
PHYSICAL REVIEW D 71, 103511 (2005)
Spherically symmetric, static spacetimes in a tensor-vector-scalar theory

Dimitrios Giannios
Max Planck Institute for Astrophysics, Box 1317, D-85741 Garching, Germany

(Received 28 February 2005; revised manuscript received 31 March 2005; published 17 May 2005)
1550-7998=20
Recently, a relativistic gravitation theory has been proposed [J. D. Bekenstein, Phys. Rev. D 70, 083509
(2004)] that gives the modified Newtonian dynamics in the weak acceleration regime. The theory is based
on three dynamic gravitational fields and succeeds in explaining a large part of extragalactic and
gravitational lensing phenomenology without invoking dark matter. In this work, I consider the strong
gravity regime of TeVeS. I study spherically symmetric, static, and vacuum spacetimes relevant for a
nonrotating black hole or the exterior of a star. Two branches of solutions are identified: in the first, the
vector field is aligned with the time direction, while in the second, the vector field has a nonvanishing
radial component. I show that in the first branch of solutions the � and � parametrized post-Newtonian
(PPN) coefficients in TeVeS are identical to these of general relativity, while in the second the � PPN
coefficient differs from unity, violating observational determinations of it (for the choice of the free
function F of the theory made in Bekenstein’s paper). For the first branch of solutions, I derive analytic
expressions for the physical metric and discuss their implications. Applying these solutions to the case of
black holes, it is shown that they violate causality (since they allow for superluminal propagation of
metric, vector, and scalar waves) in the vicinity of the event horizon and/or that they are characterized by
negative energy density carried by the fields.
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I. INTRODUCTION

On cosmological scales, Newtonian gravitational theory
underpredicts the acceleration of stars and gas. Fur-
thermore, galaxies and clusters of galaxies show anoma-
lously large gravitational lensing when only baryonic mat-
ter is taken into account. A natural ‘‘cure’’ for these
discrepancies is to assume the existence of dark matter,
which dominates over visible matter [1–5]. Such dark
matter might solve the ‘‘missing mass’’ problem within
the standard theory of gravity (i.e., general relativity or
GR). For this picture to be complete, however, the origin of
dark matter needs to be identified.

A second approach to the acceleration discrepancy and
lensing anomaly is to look for alternative theories of grav-
ity that modify GR on large scales. Among many other
attempts, the modified Newtonian dynamics (MOND)
paradigm has been proposed [6,7]. It is characterized by
an acceleration scale a0 so that

~��j ~aj=a0� ~a � �r�N; (1)

where �N is to be understood as the Newtonian potential,
~��x� � x for x� 1, while ~��x� � 1 for x� 1.

This empirical law has been very successful in explain-
ing the rotation curves in a large number of (spiral, low
surface brightness, and elliptical) galaxies using the ob-
served distributions of gas and stars as input [8–10].
MOND can also explain the observed correlation between
the infrared luminosity of a disk galaxy LK and the asymp-
totic rotational velocity va (i.e., the Tully-Fisher law: LK /
v4a [11]), on the assumption (suggested by population syn-
thesis models) that the M=LK ratio is constant.
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However, MOND is merely a prescription for gravity
and not a self-consistent theory. It violates, for example,
conservation of momentum and angular momentum and
does not provide the formulation to describe light deflec-
tion or to build a cosmological model. A theory of gravity
is needed that has the MOND characteristics in the weak
acceleration limit but also has full predictive power.

In this context, a new relativistic theory of gravity has
been introduced by Bekenstein [12]. It consists of three
dynamical gravitation fields: a tensor field (g��), a vector
field (U�), and a scalar field (�) leading to the acronym
TeVeS. The theory involves a free function F, a length
scale ‘ (that can be related to a0), and two positive dimen-
sionless constants �, K.

TeVeS gives MOND in the weak acceleration limit (and
therefore inherits the successes of MOND on a large scale),
makes similar prediction on gravitational lensing as GR
(with dark matter), and provides a formulation for con-
structing cosmological models. As a drawback, however,
one can mention that TeVeS still appears to need dark
matter to address the cosmological matter problem, i.e.,
the fact that observations require that the source term of
Friedmann’s equations is a factor of 
6 the baryonic
matter density.

A self-consistent theory must be causal (i.e., not to allow
for superluminal propagation of any measurable field or
energy) and in TeVeS this is the case provided that �> 0
(see Ref. [12], Sec. VIII). It can be shown that, for a range
of initial conditions, Friedmann-Robertson-Walker cosmo-
logical models with flat spaces in TeVeS expand forever
with 0<�� 1 throughout. Moreover, in the vicinity of a
star embedded in this cosmological background � is still
-1  2005 The American Physical Society
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positive. So, in a wide range of environments, TeVeS has
been shown to be causal.

