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Inhomogenized sudden future singularities
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We find that sudden future singularities of pressure may also appear in spatially inhomogeneous
Stephani models of the universe. They are temporal pressure singularities and may appear independently
of the spatial finite density singularities already known to exist in these models. It is shown that the main
advantage of the homogeneous sudden future singularities which is the fulfillment of the strong and weak
energy conditions may not be the case in the inhomogeneous case.
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I. INTRODUCTION

It has been shown by Barrow [1] that for Friedmann
cosmological models which do not admit an equation of
state which links the energy density @ and the pressure p, a
sudden future (SF) singularity of pressure may appear,
even for the matter fulfilling the strong energy condition
0 >0,0 + 3p >0, though violating the dominant energy
condition ¢ > 0, —@ < p < @ [2]. This is in contrast to the
most of the current observational discussion in cosmology,
mainly devoted to determining of the barotropic index w in
a barotropic equation of state p = wg, which tightly con-
straints the energy density and the pressure [3]. On the
other hand, the observational data interpreted by such an
equation of state cannot exclude a possibility of barotropic
phantom cosmological models [4]. These models violate
null energy condition ¢ + p > 0, and consequently all the
remaining energy conditions [5]. Besides, phantom models
allow for a Big-Rip (BR) curvature singularity, which
appears as a result of having the infinite values of the scale
factor a(r) at finite future. This is in opposition to a
curvature Big-Bang (BB) singularity which takes place in
the limit a — 0.

The common feature of BB and BR singularities is that
both ¢ and p blow up equally. This is not the case with a SF
singularity for which a blow up occurs only for the pressure
p, but not for the energy density Q. It is interesting that SF
singularities are similar to those appearing in spatially
inhomogeneous Stephani models of the universe [6], in
which they were termed finite density (FD) singularities
[7,8]. However, FD singularities occur as singularities in
spatial coordinates rather than in time (as SF singularities
do), which means that even at the present moment of the
evolution they may exist somewhere in the Universe [9—
11]. In this paper we show that sudden future (SF) singu-
larities (as temporal singularities) can be inhomogenized in
the sense, that they may appear in spatially inhomogeneous
models of the universe, independently of the spatial finite
density (FD) singularities allowed in these models. We also
show that the inhomogeneous Stephani models lead to
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energy conditions violation, which mainly refers to the
fact that they admit FD singularities.

The SF singularities appear in the simple framework of
Friedmann cosmology with the assumption that the
energy-momentum is conserved, so that one can write the
energy density and pressure as follows (following [1] we
assume 877G =c=1,k=0,%1)

at ok
=3(=+ =), 1
Y <a2 a2> (1)
i a®  k
p= —<27+f2+7>, @
a a a

From (2) one is able to notice that the singularity of
pressure p — oo occurs, when the acceleration d — —oo.
This can be achieved for the scale factor

alt) = A + (a, - A)(i>q - A(l - i)", 3)
tS tS
where a, = a(t,) with ¢, being the SF singularity time and
A, g, n = const. It is obvious from (3) that a(0) = 0 and so
at zero of time a BB singularity develops. For the sake of
further considerations it is useful to write down the deriva-
tives of the scale factor (3), i.e.,

i = qt,(a, — A)(Z)q_l + Aﬁ(1 _ t)”_l, (4)

N tS tS

a=alg =Dt~ A1) -a" (1)
&)

The main point is that the evolution of the Universe, as
described by the scale factor (3), begins with the standard
BB singularity at + = 0, and finishes at SF singularity at
t = t,, provided we choose

1<n<20<g=L (6)

For these values of n and ¢, the scale factor (3) vanishes,
and its derivatives (4) and (5) diverge at t = 0, leading to a
divergence of ¢ and p in (1) and (2) (BB singularity). On
the other hand, the scale factor (3) and its first derivative (4)
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remain constant, while its second derivative (5) diverge,
leading to a divergence of pressure in (2) only, with finite
energy density (1). This behavior means, for example, that
positive curvature (k = +1) Friedmann models may not
recollapse to a second BB singularity—instead they ter-
minate in a SF singularity [12].

