses MRR and a solution to the
strong CP problem such as provided, for example, by the
Peccei-Quinn mechanism involving an intermediate axion
scale fa. The theory should also be supersymmetric, to
stabilise the hierarchy and provide flat directions for in-
flation, in which case it should also provide an origin of the
Higgs�mass parameter. Ideally the theory should provide
a complete explanation of electroweak symmetry breaking,
not only, for example, in terms of radiative breaking, but
also an explanation for the origin of the weak scaleMW . In
fact from the point of view of string theory there is only one
fundamental parameter, namely, the string scale M�, from
which the Planck scale MP should be derived in terms of
the compactification scales. From this single scale M� one
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must be able to derive all the other relevant scales in
physics, such as the axion scale fa, the scales of right-
handed neutrino masses MRR, the � parameter, and the
weak scale MW , which in the framework of supersymmet-
ric theories is related to the soft supersymmetry breaking
massesmsoft. The successful synthesis would therefore also
be expected to provide an explanation of all these scales in
terms of a single mass scale M�.

Recently we proposed a very promising model of infla-
tion closely related to the supersymmetric standard model
[3]. The explicit model was an extra-dimensional model
[3] with an intermediate string scaleM� � 10

13 GeV. This
model in turn was based on an earlier model without extra
dimensions [4], and the purpose of embedding the model in
extra dimensions is to provide a natural explanation for the
small Yukawa couplings and various mass scales appearing
in the model. The lightest natural mass scale in the model
turns out to be an MeV, and this requires that the cosmo-
logical perturbations in the model to be generated from a
new mechanism which depend on isocurvature perturba-
tions in the slowly rolling Higgs field being transferred to
curvature perturbations during reheating [5]. This mecha-
nism [5] in which isocurvature perturbations of a flat
direction in hybrid inflation become converted to curvature
perturbations during reheating, may be called a coupled
curvaton scenario to distinguish it from the weakly coupled
late-decaying curvaton scenario [6]. We recently showed
that in the coupled curvaton scenario, preheating plays a
crucial rôle in the conversion of the isocurvature perturba-
tions to the curvature perturbations [7].

The purpose of the present paper is twofold. First by
providing a careful analysis of mass scales in the model we
are led to the remarkable conclusion that all mass scales
follow from a single input physical mass scale, namely, the
string scale M� which is uniquely fixed by physics to be of
order 1013 GeV. This intermediate scale manifestly deter-
mines the (heaviest) right-handed neutrino mass scaleMRR
-1  2005 The American Physical Society
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as well as the Peccei-Quinn (PQ) symmetry breaking or
axion scale fa. In addition we show how the assumption of
a small cosmological constant fixes the value of the super-
symmetry breaking scale FS in terms of the string scaleM�

and the Planck scale MP. This requirement reduces the
number of free parameters in the model to just one, the
string scale M�, together with the Planck scale MP which
may in principle be determined by the string dynamics by a
ratio of M�=Mc � 60 where Mc is the compactification
scale. From M� and the (in principle) string determined
MP we show how the model then determines all the physi-
cal scales of interest, as well as the dimensionless
couplings.

The second main purpose of the paper is to show that the
large scale structure in the Universe may be generated by
the lightest right-handed sneutrino playing the rôle of a
coupled curvaton1. Having a sneutrino rolling along a flat
direction during inflation and playing a special rôle in
determining the large scale structure of the universe only
strengthens the synthesis of particle physics and cosmol-
ogy in this approach. An oscillating sneutrino may also
allow efficient leptogenesis to take place during the reheat-
ing process.

The layout of the remainder of the paper is as follows. In
Sec. II we review the model, including the superpotential,
and then discuss qualitatively how all the parameters which
enter these potentials can be obtained from a single mass
scale M�. In Sec. III we discuss the potential and the
symmetry breaking aspects of the model. In Sec. IV we
fix the mass scale of the theory. We also discuss the subtle
interplay between the high energy gauge group symmetry
breaking, supersymmetry and electroweak symmetry
breaking, and show how the weak scale may be derived
in terms of the string scale. We also show how the axion
scale, the right-handed neutrino mass scale and the origin
of the � parameter are all associated with the same string
scale. Section V discusses the physics during the infla-
tionary epoch including the special rôle played by the
sneutrino as a coupled curaton. We also discuss the physics
of preheating and reheating which is expected to give rise
to curvature perturbations. Section VI contains our con-
clusions. There are two Appendices detailing the calcula-
tion of Yukawa couplings (Appendix A) and soft masses
(Appendix B) in the presence of extra dimensions.

II. THE MODEL

Let us consider two four dimensional boundaries2 spa-
tially separated along d extra dimensions with a common
1In [8] the right-handed sneutrino plays the rôle of the weakly
coupled late-decaying curvaton.