The predictions of the theory have thus been explored to
some extent for a range of strengths of the gravitational
field: from the MOND limit to the post-Newtonian correc-
tions in the inner solar system. The strong gravity regime
(e.g., in the vicinity of a black hole or a neutron star) of
TeVeS has not been studied. This regime is a topic of this
work. The motivation for this work is twofold. First, it is
interesting to see how the physics of compact objects (i.e.,
black holes, neutron stars) differ in TeVeS with respect to
GR and what constraints (if any) observations can put on
its free parameters. Second, one can check the consistency
of the theory (e.g., its causality, positivity of energy carried
by the fields) in these extreme conditions.

In Sec. II, I summarize the fundamentals of TeVeS and
in Sec. III I consider its strong gravity limit. I limit myself
to static, spherically symmetric, and vacuum spacetimes
relevant for a nonrotating black hole or the exterior of a
star. Two branches of solutions are identified: in the first
the vector field is aligned with the time direction, while in
the (not previously explored) second branch the vector field
has a nonvanishing radial component. I show that the� and
� parametrized post-Newtonian (PPN) coefficients in
TeVeS are identical to those of GR in the first branch of
solutions, while the � PPN coefficient differs in the sec-
ond. For the choice of the free function F made in
Ref. [12], I find that TeVeS predicts a value for � that is
in conflict with recent observational determinations of it. In
Sec. IV, I consider the first branch of solutions and derive
exact solutions for the metric for arbitrary values of the
parameters of the theory. The observational properties of
the black holes in TeVeS are discussed in Sec. Valong with
the issue of superluminal propagation of waves in the black
hole vicinity. Conclusions are given in Sec. VI.
II. THE BASIC EQUATIONS OF TEVES

TeVeS is based on three dynamical gravitational fields: a
tensor field (the Einstein metric g��), a 4-vector field U�,
and a scalar field�with an additional nondynamical scalar
field �. The physical metric ~g�� in TeVeS is connected to
these fields through the expression
~g �� � e�2�g�� � 2U�U� sinh�2��: (2)
The total action in TeVeS is the sum of four terms Sg, Ss,
SU, and Sm (see Ref. [12]), where Sg is identical to the
Hilbert-Einstein action and is the part that corresponds to
the tensor field, while Ss, SU, Sm are the actions of the two
scalar fields, the vector field, and the matter, respectively.
The basic equations of TeVeS are derived by varying the
total action S with respect to g��, �, �, U�.
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Doing so for g��, one arrives at the metric equations

G�� � 8�G� ~T�� 
 �1� e4��U� ~T���U�� 
 ����


���; (3)

where a pair of indices surrounded by parentheses stands
for symmetrization, i.e., A��B�� � A�B� 
 A�B�, the
G�� denotes the Einstein tensor for g��, ~T�� is the energy
momentum tensor, and

��� � �2��;��;� � 1
2g

�"�;��;"g�� �U��;��U���;��

� 1
2U

"�;"g���� �
1
4G‘

�2�4F�kG�2�g��; (4)

��� � K�g�"U��;��U�";�� �
1
4g

��g�"U��;��U��;"�g���

� $U�U�; (5)

where a pair of indices surrounded by brackets stands for
antisymmetrization, i.e., A��B�� � A�B� � A�B�.

Similarly, one derives a scalar equation that can be
brought into the form

���k‘2h�"�;��;"�h
���;��;�

� kG�g�� 
 �1
 e�4��U�U�� ~T��; (6)

where h�� � g�� �U�U� and ��y� is defined by

��F��� � 1
2�

2 _F��� � y; (7)

where _F � dF=d�. The scalar field � is given by

kG�2 � ��k‘2h���;��;��: (8)

Note that the form of the function F��� [or, equivalently,
y���] is not predicted by the theory and is essentially a free
function. In next section I give the form used in
Bekenstein’s paper. As it will turn out, however, the results
derived here are essentially independent of the exact choice
of F��� and quite general. On the other hand, our final
conclusions do depend on the choice of F, since it influ-
ences the way in which observations put constraints on the
parameters of the theory (see, for example, Sec. ).