II. INHOMOGENEIZED SUDDEN FUTURE
SINGULARITIES

Now, let us consider inhomogeneous Stephani models.
They appear as the only conformally flat perfect-fluid
models which can be embedded in a 5-dimensional flat
space [6,13]. Their metric in the spherically symmetric
case reads as (notice that we have introduced a
Friedmann-like time coordinate which eliminated one of
the functions of time in the original Stephani metric [8])

2 2 V
a

a? .
+ W[dr2 + rX(d6?* + sin*0d¢?)], @)
where
1
Vit,r)=1+ Zk(t)rz, (8)

and (...) = 0/0t. The function a(r) plays the role of a
generalized scale factor, k(r) has the meaning of a time-
dependent ‘“‘curvature index”, and r is the radial
coordinate.

Their analogy to SF singularity models is that they do
not admit any equation of state linking p to @ throughout
the whole evolution of the universe, although at any given
moment of the evolution, such an equation of state (varying
from one spacelike hypersurface to the other) can be
admitted. An analytic equation of state can also be admit-
ted at any fixed subspace with constant radial coordinate r,
but not globally [8]. For the sake of simplicity, first the
spherically symmetric models will be considered (note that
in [8,9] a time coordinate ¢ analogous to the cosmic time in
Friedmann models was marked by 7, which had nothing to
do with a common conformal time coordinate). The energy
density and pressure are given by [8]

_ _ L [a*@) | k()
o) = 3C2(1) = 3[612(0 - aQ(I)} ©)
V(t,r)
p(t, 1) = =3C2(1) + 2C(1)C (1) -2 (10)

V()
[ ]

and generalize the relations (1) and (2) to inhomogeneous
models.

We now show that it is possible to extend SF singular-
ities into inhomogeneous models. Following [8] we as-
sume that the functions k(z) and a(7) are related by
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with a = const. In fact, the limit « — 0 gives the
Friedmann models (cf. the discussion of the conditions to
derive such a limit in [8]). Inserting (11) into (10) we get

_ @)«
Q(t)_3[a2—(z) W} (12)

. .2 1 .2
p(t,r)=—ZE—a—2+2g——ar2<2a——2a'—a>.
a a a 4
(13)

From (13) one can see, that p — o0, when acceleration
ad — —oo for an arbitrary value of the radial coordinate r.
We can then say that we generalized SF singularities
(given, for example, by the scale factor (3)) onto an in-
homogeneous model of the universe.

However, it is very interesting to notice that in such a
generalization not only SF singularities appear, but also FD
singularities are possible for the radial coordinate r*> — oo.
These seem to be far away from us, and so not very
harmful, since > — oo defines an antipodal center of sym-
metry in the spherically symmetric Stephani models. The
advantage of these FD singularities is that they are able to
drive the current acceleration of the universe [10,14,15].

The procedure of inhomogenizing SF singularities may
be extended into the general Stephani models for which
there is no spacetime symmetry at all, and so they are
completely inhomogeneous. The most general Stephani
metric in cartesian coordinates (x, y, z) [6,13] reads as

2 2 V
Cl

where

2
% [dx? + dy* + dZ?],
(14)

Vit 3.9 = 1+ k0x = %0 + [y = yo(0F
+ [z — 20(0) 1%}, (15)

and x(, yo, z9 are arbitrary functions of time. Now the
general expression for the pressure is (the expression for
the energy density (9) remains the same)

. V(t,x,}"Z)]
—3C2(t) +2C(1)C(¢) v(zic(ty) 2)
[ a(t) ]

plt,x,y,2) = (16)

Inserting the time derivative of (9) and the function
V(t, x, y, z) from (15) into (16) gives

a? k
p(t,x,y,2) = —3—5—-3—> (17)
a a
ar.i _é® 1 .a [V(i’,f;)y’Z)]

a(t)
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It is easy to notice that SF singularity p — oo appears
with (3) for d — —oo, if (V/a)/(V/a) is regular and the
sign of the pressure depends on the signs of both a/a and
(V/a)/(V/a) . This proves that we can inhomogenize SF
singularities for a Stephani model with no symmetry.

In fact, SF singularities appear independently of FD
singularities whenever ¢ — —oo and the blow-up of p is
guaranteed by the involvement of the time derivative of the
function C() in (10).

That makes a complimentary generalization to the one
which extends SF singularities into the theories with ac-
tions being arbitrary analytic functions of the Ricci scalar
and into anisotropic (but homogeneous) models [16—18].