2From now on let us use the phrase D3-brane instead of four
dimensional boundary. In spite of the abuse of language in this
choice, schematically it may represent the string connection of
our model and also it provides a simplification of the English in
this paper.
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radius R � 1=Mc. These extra dimensions are compacti-
fied on some orbifold that leads at least to two fixed points
at f0; �Rg where the two D3-branes (Brane I and Brane II)
are located. All the families of quarks and leptons are
localized in one of the fixed point (y � 0), Brane I, while
supersymmetry (SUSY) is broken by the F-term of a
gauge-singlet field S localized in the parallel brane (y �
�R), Brane II. The gauge group is GA �GB where GA and
GB are localized in the bulk and the SUSY-breaking brane,
respectively. The rest of the matter are localized in the
bulk, namely, the inflaton field, �, the waterfall field, N,
the minimal supersymmetric standard model (MSSM)
Higgs fields hu and hd, and the massive Higgs fields H1,
H2 which mediate the breakdown of the gauge groupGA �
GB to the standard model gauge group GSM � SU�3� �
SU�2� �U�1�. This is depicted in Fig. (1).

One of the underlying assumption of this model is that
the radii of the extra dimensions are stabilized before
inflation takes place, for example, by one of the mechanism
proposed in the literature (see for example [9]). Having
done this, first we are going to discuss the size of the
effective four dimensional parameters (Yukawa couplings
and soft masses) in a general model with two parallel
branes and then discuss particular issues of our model.

The four dimensional superpotential of the model in
Fig. (1) is given by

W4 � 	��N2 
 �NNhuhd 
 �H�H1H2


 ��;1
N2��cR;1�

2

M�


WMSSM; (1)

whereWMSSM defines the Yukawa couplings for the MSSM

WMSSM � yiju QihuUj 
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d QihdDj 
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ij
e Lihde

c
Rj


 yij� Lihu�cRj: (2)

Following the relationship between higher dimensional
couplings (�̂i;j) and four dimensional one (�i;j) given in
Appendix A in Eq. (A5), we get
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(3)

where for the last equation we supposed that all the higher
dimensional couplings present in WMSSM are equal to �̂�
for all families. Phenomenologically the four dimensional
MSSM couplings have to be of the order one3. Therefore it
3The family hierarchy in the Yukawa sector can be generated
through some family symmetry very well explored in the
literature.
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FIG. 1. The model showing the parallel 3-branes spatially separated along d extra dimensions with coordinates y � �y1; . . . ; yd� and
a common radius R. The index i in the matter fields represents the family index, i � 1; 2; 3.
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turns out that the higher dimensional coupling is nonper-
turbative and it has to be �̂� �MP=M�.

The size of the higher dimensional couplings are com-
pletely meaningless. They could be either in the perturba-
tive or in the nonperturbative regime. From the effective
field theory point of view what is important is the size of
the four dimensional couplings. However for naturalness
we impose that in the higher dimensional theory all the
couplings are of the same order

�̂� �̂N � �̂H � �̂�; (4)

and additionally if we also require, as experimental fact,
that at least the Yukawa coupling for the third generation
(defined in WMSSM) have to be of order one, one gets

�� �N � �H � � �

�
M�

MP

�
2
; �� �

�
M�

MP

�
: (5)

Before getting into some more technical details of the
model, let us explain the physical motivations for consid-
ering each term of the superpotential (1).

1. Inflation: The term ��N2 will define the hybrid infla-
tionary potential where� is the inflaton which slow rolls in
a semiflat potential while the waterfall fieldN is set to zero.
Once the inflaton field takes some value below a critical
point given by the supersymmetric breaking sector of the
model, inflation would end and the waterfall field develops
an expectation value hNi.

2. The � problem: The term �NNhuhd will provide a
Higgsino mass once inflation ends given by � � �NhNi
like in the next to minimal supersymmetric standard model
(NMSSM) [10,11].

3. Right-handed neutrino masses: We assume that
the lightest right-handed neutrino gets Majorana mass
through the nonrenormalizable operator in Eq. (1)
103517
��;1N2��cR;1�
2=M�, where the Yukawa coupling is sup-

pressed due to the fact that the operator contains two
bulk fields N, and is given by ��;1 � �� �O�M�=MP�.
This lightest right-handed neutrino �cR;1, that we shall
henceforth simply refer to as �cR, will play the rôle of the
coupled curvaton, although it may be completely subdo-
minant in the seesaw mechanism, only contributing to the
lightest physical neutrino mass m1, which may be vanish-
ingly small, leading only to an upper bound on its Yukawa
couplings.

4.GA �GBsymmetry breaking: The VEVs ofH1 andH2
which transform underGA �GB asH1 � � �R;R� andH2 �
�R; �R� mediate the breaking of the groupGA �GB down to
the SM gauge group. With GA �GB unbroken, any
F�D�-flat direction would be protected against radiative
corrections during inflation arising from either Yukawa or
gauge interactions. For example, during inflation the Brane
I soft masses will be smaller than the Hubble constant (see
Appendix B), and therefore any F�D�-flat direction would
satisfy automatically the slow-roll conditions. However,
well after inflation ends the Higgses H1 and H2 get a
VEVand the Brane I soft masses turn out to be of the order
MSUSY=�4�� due to bulk particles propagating inside a
loop with MSUSY masses, i.e. gaugino mediation [12].