Finally, the vector equation is derived through variation
of S with respect to U�

KU��;��
;� 
 $U� 
 8�G�2U��;�g���;�

� 8�G�1� e�4��g��U� ~T��; (9)

where U� � g��U� and $ is a Lagrange multiplier. These
four equations determine $ and three of the components of
U�, with the fourth being determined by the normalization
of the vector field

g��U�U� � �1: (10)

A. The function F

The function F��� [or, equivalently, of y���] is a free
function since there is no theory for it. One has large
-2
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freedom in choosing the form of F, each to be checked on
implications for cosmological models, galactic rotation
curves, and constraints from measurements in the outer
solar system. Bekenstein in Ref. [12] made the following
choice:

y��� �
3

4

�2��� 2�2

1��
(11)

which, using Eq. (7), leads to

F��� �
3

8

��4
 2�� 4�2 
�3� 
 4 ln�1���

�2 : (12)

It can be shown that the range 0<�< 1 (i.e., y > 0) is
relevant for quasistationary systems and 2<�<1 (i.e.,
y < 0) for cosmology. For this specific choice of F���, one
can put a lower limit on the value of the � parameter of the
theory so that it is not in conflict with the measured
motions of planets of the outer solar system (see
Ref. [12], Sec. IV). On the other hand, small values of �
are relevant for cosmological models. Together, these con-
straints indicate a value of � around 
0:03. It should be
stressed that it depends on the specific choice of the form
of F���.

The Newtonian limit of a spherically symmetric system
has been explored in Sec. IV C of Ref. [12], where it is
shown that for gravitational accelerations j ~aj=a0 �
8�2=�2 the quantity y! 1 and, consequently, �! 1.
As an arithmetic example, at Earth’s and Mercury’s orbit
� differs from unity by about 2� 10�6 and 5� 10�8,
respectively, for the specific choice (12) of function F
and � � 0:03. Since in this study we focus on the strong
gravity limit, we can safely take � � 1 and, therefore, [see
Eq. (8)]

�2 �
1

�G
: (13)

Strictly speaking, � has been shown to be of order unity in
the Newtonian limit but not necessary in the relativistic
limit. However, using the analytic solutions derived in
Sec. IV of this work, I have checked that taking � � 1 is
an excellent approximation also in this limit.
III. SPHERICAL SYMMETRIC, STATIC
SPACETIMES IN TEVES

From this point on, we focus on the strong gravity limit
of TeVeS and explore the spacetime in the vicinity of a
spherically symmetric mass. The isotropic form of a
spherical symmetric, static metric is

g��dx
�dx� � �e"dt2 
 e) �dr2 
 r2d+2 
 r2 sin2+d’2�;

(14)

where both " and ) are only functions of r. For the static
system of our case, the vector field has two nonvanishing
components
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U� � �Ut;Ur; 0; 0�; (15)

where Ut and Ur are functions of the radial coordinate.
Taking � � ��r�, the scalar-field equation (6) in vac-

uum may be written as

e��"
3)�=2

r2
�r2e�"
3)�=2�0�e�) � �Ur�2��0 � 0; (16)

where a prime stands for ordinary derivative with respect
to r.

Equation (16) can be integrated once to give

�0 � C
e��"
3)�=2

r2�e�) � �Ur�2�
; (17)

where C is an integration constant. To determine this
constant, one must consider the source of the gravitational
field. An analysis relevant for an extended source (e.g., a
star) is given in Bekenstein [12] Sec. V, where it is shown
that one can define the ‘‘scalar’’ mass ms as a (non-
negative) particular integral over ~. and ~P (defined as the
proper energy density and pressure expressed in the physi-
cal metric) of the star’s matter so that the integration
constant is given by

C � �Gms=�4��: (18)

The r component of the vector equation (9) (the + and �
components vanish because of the symmetry of the prob-
lem under consideration) can be brought into the form

Ur
�
$


��Gms�
2

2�
e��"
4)�

r4�e�) � �Ur�2�2

�
� 0: (19)

This equation shows that there are two cases: either Ur

vanishes or one has a constraint on the Lagrange multiplier
$. In the former case, the vector field is aligned with the
time direction, while in the latter, there is a nonvanishing
radial component of the vector field. Since the mathemati-
cal analysis of the two cases is rather different, I examine
them separately.

A. Case I: The vector field is aligned to the time
direction

When Ur vanishes, the vector field is determined by the
normalization expression (10), which yields

U� � �e�"=2; 0; 0; 0�: (20)

The physical metric is then given by Eq. (2), which reduces
to ~gtt � gtte

2�, ~gii � giie
�2�. To determine ~g��, one

needs to solve for " and ) and, through them, for the metric
g�� and the scalar �. To this end, the differential equations
resulting from the tt, rr, and ++ components of the metric
equation (3) must be solved. This is equivalent to the
procedure one follows to arrive at the GR solutions.