It appears that the main motivation for studying SF
singularities [1] was the fact that, unlike phantom models
[4], they obey the strong and weak energy conditions,
though they do not obey the dominant energy condition.
In this paper we raise the point that the question of possible
violation of the energy conditions for the inhomogenized
SF singularity models is a bit more complex than for the
homogeneous ones. From (10) and (13) for the strong,
weak and dominant energy conditions to be fulfilled we
have:

. 3 .2
o+3p= —6ﬁ+3g——ar2<2a——2d— a>>0,
a a 4 a

(18)
. 2 2

e+tp= —2g+2a—2————ar2<2——2a—a>>0,
a a

19)

In fact, the dominant energy condition requires fulfilling
both (19) and (20). Notice that in view of (9) the energy
density in inhomogeneous Stephani models is always posi-
tive, i.e.,

0> 0. 1)

This means that the strong and weak energy conditions are
still not violated if & — —oo, in analogy to homogeneous
models, provided
1.2, (22)
a 4
since the first term with ¢ in (18) and (19) must dominate
the second (remember that d — —o0). Notice that the
equality 1/a = ar*/4 may lead to a pressure singularity
avoidance in (13). Assuming that the generalized scale
factor a(z) >0, we conclude from (22) that the strong
and weak energy conditions are always fulfilled, if a <
0. However, an accelerated expansion for an observer at the
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center of symmetry at r = 0 can only be achieved, if & > 0
[15] (the spatial acceleration scalar reads as it = —2ar—
lower pressure regions are away from the center). This
means that the strong and weak energy conditions are not
necessarily fulfilled for the models with a > 0. In particu-
lar, they cannot be fulfilled at an antipodal center of
symmetry at r> — oo, unless a — 0 (where Big-Bang sin-
gularity appears and so BB and FD singularities coin-
cide—see Sec. III).

On the other hand, the first part of the dominant energy
condition may not be violated if the contribution from the
last term with ¢ in (20), which includes 2, does not out-
weigh the first one, i.e., when

1 a
- <=7 23
<3 (23)
This should be appended by the condition (19) which is

equivalent to (22), i.e., the dominant energy condition is
fulfilled if

1
Toap 1 24)
a 4 a

This is obviously a contradiction which means that, simi-
larly as in the isotropic Friedmann models, SF singularities
violate the dominant energy condition.

Such a violation of the dominant energy condition also
appears in M-theory-motivated ekpyrotic models in which
p >> 0 during recollapse [19].

Let us now discuss the problem of the possible energy
conditions violation in the general Stephani model. Using
(9) and (17) we get for the strong, weak, and dominant
energy conditions

.2 . . .2
0+3p = —60—2—6%+3E[2E—2a—
a a a a

a2

[V(t,x,y,z)]

1 ) tl([)
T ?<k5 - 2k>} T 70 @9
a(r)

V(t,x,y,2)
[
V(%27 ’
[ a([iz]

(26)

[V(t )(Ci z)]
al(t
[V(tx Y, z)] > 0. (27)
a(t)

Obviously, the dominant energy condition requires fulfill-
ing both (26) and (27). Before we go any further, using
(15), we note that

103505-3



MARIUSZ P. DABROWSKI

Vit,xy2) _

) (28)

= x4 = P+ = 20
a a

R R e G (Rt L s

el Al x0)iy

+ (y —yo)yo + (2= 20)20]- (29)

It is important to notice that the ratio of (28) and (29) which
appears in the conditions (25)—(27) allows to cancel 1/a
from both the numerator and the denominator. Apart from
that, one is able to take @/a out in (29) and cancel it with
the same term standing in front of the last term in these
conditions. This basically means that, bearing in mind the
fact that ¢ — —oo, the strong and weak energy conditions
are fulfilled provided one of the expressions

1
Vi=1l+ é_lk[(x —x0)? + (v —yo)* + (z —2)*] (30)

Vo= (K~ ) =50 + =300 + 6~ 2]

k
=~ = xo)fo (0 — oo + (2~ 20)20] — 1,
3D

is negative. It is clear that for k(r) >0 (30) is always
positive, so that (31) must necessarily be negative and it
certainly does, at least in some regions of space. On the
other hand, for k(r) <0 (30) can be both positive and
negative which requires (31) to be negative and positive,
respectively. In conclusion, similarly as in the spherically
symmetric case, the strong and weak energy conditions
may be violated for inhomogenized SF singularities in
Stephani models. This is different from what we have for
isotropic SF singularities. Finally, one can easily notice
that in order to fulfill the dominant energy condition the
ratio of (30) to (31) should be simultaneously positive and
negative, which is a contradiction. This means that, like in
the isotropic case, a general Stephani model allows SF
singularities which always violate the dominant energy
condition. In conclusion, one can say that the problem of
the energy conditions violation by SF singularities in the
inhomogeneous models is more complex than in the iso-
tropic ones.