In order to specify completely the superpotential (1) we
have to impose a global U�1�PQ Peccei-Quinn symmetry in
such a way undesirable terms likeN3,�3,�huhd and so on
are forbidden. Under this global symmetry the fields have
the following charges:

QN 
Qhu 
Qhd � 0; Q� 
 2QN � 0;

Q� 
QH1 
QH2 � 0; QN 
Q�R;1 � 0:
(6)

The global symmetry, U�1�PQ also forbids explicit RH
-3
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Majorana neutrino masses in the superpotential, but B	 L
symmetry is broken by the nonrenormalizable term
��;1N2��cR;1�

2=M�. The global symmetry is broken at the
scale of the scalar singlet VEV’s releasing a very light
axion and providing as consequence an axionic solution to
the CP-strong problem. In the next section will discuss
what is precisely the axion scale fa.
4The reduced four dimensional Planck scale is fixed at MP �
2:4� 1018 GeV by gravity.
III. THE POTENTIAL

Now we are ready to study in detail the scalar potential
of our model. We will write the potential along the D-flat
directions in both Higgs sectors, hu � hd � h and H1 �
H2 � H, and comment later on symmetry breaking. Also
we will take the coefficients ci for the vacuum energy
Eq. (B2) and for the soft bulk masses Eq. (B3) given in
Appendix B equal to one for simplicity, with

V0 � F
2
S; (7)

m2 �
�
FS
MP

�
2
�m2� �m2h �m

2
N �m2H; (8)

A �
FS
M�

�
A�H
cH

�
A�N
cN

�
A�
c�
: (9)

With this simplifications the scalar potential for the real
components of the fields, at energy below M� looks like

V � V0 
m
2��2 
 h2 
 N2 
H2�


 2�A�cH�H
2 	 c��N

2 
 cNNh
2�


 �2�h2 	 2�N�2 
 2�2N2h2 
 �2�H2 	 N2�2


 2�2�2H2 
 4�2�
N4~�2R
M2�


 4�2�
N2~�4R
M2�


 4���
N~�2R
M�

�h2 	 2�N�; (10)

where the couplings � and �� are those given by (5), and
the first line of the above equation are the soft SUSY
breaking terms.

Neglecting the m2-term since m� A, the global mini-
mum of the potential (10) is given by

h�i � c�
A
4�
; (11)

hNi � c�
A

2
���
2

p
�
; (12)

hHi � hhi � h~�Ri � 0; (13)

where all ci � O�1�. These coefficients should satisfy
cH > c�=4 (cN > �2	

���
2

p
�c�=8), in order to stabilize the

VEV for h (H) at zero. On the other hand, there is no
minimum with hHi � 0 and hHi � h�i � hNi. The solu-
103517
tions of the the minimization equations with H � 0 are a
maximum of the potential instead.

Using Eqs. (5) and (9) the VEVs are approximately

h�i � hNi �
A
�
�
FS
M�

�
MP

M�

�
2
: (14)

All parameters (couplings and mass terms) of our potential
(10) are functions of just two free parameters4,M� and FS.
However, one of them can be eliminated by imposing zero
cosmological constant around the global minima of the
scalar potential, V�h�i; hNi� � 0, and therefore FS can be
expressed as a function of M�,

FS �
M4�
M2P

: (15)

With this choice for FS all the differents scales involved in
our model are function of just one scale M�. The soft
masses [Eqs. (8) and (9)] can be rewritten as

m2 � M2�

�
M�

MP

�
6
; A � M�

�
M�

MP

�
2
: (16)

In general, since M� <MP we have m=A � M�=MP � 1,
and � ’ �M�=MP�

2 � 1. Plugging Eq. (15) into (14) we
found that the VEV of the scalar fields are degenerated at
the higher dimensional cutoff scale M�

h�i � hNi �M�: (17)

The H1, H2 fields will develop later a much smaller
VEV by a similar mechanism to the radiative electroweak
symmetry breaking in the Higgs sector. Extending the
matter content of the model on Brane I by two pairs of
fermions F1, �F1 and F2, �F2, in conjugate representations,
they will couple, respectively, to the Higgses as H1F1 �F2
and H2F2 �F1 with Yukawa couplings of order one (same
order of magnitude as the top Yuwaka coupling). Radiative
corrections due to this large Yukawa coupling will render
one of the H1, H2 masses negative, lifting the D-flat
direction and allowing them to get a VEV. We notice that
up to this point all the matter fields on Brane I are massless.
The only massive fields are those living in the bulk.
IV. THE QUESTION OF SCALE

In this section we shall address the numerical question:
what are the correct sizes ofm2 and A in order to reproduce
a good phenomenology? In other words, how large is the
single mass scale M� in the theory? The physical require-
ment that one of the scales m or A is precisely the electro-
weak scale will fix uniquely the value of M�, and
consequently the remaining scales. We shall see that we
are led to the conclusion thatM� must be identified with an
intermediate mass scale.
-4
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A. The electroweak scale

Chiral matter do not directly feel the breaking of SUSY
which takes place in the ‘‘hidden’’ 3-brane sector. The
effects for the chiral matter of SUSY-breaking are only
transmitted through the influence of bulk fields, which are
the only ones which can move into the bulk spacetime and
couple to both kinds of 3-brane sectors. As we have seen
from the Fig. 1 the bulk fields are the inflaton, the Higgses,
the waterfall field and gauginos belonging to the gauge
group, GA. Their soft masses are equal to what we have
calledm in Eq. (8). So far we have not mentioned gravity in
this paper. It is widely believed that gravity is propagating
in the bulk in which case the gravitino mass would be
m3=2 �m. With this information in mind we could think
that the most natural selection for m would be the electro-
weak scale, m3=2 �m�MSUSY � TeV. However this is
not possible because the other scale involved, A, would be
A � �MP=M�� TeV and it can be as much as A�
103 TeV. On the other hand, A is the scale associated
with gauginos living in the SUSY-breaking brane. When
the full group GA �GB breaks down to the SM group, it
turns out that SM gauginos would be as heavy as 103 TeV
which we regard as phenomenologically unacceptable.