Since we are looking for vacuum spacetimes, the terms
that include the matter energy density in Eq. (3) are zero.
So, we are left with the ��� and ��� terms. The ��� [see
-3
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Eq. (4)] contains �;� terms, while the last term depends on
the function F. In the strong acceleration limit, it is pos-
sible to show (see Sec. V in Ref. [12]) that the last term is
completely negligible in comparison to the other terms.
This is exactly the limit we are interested in here and so we
will neglect the F term. Using Eqs. (4), (17), and (20), we
then find

�tt �
�Gm2

s

32�2

e�2)

r4
; (21)

�rr �
�Gm2

s

32�2

e��)
"�

r4
; (22)

�++ � �
�Gm2

s

32�2

e��)
"�

r2
: (23)

To proceed with the calculation of the ��� terms [de-
fined by Eq. (5)], one first needs to compute the Lagrange
multiplier $I (where the index I is used to show that it
corresponds to case I) from the t component of Eq. (9) (the
other components vanish because of the symmetry of the
problem and because we study the case where Ur � 0).
Using Eq. (20) and thatU��;� � 0 and ~T�� � 0, we have

$I � �Ke�)
�
"00

2


"0) 0

4


"0

r

�
: (24)

Substituting Eqs. (20) and (24) in (5), we get

�tt � Ke"�)
�
�"0�2

8


"00

2


"0) 0

4


"0

r

�
; (25)

�rr � �
K
8
�"0�2; (26)

�++ �
K
8
�r"0�2: (27)

We can now use the tt and rr components of the metric
equation [Eq. (3)] to derive a system of ordinary differen-
tial equations for ) and ". Using Eqs. (21), (22), (25), and
(26) in (3), and after some rearrangement, one finds that

) 00 

�) 0�2

4



2) 0

r
� �

��Gms�
2

4�
e��)
"�

r4

� K
�
�"0�2

8


"00

2


"0) 0

4


"0

r

�
(28)

and

�) 0�2

4


) 0"0

2


) 0 
 "0

r
�
��Gms�

2

4�
e��)
"�

r4
� K

�"0�2

8
:

(29)

These two equations are, in principle, enough to solve the
metric. However, it turns out that it is useful to make use
also of the ++ component of the metric equation
103511
) 00 
 "00

2



�"0�2

4


) 0 
 "0

2r
� �

��Gms�
2

4�
e��)
"�

r4


 K
�"0�2

8
: (30)

The study of the properties of these equations for the
appropriate boundary conditions constitutes most of the
rest of this work.

B. Case II: The vector field has a nonvanishing r
component

In the nonaligned case, Ur � 0, the Lagrange multiplier
$II is given by [see Eq. (19)]

$II � �
��Gms�

2

2�
e��"
4)�

r4�e�) � �Ur�2�2
: (31)

The components of the vector field are connected to the
functions " and ) through the normalization equation (10)

e"�Ut�2 � e) �Ur�2 � 1; (32)

and the t component of the vector equation (9) (given in a
compact form) yields

KU�t;��
;� �

��Gms�
2

2�
e��"
4)�

r4�e�) � �Ur�2�2
Ut � 0; (33)

where the U�t;��
;� term involves derivatives of the four

unknown functions ", ) , Ur, Ut.
The last two expressions can be combined with the tt

and rr components of the metric equation (3) to arrive at a
closed system of four differential equations with four un-
known functions. To this end, one has to calculate the
relevant ��� and ��� terms. Equation (4) yields

�tt �
�Gm2

s

32�2

e�3)

r4�e�) � �Ur�2�
; (34)

�rr �
�Gm2

s

32�2

e��"
3)�

r4�e�) � �Ur�2�2
�1� 3�Ur�2�: (35)

For �tt and �rr we have [see Eq. (5)]

�tt �
K
2
e2"�) �"0Ut 
 �Ut�0�2 


��Gms�
2

2�

�
�Ut�2e"�4)

r4�e�) � �Ur�2�2
; (36)

�rr � �
K
2
e"�"0Ut 
 �Ut�0�2 


��Gms�
2

2�

�
�Ur�2e��"
2)�

r4�e�) � �Ur�2�2
: (37)

The task in the next subsection is to study the asymptotic
behavior of the physical metric far from the source in the
-4
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two cases I and II and derive the post-Newtonian correc-
tions predicted by TeVeS.

C. Asymptotic behavior of the metric far from
the source

Far from the source (but not too far, so that the MOND
corrections can be safely neglected), the metric can be
taken to be asymptotically flat. Expanding the e) , e" to
powers of r=rg (where rg is a length scale to be deter-
mined), we have

e" � 1� rg=r
 a2�rg=r�2 
 � � � (38)

and

e) � 1
 b1rg=r
 b2�rg=r�2 
 � � � ; (39)

where the proportionality constant of the second term in
the expansion (38) has been absorbed by rg. We now
proceed to calculate the coefficients ai and bi of the metric
and equivalent coefficients of the physical metric ~g�� for
the two cases I and II (defined in the previous section).