I11. INHOMOGENEOUS FINITE DENSITY
SINGULARITIES

In the context of temporal SF singularities of pressure
we will further briefly discuss the occurrence of spatial FD
singularities of pressure in the Stephani models and pos-
sible energy conditions violation. From (10) we can see
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that FD singularities appear whenever the radial coordinate
@
Under the choice of (11), we have (k/a)" = 0, and so the
singularities appear at > — oo. In general, it may not be so,

which was explicitly shown in [8]. For example, by choos-
ing

P =4 (32)

a(t) = at* + Bt + v, (33)
k(t) =1— a* = —4aa(t) + A, (34)

with
A=4ay+1- ,32, 35

the FD singularities appear for [8]
|r| =2/V—A. (36)

Of course the condition (11) is obtained in the limit A — 0
from (34) which moves FD singularities to an antipodal
center of symmetry at r> — oo, Having chosen y = 0, A =
1 — % in (33) (Model I of Ref. [10], called Dabrowski
model in Ref. [11]) the energy density and pressure are
then given by

1
e=3 *(at + B)*’ 37)
2
_ 1+ 2at(at + B)r (38)

(at + B)?
For the strong, weak and dominant energy conditions to be
fulfilled, respectively, we get the requirements

72

0 +3p = ~ba i T>0, (39)
1 —at(ar+ p)r?

et P =20 (40)
2

0o—p— 2 + at(at + B)r >0 @1

*(at + B)?

If @ > 0 (acceleration [15]), then the strong energy condi-
tion is violated if

tat+ B) >0, (42)

and this may happen independently of the radial coordinate
r. The weak energy condition is violated for the domain of
space in which

L > arar + p). 43)
;

With the strong energy condition violated, this gives a
weak energy condition violation only in some spatial do-
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main since the right-hand side of (43) has a positive value,
but including the center of symmetry at »r = 0. On the other
hand, for the decelerated expansion, & < 0, and the right-
hand side of (43) has a negative value, so the weak energy
condition is violated everywhere in the universe (i.e., for
all values of r). If the strong energy condition is not
violated and « > 0 (acceleration), then again there is a
weak energy condition violation for all values of r. If the
strong energy condition is violated, and a <0, then the
weak energy condition is violated only in some spatial
domain which, however, includes the center of symmetry
at r = 0. The dominant energy condition is violated for

1

p < —%at(at + B), (44)

which, combined with (43), gives
1 1
atlat + ) <5< — 5 at(at + B). (45)
r

This last condition can only be fulfilled either if & < 0 and
Hat+ B) >0, or if @ >0 and #(at + B) <O0. Then, at
least for these particular class of Stephani models, FD
singularities may lead to a violation of the energy condi-
tions in a similar way as BR singularities in phantom
cosmology do.

An interesting problem is a possible avoidance of SF and
FD singularities in the universe. SF singularities can easily
be avoided by imposing an analytic form of the equation of
state p = p(p). Even without this assumption, some other
ways of their avoidance by introducing quadratic in Ricci
curvature scalar terms [18], or by quantum effects [20], are
possible. On the other hand, a necessary condition to avoid
FD singularities in Stephani models comes from (10) and
reads as

()
o}

> 0. (46)
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In our special model (33) and (34) they can be simply
avoided, if

A>0. (47)

IV. CONCLUSIONS

In conclusion, we have shown that one is able to spa-
tially inhomogenize sudden future (SF) singularities in the
sense that these singularities do appear in inhomogeneous
models of the universe. However, despite homogeneous SF
singularities, they may violate the strong and weak energy
conditions in some regions of space, although they share
the dominant energy condition violation with homogene-
ous models. It shows that the problem of the energy con-
ditions violation for inhomogeneous models is more
complex than for homogeneous ones. A possible violation
of all the energy conditions by inhomogenized SF singu-
larities is similar to what happens to Big-Rip singularities
in phantom cosmologies. On the other hand, the dominant
energy condition is one of the assumptions of the positive
mass theorems and the cosmic censorship conjecture. In
the cosmological context, the violation of the dominant
energy condition leads to isotropization of a recollapsing
universe and also such a violation may change the status of
no-hair theorems.

Besides, we have noticed that, apart from sudden future
singularities, the inhomogenized models also admit finite
density (FD) singularities which are spatial rather than
temporal. In relation to this we have discussed an example
of an inhomogeneous model with spatial finite density
singularities of pressure and studied the domains of its
energy conditions violation.
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