The other possibility (the only one) is to choose the scale
A as the electroweak scale. Fixing A� TeV and using
Eq. (16) we have that the scale M� (the fundamental scale
in higher dimensions) has to be

M� � 10
13 GeV; (18)

As a consequence the SUSY-breaking scale is F1=2S �
108 GeV and the m-term is m� 10 MeV. In the next
section we will see that m will give us the inflaton mass.
Using Eq. (B5) in Appendix B, the Hubble expansion
parameter during inflation turns out to be of the order MeV.

Some of the phenomenological benefits of an intermedi-
ate scale have been noted in [13,14]. Below we carefully
examine the issues relevant to the present model.

B. The �-scale

A problem of the minimal version of the supersymmetric
standard model (MSSM) is why the � term which is a
supersymmetric mass has to be of the same order of the soft
terms, as required to get an acceptable phenomenology. In
other words, what is the origin of the �-scale? There are
many solutions to this problem,5 for example, in the
NMSSM the �-parameter is replaced by a trilinear cou-
pling involving an extra field N and the Higgses, �NHuHd.
Once N gets a VEV, the �-term is generated.

The solution of the�-problem in our model relies on the
same mechanism as in the NMSSM. However, there are
5Note that the Giudice-Masiero mechanism [15] presents also
a solution of the � problem within the MSSM by generating the
� term via a nonminimal Kahler potential.
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many features that make our model different to the usual
NMSSM model. The usual NMSSM involves a term like
�N3 in the superpotential so that the model has an exact Z3
symmetry [10,11] which is broken at the weak scale (at the
scale of hNi) leading to a serious domain wall problem6

[17]. In our model a globalU�1�PQ symmetry forbids such
cubic terms so there is no domain wall problem. As we will
see in the next subsection the global U�1�PQ symmetry is
linked with the solution to the CP-strong problem. In fact
the singlet field N in our model plays three rôles. It
switches on the �-term once it gets a VEV

� � �hNi � A � M�

�
M�

MP

�
2
� TeV; (19)

It plays the rôle of a waterfall field of hybrid inflation,
ending inflation through a phase transition, as discussed in
Sec. V. And its VEV is responsible for generating the right-
handed neutrino mass scale.

C. The axion scale

The most elegant explanation of the strong CP problem
is provided by the Peccei-Quinn (PQ) mechanism [18], in
which the CP violating angle �� is set to zero dynamically
as a result of a global, spontaneously broken U�1�PQ
Peccei-Quinn symmetry. The corresponding Goldstone
mode of this symmetry is the axion field and the static ��
parameter is substituted by a dynamical one, a�x�=fa,
where a�x� is the axion field and fa is a dimensionful
constant known as the axion decay constant.

In our model the U�1�PQ Peccei-Quinn symmetry is
spontaneously broken once the scalar fields charged under
U�1�PQ [see Eq. (6)] get a VEV of the order M�. This
implies automatically that the axion decay constant is

fa �M� � 10
13 GeV: (20)

On the other hand, the axion also has interesting cos-
mological implications, especially as a cold dark matter
candidate. Indeed coherent oscillations around the mini-
mum of its potential may dominate the energy density of
the universe if its potential is very flat. This puts an upper
bound on fa of order fa � 1012 GeV. It seems that our
prediction is a little bit higher that the allowed by experi-
ments. However, as has been pointed out in [19], fa can be
as big as 1015 GeV in models where the reheating tem-
perature is below a GeV, that is, below the temperature at
which the axion field begins to oscillate. The point is that
during inflation the PQ symmetry is broken and the axion
field is displaced at some arbitrary angle, and it relaxes to
zero only after reheating and only below the QCD phase
transition when its potential is tilted. At this point the
dangerous energy stored in the axion field is released, but
6See for example [16] for an alternative solution to the domain
wall problem based on a Z2 R-symmetry.
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if the reheating temperature is of order a GeV then the
resulting axion density from the displaced axion field will
be diluted by the entropy release produced by the inflaton
decay. In the Refs. [4,20] has been showed that the reheat-
ing temperature for the model under consideration is
around the GeV scale and therefore an axion decay con-
stant of the order 1013 GeV may be consistent with the
cosmological constraints.