1. Case I: Ur � 0

If the vector field is aligned with the time direction, one
can substitute the expansions (38) and (39) into the metric
equations (28) and (29), match coefficients of like powers
if 1=r, and solve for the coefficients ai, bi. Doing so to the
order of �1=r�3, the metric has the form

e" � 1�
rg
r



1

2

r2g
r2

�
1

96

�
18


2�
�

�
Gms

rg

�
2
� K

� r3g
r3

(40)

and

e) � 1

rg
r



1

16

�
6�

2�
�

�
Gms

rg

�
2

 K

� r2g
r2



1

96

�
6�

10�
�

�
Gms

rg

�
2

 5K

� r3g
r3
: (41)

In this expansion, one can see that the first corrections
introduced by TeVeS with respect to the Schwarzschild
metric appear in the �rg=r�2 term in e) and in the �rg=r�3

term in e".
Actually, these asymptotic expansions differ from ex-

pressions given in Ref. [12] [compare Eqs. (40) and (41) of
this work with Eqs. (89)–(91) in Sec. Vof [12]]. The reason
for this difference is a sign error in the �1 term of the
Lagrange multiplier in Bekenstein’s Eq. (82) (see also the
erratum of Ref. [12]). Because of this discrepancy, we need
to rederive the post-Newtonian corrections predicted by
TeVeS. The physical metric ~g�� is given by the expressions
~gtt � gtte2�, ~gii � giie�2�; so we still need the asymptotic
behavior of �. Integrating (17) and using Eqs. (40) and
(41), we have
103511
��r� � �c �
�Gms

4�r
�
�Gms

192�

�
1


�
�

�
Gms

rg

�
2
�
K
2

� r2g
r3


O�r�5�; (42)

where �c is the cosmological value of � at a specific
epoch, which can be absorbed by rescaling of the t and r
coordinates: t0 � te�c and r0 � re��c . Doing so and drop-
ping the primes for simplicity in the notation, the physical
metric is

~gtt � �1

�
�Gms

2�

 rg

�
1

r
�

1

8

�
2rg 


�ms

�

�
2 1

r2



1

192

�
2rg 


�Gms

�

��
4
�
�Gms

�rg

 2

�
2

 2



2�
�

�
Gms

rg

�
2
� K

� r2g
r3


 � � � (43)

and

~grr � 1

�
�Gms

2�

 rg

�
1

r



1

16

�
2
�
�Gms

�rg

 2

�
2
� 2

�
2�
�

�
Gms

rg

�
2

 K

� r2g
r2


 � � � : (44)

Identifying the 1=r term of the tt component with 2GNm=r
(where GN is Newton’s constant), the physical metric can
be brought into the form

~g tt � �1
 2GNm=r� 2G2
Nm

2=r2 
 � � � (45)

and

~g rr � 1
 2GNm=r
 � � � ; (46)

which is identical to GR up to order of post-Newtonian
corrections. This means that one has to go to higher order
terms in TeVeS to obtain the corrections to GR. No con-
straints can be set to the parameters of TeVeS � andK from
measurements of the standard post-Newtonian coefficients,
if the radial component of the vector field vanishes.

At this point, one more comment is in order. By inspec-
tion of Eqs. (40) and (41) one notices that the quantity �

� �

�Gms=rg�2 � K=2 (times some factor) appears in all the
corrections introduced by TeVeS with respect to equivalent
of the general relativistic solution. This quantity will also
appear in the analytic solutions derived in Sec. IV of this
work.

Case II: Ur � 0

In the nonaligned case, one needs to consider the asymp-
totic expansion of the vector field components. For rg=r�
1 the vector field relaxes to its cosmological value, i.e.,
Ut ! 1 and Ur ! 0 (since there is no preferred spatial
direction). So, expanding to powers of rg=r, we have

Ut � 1
 c1rg=r
 c2�rg=r�
2 
 � � � (47)
-5
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and

Ur � d1rg=r
 d2�rg=r�2 
 � � � : (48)