D. The right-handed neutrino mass scale

Neutrino oscillation phenomenology requires that there
must be two further heavy right-handed neutrinos with a
Majorana mass arising from the renormalisable operator
��;iN��cR;i�

2 where ��;i � 1, and i � 2; 3. We have not
included these operators in the superpotential in Eq. (1)
because these heavy right-handed neutrinos play no rôle in
cosmology, but such operators may readily be included by
suitable choice of PQ charges for the second and third
right-handed neutrinos �R;i, i � 2; 3. The heaviest right-
handed neutrinos of mass ��;2hNi and ��;3hNi will give the
dominant contribution to the solar and atmospheric neu-
trino masses of the order of m2 � y2�;2v

2=��;2hNi, and
m3 � y2�;3v

2=��;3hNi, respectively, where the mild hier-
archy m2 � m3 can be achieved by suitable choices of
Yukawa couplings above [21]. On the other hand the light-
est right-handed neutrino which plays an important rôle
during inflation, and will explain the amplitude for the
curvature perturbation, will play no part in the seesaw
generation of atmospheric and solar neutrino masses, but
will generate the lightest physical neutrino mass m1. The
lightest right-handed neutrino mass given by ��;1hNi,
where now ��;1 �M�=MP, will contribute to the lightest
physical neutrino mass m1 � y2�;1v

2=���;1hNi�. A hier-
archy in the neutrino sector (m1 � m2) is trivially
achieved when y�;1 � �M�=MP�

1=2y�;2 � 3� 10
	3y�;2.

As we will see in the next section we need such small
Yukawa coupling for y�;1 in order to stabilize the preheat-
ing effect due to the oscillations of the lightest right-
handed neutrino. Since m1 can be arbitrarily light, the
lightest right-handed neutrino responsible for its mass
can be effectively decoupled from the seesaw mechanism
due to its highly suppressed Yukawa coupling. The
scenario described above is familiar in neutrino phenome-
nology and is known as the sequential dominance mecha-
nism [21,22].

To summarize, a hierarchical neutrino mass scheme,
where m3 � 0:05 eV, assuming y�;3 � 0:1	 0:5, led to a
right-handed neutrino mass scale of the same order as the
axion scale,

hNi �M� � 10
13 GeV: (21)

Therefore in our model we are led to assign the string scale
to the intermediate scale M� � 10

13 GeV by four indepen-
dent pieces of physics: electroweak symmetry breaking;
103517
the � parameter; the axion scale; and the atmospheric
neutrino mass scale.
V. THE LIGHTEST RIGHT-HANDED SNEUTRINO
AS A COUPLED CURVATON

In a previous paper we suggested that the Higgs fields of
the supersymmetric standard model could play the rôle of a
coupled curvaton [5] within this class of models, and we
discussed how Higgs perturbations could be converted into
the total curvature perturbations during the first stages of
reheating. At first we assumed that the curvature Higgs
contribution does not change after horizon crossing, and
we obtained the desired curvature perturbation for a Higgs
VEV value h� � 1TeV. However we later found that, once
the fields get coupled during the phase transition, the
evolution of the field fluctuations will be affected suppress-
ing the amplitude of curvature perturbation of the Higgs
field relative to its value at horizon crossing. Subsequently
we showed that this suppression could be compensated by
taking into account preheating or parametric resonance
effects [23] which can enhance the value of the curvature
perturbation to the desired value [7].

In this section we propose and study the possibility that
the rôle of the coupled curvaton is instead played by the
lightest right-handed sneutrino, with the inflaton identified
as the field �, as before. The N field and the Higgs fields
will here be assumed to be zero during inflation. The
associated lightest right-handed neutrino �R;1 shall simply
be referred to as �R, its Majorana Yukawa coupling as
�� � ��;1, and its Yukawa coupling to left-handed leptons
as y� � y�;1, for ease of notation.

According to the potential in Eq. (10), there is a flat
direction for both ~�R and�, whileN field is held at zero for
values of the inflaton field � larger than the critical value

�c �
c�A


����������������������������
c2�A

2 	 16m2
p
4�

� c�
A
2�
: (22)

The inflationary epoch is therefore described by a slowly
rolling inflation field � and a slowly rolling light right-
handed sneutrino field ~�R (recall that the large mass of the
right-handed sneutrino is generated by the VEV of the N
field, which is zero during inflation). As long as �>�c,
the N field dependent squared mass is positive and then N
(as well as H) is trapped at the origin; the potential energy
in Eq. (23) is then dominated by the vacuum energy V0, and
the potential (10) simplifies to

V � V0 
m
2
��

2 
m2�~�
2
R; (23)

with V0 � F2S � �108GeV�2, and m, � c,m. The slow-
roll conditions are given by:

-N �
M2Pm

4
��

2
N

V20
< 1; (24)
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j.Nj � M2P
m2�
V0
< 1; (25)

where the subscript N means N e-folds before the end of
inflation. Using Eqs. (B2) and (B3) we then get j.Nj �
c�=cV , and -N � .N, and slow-roll only requires
c�=cV < 1=3.

The amplitude of the spectrum of the (comoving) cur-
vature perturbation R, generated by the inflaton field is
given by [24]:

P1=2R ’

�
H�

_��

��
H�

2�

�
’

�
H�

2�.N��

�
; (26)

where the subscript ‘‘*’’ denotes the time of horizon exit,
say 60 e-folds before the end of inflation. The value of the
inflaton field during inflation is around the cutoff of the
theory, �� ��c �M�, as usual in SUSY inflation [25],
while the Hubble parameter is of the order of H ’
M��M�=MP�

3. Therefore

P1=2R ’

�
M�

MP

�
3
; (27)

which for M� ’ 10
13 GeV is quite below the COBE value

P1=2R � 5� 10	5 [26].
However, the quantum fluctuations of any light field

during inflation, i.e., the Higgs h and the lightest right-
handed sneutrino �R, will contribute to the total curvature
perturbation7, R, such that [27,28]

R �
X
,

/, 
 P,
/
 P

R,; (28)

/, and P, being, respectively, the energy density and the
pressure for each component, with /, 
 P, � _�2,, / and
P the total energy density and pressure, R, the curvature
perturbation generated by each field,

R , ’ H
Q,
_�,
; (29)

and Q, the gauge invariant quantum fluctuations of the
field [29]. Given the model parameters, we know that the
inflaton field has a background value of the order of the
cutoff scale M�, both during inflation and at the global
minimum, but the value of the sneutrino field is arbitrary
during inflation. At the global minimum it will relax to
zero. Given that, we may assume that even during inflation
the sneutrino field is not far from its global minimum
value, and therefore �� �R. From this condition it fol-
lows that _�� _�R, but R� � R�. The total curvature
perturbation in Eq. (28) is dominated by the field with the
7We have dropped the reference to the wavenumber in the
curvature perturbation but it is implicitly assumed that we only
refer to large scale perturbations, with k� Ha.
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largest kinetic energy, and during inflation this is just the
inflaton field, which as we have seen gives rise to a too
small contribution. Nevertheless, the COBE normalization
of the spectrum constraints its value at the onset of the
radiation dominated era, after inflation and the reheating
process is complete. In single field models of inflation, the
total curvature perturbation on large scale remains practi-
cally constant after horizon crossing, and it is enough to
estimate the spectrum at that point. On the other hand, in a
multifield inflationary model (or in general in a multicom-
ponent Universe) we have both adiabatic (total) and en-
tropy or isocurvature perturbations. The latter are given by
the relative contributions between different components,
R, 	R0. Entropy modes can seed the adiabatic one, i.e.,
the total curvature perturbation, when their contribution to
the total energy density becomes comparable [30–35].
This is what we expect at the end of inflation, when all
the fields move fast toward the global minimum. At this
point, the energy densities of the fields become compa-
rable, and the total curvature perturbation, Eq. (28) may
become of the order of R�.

Here we would like to consider this possibility, i.e., the
lightest right-handed sneutrino as the main source of the
isocurvature perturbation during inflation. The Yukawa
coupling of the lightest right-handed sneutrino to the N
field is a factor �MP=M�� larger than the coupling �
between � and N. Hence, the right-handed sneutrino ac-
quires a mass in the global minimum which is larger than
the other particles by the same factor. Nevertheless, due to
the coupling with the other fields, it may oscillate together
with N and � but with a smaller amplitude �R �
��=���M�. In any case, during the oscillations the energy
density of the 3 fields become comparable, withMRR�R �
��N�N.

Previous to that we have to consider the effect of the
phase transition on the perturbations of the fields. The
tachyonic instability in the N direction makes the field
grow until it reaches the straight-line trajectory in field
space, N �

���
2

p
��	�c�. On the other hand the sneutrino

still follows undisturbed its inflationary trajectory for a
while. With respect to QN perturbations, they also feel
the tachyonic instability, they grow as QN / _N and we
end up with QN � 	

���
2

p
Q� along the straight-line trajec-

tory. At this point no change has been induced in the total
curvature perturbation. The fact that QN is non negligible
after the phase transition does not mean that we are gen-
erating additional entropy modes. Along the straight-line
trajectory we still have only 1 degree of freedom, the
adiabatic mode [28].

Soon after that, the lightest right-handed sneutrino starts
feeling the presence of the other fields. The effect on its
perturbation is the same than we found for the Higgs in
Ref. [7]: when the field gets coupled the R� perturbation is
dragged toward R, and by the time they first reach the
global minimum all the contributions R, are comparable
but some orders of magnitude smaller than the initial R�.
-7
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FIG. 2 (color online). Left plot: Evolution of the background fields, �, N, and ~�R, after they have passed the critical point; inset:
oscillations of N and ~�R, previous to that of �. Right plot: Amplitude of the spectrum of the curvature P1=2R,

for the different
components of the model: inflaton �, N field and lightest right-handed sneutrino sneutrino ~�R.