From this point on, the method we follow to calculate the
post-Newtonian corrections is similar to that of the pre-
vious subsection. Substituting these expansions and
Eqs. (38) and (39) into Eqs. (32) and (33) and the tt and
rr components of the metric equation (3) and matching
coefficients of like powers if 1=r, we derive the coefficients
ai, bi, ci, and di. This analysis is carried out down to the
order necessary to calculate the post-Newtonian coeffi-
cients and gives for K � 1, �� 1

a2 �
1

2


��Gms�

2

4�r2g


K
8
; (49)

b1 � 1; (50)

b2 �
3

8
�

3

8

��Gms�
2

�r2g
�
K
16
; (51)

c1 �
1

2
; (52)

c2 �
1

16

�
5


4��Gms�
2

K�r2g
�

������������������������������
8��Gms�

2

K�r2g

 5

vuut �
; (53)

and

d1 �
1

4

�
1�

������������������������������
8��Gms�

2

K�r2g

 5

vuut �
: (54)

The � sign in the last two coefficients comes from the fact
that the normalization expression (32) contains squares of
the vector components. The 
 sign corresponds to Ur > 0
and vice versa.

The asymptotic behavior of the scalar field is found after
expanding and integrating Eq. (17)

��r� � �c �
�Gms

4�r

O�r�3�: (55)

The physical metric is given by Eq. (2) and a rescaling of
the r, t coordinates by t0 � te�c and r0 � re��c is needed
so that it can asymptote to the Minkowskian form. Notice,
however, that �c is not absorbed by this rescaling unlike
the Ur � 0 case, because of the more complicated connec-
tion of the physical metric with the fields of TeVeS in this
case. Assuming againK � 1, �� 1, and furthermore that
�c � 1, we have for the standard �, � post-Newtonian
coefficients, as predicted by TeVeS for the case that Ur �

0,

� � 1

�
8�



K
4

�c

�
3


�
�K

�

�����������������
2�
�K
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s �
(56)
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and

� � 1: (57)

Here again the � sign in the expression for� is determined
by the sign of Ur [see Eq. (54)].

While the � coefficient coincides with the GR predic-
tion, the � differs from unity. The best determination of �
comes from lunar laser ranging tests (see, for example,
Ref. [13]), which in combination with the value for �
measured by the Cassini experiment [14] yields �� 1 &

10�4 [15]. How does this result compare with the predic-
tion of Eq. (56)? It is important to note that the term
multiplied with the (positive) �c in Eq. (56) is positive
for any value of �=K > 0 and choice of the � sign, so one
has the inequality �� 1 � �=�8�� 
 K=4. For the choice
of the function F made in Ref. [12], � is constrained to be
’ 0:03, which results in �� 1 * 2:5� 10�3 (taking theK
term much smaller). This is in conflict with observations.

Summarizing, in this section I have shown that if the
vector field is aligned with the time direction, the standard
post-Newtonian coefficients derived by TeVeS are identi-
cal to those of GR, while if Ur � 0, the PPN correction for
the � coefficient is in conflict with best determinations of
�. This means that either one has to assume that Ur � 0 or
a different choice of the function F than that of Ref. [12]
has to be made so that TeVeS is in accordance with solar
system phenomenology.

IV. ANALYTIC SOLUTIONS WHEN Ur VANISHES

Until now, I have kept the study of spherical symmetric
spacetimes in TeVeS quite general. From this point on, I
focus on the branch of solutions for which Ur � 0; i.e., the
vector field is aligned to the time direction. As it turns out,
exact analytic solutions are possible in this case.

A. Solutions in the K ! 0 limit

The system of Eqs. (28)–(30) is rather complicated.
Here, we first consider some special cases and then use
the intuition we gain to derive the general solution. In the
simplest case where both � � 0 and K � 0, the metric
equations in TeVeS coincide with these in GR and their
right-hand side is zero (i.e., no source terms appear). In this
limit the integration of Eqs. (28) and (29) is straightfor-
ward, leading to the familiar GR solution

e" �
�
1� rg=4r

1
 rg=4r

�
2
; (58)

e) � �1
 rg=4r�
4; (59)

where the boundary conditions (40) and (41) have been
used. In this case, one can show [see Eq. (17)] that � is
constant at its cosmological value �c and that g�� coin-
cides with that predicted by GR. The physical metric is
given by ~gtt � gtte2�c , ~gii � giie�2�c . The factors e�2�c
-6
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can be absorbed by an appropriate rescaling of the t and r
coordinates, resulting in a physical metric equivalent to
that of GR.

As a next step toward the most general solution, we take
the limit K ! 0 but allow � to be arbitrary. In this limit we
essentially decouple the theory from the vector field, and
the metric equations become

) 00 

�) 0�2

4



2) 0

r
� �

��Gms�
2

4�
e��)
"�

r4
; (60)

�) 0�2

4


) 0"0

2


) 0 
 "0

r
�
��Gms�

2

4�
e��)
"�

r4
; (61)

and

) 00 
 "00

2



�"0�2

4


) 0 
 "0

2r
� �

��Gms�
2

4�
e��)
"�

r4
: (62)

It turns out that Eqs. (60)–(62) are equivalent to spherical
symmetric spacetimes in metric-massless scalar theories of
gravity. The exact solution was originally written down by
Buchdahl in Ref. [16] (see also Ref. [17]). Here, I will
briefly repeat the derivation.