8Without the sneutrino and/or the Higgs, there is indeed a
strong parametric resonance (tachyonic preheating [36]) for the
fluctuations with a wavenumber up to O��N0� [37] during the
first 3 oscillations of the fields, before it enters in a narrow
resonance regime.
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From this point of view, during the phase transition the
initial entropy perturbation is only partially converted into
the adiabatic one. In other words, entropy perturbations are
suppressed due to the tachyonic instability during the
phase transition. And, in particular, for our model values,
we are still some orders of magnitude below the COBE
normalization. Again, once the oscillations begin, the pres-
ence of a third field, in this case the sneutrino, will curve
the initial straight-line trajectory in the N-� plane, giving
rise to preheating of the large scale perturbations. In this
scenario this will happen before the fields reach the global
minimum. We have the inflaton field decreasing from its
value at the critical point, while N and ~�R are growing and
moving faster than �. First N gets destabilized, and then
~�R. But for the values of the fields such that ��~�2R=M� >
���c 	��, there is an approximate minimum with N ’
~�R and ��~�2R=M� ’ � ’ �c, around which N and the RH
sneutrino oscillates. It is already during this period that the
large scale perturbations are preheated. First, N and ~�R do
not oscillate in phase, and in addition there is a tachyonic
instability in the N and ~�R squared masses during the
oscillations, which enhances the resonance [36]. This ef-
fect only lasts a short period of time, until the inflaton field
is close enough to the global minimum to drag towards it
the other fields.
103517
At the same time we may also preheat fluctuations on
smaller scales8, which will back-react on the system shut-
ting down the resonance. But we do not expect this to
happen until the inflaton is also oscillating, due to the small
amplitude of the previous N 	 ~�R oscillations. Another
effect to be considered is the decay of the heavy sneutrino,
which happens earlier than the decay of the singlets � and
N. Once the lightest right-handed sneutrino (the source of
the entropy perturbation) disappears the resonance on the
large scales will stop.

As an example, in Fig. 2 we have plotted the evolution of
the background fields (left-hand side plot), and the differ-
ent field contributions to the curvature perturbation R,
(right-hand side plot), during the first oscillations of the
fields, after they have passed the critical point. The value of
the lightest right-handed sneutrino field during inflation is
�R � 1 TeV, which gives R�� ’ 10

	5 at horizon-
crossing. Nevertheless, as it can be seen in the plot, after
the phase transition all contributions are roughly equal. For
-8
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the numerical integration, we have chosen �� � 2� 105�,
and we have also introduced a decay rate for the lightest
right-handed sneutrino, �� ’ y2�MRR, with y� ’ 7� 10	3.
This gives rise to the right order of magnitude for the
amplitude of the curvature perturbation (slightly larger
than COBE). The main enhancement is produced during
the oscillations of the fields N and ~�R, and the resonance
ends when ~�R goes to zero and we are left only with � and
N oscillating.

The decay of the lightest right-handed sneutrino gives
rise to radiation, with /R ’ 0:2/�, where /� refers to the
energy density in the oscillating singlets.9 Having con-
verted a fraction of the initial vacuum energy into radia-
tion, the background fields still oscillate (in phase) but with
smaller amplitudes compared to the case without the sneu-
trino, which may not be large enough to allow the preheat-
ing of the small scale fluctuations. Nevertheless one has to
bear in mind that larger decay rates for the sneutrino means
a shorter resonance for the curvature perturbation, or no
resonance at all. On the other hand, for a smaller decay rate
the resonance will then be shut down by the backreaction
of the small scale modes.

VI. CONCLUSION

We have proposed a model of cosmology and particle
physics in which all relevant scales are derived from an
intermediate string scale M� � 10

13 GeV, identified with
both the Peccei-Quinn symmetry breaking axion scale fa
and the heaviest right-handed neutrino mass scale MRR. A
supersymmetry breaking scale is derived from the con-
straint of having a small cosmological constant leading to
F1=2S �M2�=MP � 10

8 GeV. The � parameter of the
MSSM and the electroweak breaking scale are then given
by FS=M� � 10

3 GeV. The model involves hybrid infla-
tion, with the inflaton mass given by FS=MP� MeV, and
their Yukawa couplings given by �M�=MP�

2 � 10	10. In
our model we were led to assign the string scale to the
intermediate scale M� � 10

13 GeV by four independent
pieces of physics: electroweak symmetry breaking; the �
parameter; the axion scale; and the neutrino mass scale. In
recent years models with an intermediate string scale
(1011 <M� < 10

14 GeV) have been of great interest be-
cause contain many phenomenological issues (see for ex-
ample [13,14]). The novelty of our construction is we give
an explicit potential (10) where the link between particle
physics and cosmology is explicit. Also the intermediate
scale appears as a consequence of requiring zero cosmo-
logical constant at the global minimum of the potential
together with requiring one of the mass parameters in-
volved in the potential to be the electroweak scale. In
addition, if all the dimensionless couplings are equal in
9The decay of the lightest right-handed sneutrino is also
expected to generate leptogenesis, and cold dark matter can
arise from preheating of neutralinos as discussed in [38].
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the higher dimensional model, we found that the effective
couplings are just powers of the ratio M�=MP.

The large scale structure in the Universe is generated by
the lightest right-handed sneutrino playing the rôle of a
coupled curvaton. We showed that it is possible to obtain
the correct curvature perturbation by including the effects
of preheating and adjusting neutrino Yukawa couplings to
be rather small, leading to a (lightest) right-handed neu-
trino mass of about 108 GeV. This is possible because of
sequential dominance [21] since in this case the lightest
right-handed neutrino plays no essential rôle in the seesaw
mechanism. The sneutrino as a coupled curvaton only
strengthens the synthesis between cosmology and particle
physics at the intermediate scale.
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APPENDIX A: YUKAWA COUPLINGS

In higher dimensions the superpotential is well defined
just in one of the fixed points (Brane I or Brane II)10. In
general the Lagrangian in higher dimensions is given by

L 4
d �
Z
d23Ŵ4
d�4d�0� 
 4d�yi 	 �R��; (A1)

where the superpotential Ŵ4
d is a function of bulk fields
(�̂i) and brane fields ( j), given by

W4
d 3
�̂i;j

M
,d
2
�

�̂,i  
0
j

M,
0	3
�

: (A2)

Here we have introduced a mass scale, M�, in such a way
the couplings �̂i;j remain dimensionless. This scale is
actually the Planck scale in higher dimensions, or the string
scale in string theories, which is related with the four
dimensional Planck scale, MP, through the well known
formula

M2P � M2
d� Rd: (A3)

Using the fact that the bulk fields contain a volume sup-
pression factor with respect their zero mode (the effective
four dimensional field), i.e, �̂i � �i=Rd=2, we can express
the four dimensional effective superpotential, after inte-
grating out the extra d dimensions, as
Notice that this is always the case if the coupling involves
bulk and brane fields. However by construction also couplings
which involve just bulk fields have to be defined in one of the
four dimensional boundary due to an enhancement of the number
of supersymmetries contained in the bulk.
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W4 �
Z
ddyŴ4
d�4

d�0� 
 4d�yi 	 �R��

� �̂i;j

�
M�

MP

�
, �,i  

0
j

M,
0	3
�

: (A4)

Redefining the effective four dimensional coupling as

�i;j �
�
M�

MP

�
,
�̂i;j; (A5)

we notice that in general we get an important suppression
factor if M� � MP

11. In other words, if there is a funda-
mental intermediate scale, M�, defined in the higher di-
mensional theory, we always get small couplings, �i;j � 1,
even though the higher dimensional couplings, �̂i;j, can be
of order one or even nonperturbative as it would be in our
particular case.

Finally note that following the same procedure in the
Kahler potential will lead to no additional volume effects.
For example consider a canonically normalized 4


d-dimensional Kahler potential term of the form �̂i�̂
y
i

then the corresponding 4-dimensional Kahler potential will
contain the term�i�

y
i which maintains its canonical form

due to a cancellation of the volume factors. There may be
some small additional corrections due to canonical nor-
malization effects [39], but these will not affect the analy-
sis here.

M. BASTERO-GIL, V. DI CLEMENTE, AND S. F. KING
12As we have said at the beginning of the section one important
assumption of our model is that the location of the two branes are
APPENDIX B: SOFT MASSES

We shall suppose that SUSY is broken by the FS-term of
a four dimensional gauge-singlet field S localized at the
Brane II (yi � �R) and mediated across the extra-
dimensional space to the Brane I by bulk fields propagating
in a loop correction like gaugino mediation [12]. The
SUSY-breaking Lagrangian contains six terms that lead
respectively to the bulk gaugino mass (MA), Brane II
gaugino mass (MB), vacuum energy (V0), soft masses for
bulk fields (M�i), soft masses for Brane II fields (M i) and
trilinear soft terms (A�i;j). In general we have

Lsoft4
d � 4d�yi 	 �R��c�ij
Z
d23

Ŵ4
dS
M�


 c�i
Z
d43

�̂y
i �̂iS

yS

M2
d�


 c i
Z
d43

 y
i  iS

yS

M2�


 cV
Z
d43SyS
 cA

Z
d23

Ŵ�A�
, Ŵ

,�A�S

M1
d�


 cB
Z
d23

W�B�
, W,�B�S
M�

�; (B1)
11This suppression factor only would depend on the number ,
of fields living in the bulk and it will be completely independent
of the number d of extra dimensions.
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where W�A�
, (W�B�

, ) is the field strength of the gauge group
GA (GB) and the constants ci � fc�ij ; c�i ; c i ; cV; cA; cBg
are of the order one. These constants are completely
model-dependent, for example, the nonrenomalizable
terms in Eq. (B1) might come from integrating out some
modes of massM� propagating in a loop process such that
ci � N =�4��2, being N the massive mode’s degree of
freedom. It is straightforward to show that in the effective
four dimensional theory we get different mass scales asso-
ciated with bulk fields and branes fields as along as M� �
MP. These are given by
V0 � cVF2S (B2)
MA � cA
FS
MP

M2�i � c�i

�
FS
MP

�
2

(B3)
MB � cB
FS
M�

M2 i � c i�
FS
M�

�2 A�i;j � c�ij
FS
M�

:

(B4)
The vacuum energy (V0) would dominate the total energy
density during inflation providing the typical expansion
rate (the Hubble constant) as12
H2 �
V0
3M2P

�
cV
3

�
FS
MP

�
2
�
cV
3c�i

M2�i : (B5)
The bulk mass scale (M�i) would give us, for example, the
inflaton mass. Therefore, in order to satisfy the slow-roll
condition during inflation (M�i < H ) it turns out from
(B5) that we just need some tuning on the constants ci, i.e.
3c�i < cV . Finally, the Brane II mass scale would define
the typical MSSM soft term, MSUSY �M i �O �TeV�.
Notice that in general we would haveH� MSUSY which is
completely different from what happen in the normal four
dimensional supersymmetric hybrid inflationary models
where H �MSUSY [25].
already stabilized before inflation takes place which means that
only the four dimensional space is inflated away. In the case that
all de 4
 d-dimensions feel inflation at the same time, the
Hubble constant would be given by H2 � V0=�3M

2
�� instead

[40].
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