From the addition of Eqs. (61) and (62), we find

2�"00 
 ) 00� 
 �"0 
 ) 0�2 
 6
"0 
 ) 0

r
� 0; (63)

which can be integrated once to give

"0 
 ) 0 �
4r2c

r�r2 � r2c�
; (64)

where we have introduced the integration constant r2c. This
constant can be evaluated by expanding Eq. (64) to powers
of 1=r and comparing with the expansions (40) and (41).
After some algebra, we find

rc �
rg
4

������������������������������
1


�
�

�
Gms

rg

�
2

s
: (65)

Equation (64) can be integrated again to yield

"
 ) � 2 ln
�
r2 � r2c
r2

�
; (66)

where the second integration constant has been set to unity
so that the asymptotic form of the solution is a flat space-
time (i.e., e"
) ! 1 for r! 1).

One verifies that, after setting

) 0 �
4r2c

r�r2 � r2c�
�

rg
r2 � r2c

(67)

and using Eq. (66) to derive "0, the metric equations are all
satisfied. After integrating for " and ) , one has the exact
solution for the metric components

e" �
�
r� rc
r
 rc

�
rg=2rc

(68)
103511
and

e) �
�r2 � r2c�2

r4

�
r� rc
r
 rc

�
�rg=2rc

; (69)

where rc is given by Eq. (65). It is straightforward to check
that, in the limit where �ms ! 0, one derives the well
known general relativistic expressions.

Having solved for the metric components, one can inte-
grate Eq. (17) to derive the r dependence of the scalar field
and then the physical metric through Eq. (2). However, the
results derived in this section are of limited generality since
they correspond to the K � 0 case, where the effect of the
vector field to the metric equations is ignored. The general-
ization of the solutions to the case where K � 0 is the task
of the next section.

B. Spherically symmetric, vacuum solution for the
metric for arbitrary �, K

We turn to the general case where both � and K are
nonzero. While at first sight the metric equations look quite
complicated in this case, it turns out that one can repeat the
procedure of the previous section to derive more general
spherical symmetric, vacuum solutions for the metric
which are identical to (68) and (69), provided that one
makes the substitution

�
�

�
Gms

rg

�
2
!

�
�

�
Gms

rg

�
2
�
K
2

(70)

in the definition of rc [Eq. (65)], i.e.,

rc �
rg
4

�����������������������������������������
1


�
�

�
Gms

rg

�
2
�
K
2

s
: (71)

In the �, K parameter plane, the line defined by

K �
2�
�

�
Gms

rg

�
2

(72)

has a special significance. With Eq. (72) rc � rg and the
metric is identical to the general relativistic one [18]. This
is a result of the fact that the energy density contributed by
the scalar is exactly canceled out by the negative energy
density of the �tt in the right-hand side of the tt component
of Eq. (3), i.e., 8�G�tt 
�tt � 0. Actually, when

K >
2�
�

�
Gms

rg

�
2
; (73)

the total energy density of vacuum contributed by the fields
is negative in the whole spacetime. This can have impor-
tant consequences for the theory since it may lead to
instability of the vacuum from the quantum point of view.

The behavior of the scalar field can be followed by
integrating Eq. (17) and the use of Eq. (66)

��r� � �c 

�Gms

8�rc
ln
�
r� rc
r
 rc

�
; (74)
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where �c stands for the cosmological value of the scalar
field at a specific epoch. Just as in metric-scalar theories,
one can see that, unless �ms � 0, the scalar field diverges
logarithmically at r � rc and that there is always a radius
r1 > rc where ��r1� � 0 and becomes negative further in.
I will return to this point in the next section where I discuss
how black holes look in TeVeS and how much they differ
from the ones predicted by GR.

The components of physical metric are related to ", ) ,
and � through the expressions (2), (68), and (69) that yield

~g tt � �

�
r� rc
r
 rc

�
a

(75)

and

~g rr �
�r2 � r2c�2

r4

�
r� rc
r
 rc

�
�a
; (76)

where a � �rg=2rc� 
 ��Gms=4�rc�.
The expressions (75) and (76) describe spherically sym-

metric, vacuum spacetimes; i.e., they describe the space-
time down to the surface of a star. The two dimensionless
parameters � and K of the theory provide the parameter
space that is to be explored. In addition to these, I have kept
the scalar mass ms and the gravitational radius rg as free
parameters so that the derived results are quite general and
applicable to the case of both a black hole and the exterior
of a star. In Appendix D of Ref. [12], a detailed description
of the procedure to calculate ms and rg in terms of its
gravitational mass mg of the star is given. Unfortunately,
this method is not applicable to the case of a black hole,
and a different approach is needed to determine ms and rg.
V. HOW DO BLACK HOLES LOOK IN TEVES?

The characteristic radius of the physical metric de-
scribed by Eqs. (75) and (76) is rc. At rc the tt component
of the metric vanishes and the question that arises is
whether and under which conditions rc is the location of
the horizon of a black hole. A first step toward answering
this question is to calculate the surface area at this radius,
which turns out to be proportional to ~grr�rc�. A black hole
must have a finite surface area at rc which [in view of
Eq. (76)] constrains a to be � 2.

A second constraint on a [19] comes from the demand
that there is no essential singularity at rc. For our solution,
the Ricci scalar R is

R �
2�a2 � 4�r2cr4�r� rc�a�4

�r
 rc�
a
4 : (77)

From this expression, one can see that the Ricci scalar is
finite when a � 2 or a � 4. Considered together, the two
constraints (i.e., of finite surface area and Ricci scalar at rc)
imply that only the value a � 2 describes a black hole.
Using the definition of a, we have that for a � 2
103511
rc �
rg
4


�Gms

8�
; (78)

and the physical metric has the form

~g tt � �

�
r� rc
r
 rc

�
2

(79)

and

~g rr �

�
1


rc
r

�
4
: (80)

This is exactly the GR solution after setting rc � GNm=2.
So, the physical metric in TeVeS is identical to that of GR
for a nonrotating black hole.

Furthermore, one can use the definition of rc [see
Eq. (71)] in Eq. (78) to solve for ms and finds

Gms

rg
�

1

��������������������������������
1
 �2� �

2��
�K
�

q
2� �

2�

: (81)

I have already shown in the previous section that when
ms � 0, there is always a region close to rc where the
scalar field turns negative. Bekenstein in Ref. [12], on the
other hand, has shown that TeVeS becomes acausal (i.e., it
suffers from superluminal propagation of metric, vector,
and scalar-field disturbances) when �< 0. As a result, the
theory appears to behave in an unphysical way in the
vicinity of our black hole solution. On the other hand,
our solutions have been derived under the assumption
that Ur � 0. Perhaps the causality problem can be over-
come by allowing for Ur � 0.
VI. CONCLUSIONS

Bekenstein’s recent relativistic gravitational theory
(TeVeS) that leads to MOND in the relevant limit has
been proposed as a modification to GR. TeVeS has several
attractive features; for example, it predicts the right amount
of gravitational lensing when only the observed mass is
used and provides a covariant formulation to construct
cosmological models.

The free parameters in TeVeS can be constrained by the
large extragalactic phenomenology. In this work, instead,
we have looked at TeVeS in the strong gravity limit. Two
branches of solutions are identified: the first is character-
ized by the vector field being aligned with the time direc-
tion, while in the (not previously explored) second branch
the vector filed has a nonvanishing radial component. I
have shown that the � and � PPN coefficients in TeVeS are
identical to these of GR in the first branch of solutions,
while the � PPN coefficient differs in the two theories in
the second. Despite the fact that the results derived here are
essentially independent of the exact choice of the free
function F of the theory, our final conclusions do depend
on it, since the choice of F influences the way in which
observations put constraints on the parameters of the the-
-8
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ory. For the second branch of solutions and for the choice
of the free function F made in Ref. [12], TeVeS predicts �
that is in conflict with recent observational determinations
of it.

For the first branch of solutions, I derive analytic ex-
pression for the physical metric. These solutions are an
extension of those that describe spherical symmetric space-
times in tensor-massless scalar theories and depend on the
values of the two dimensionless parameters �, K of TeVeS
and the ratio Gms=rg. One of the findings of this work is
that the energy density contributed by the vector field is
negative and, when K > 2�

� �Gms=rg�
2, the total energy

density of vacuum also becomes negative, possibly turning
it unstable from the quantum point of view.

In the case of a black hole, our solutions for the metric
are identical to the Schwarzschild solution in GR. On
103511
the other hand, these solutions are shown to be acausal in
the vicinity of the black hole. Possibly, the issues of the
negative energy density contributed by the vector field and
of causality close to a black hole do not appear in the case
where Ur � 0. In this case, however, a different choice of
the free function F will be needed so that TeVeS is not in
conflict with solar system phenomenology.
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