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Lensed CMB power spectra from all-sky correlation functions
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Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra.
Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive
CMB observations. Methods for computing the lensed power spectra using a low-order perturbative
expansion are not good enough for percent-level accuracy. Nonperturbative flat-sky methods are more
accurate, but curvature effects change the spectra at the 0.3%—1% level. We describe a new, accurate, and
fast, full-sky correlation-function method for computing the lensing effect on CMB power spectra to better
than 0.1% at [ = 2500 (within the approximation that the lensing potential is linear and Gaussian). We
also discuss the effect of nonlinear evolution of the gravitational potential on the lensed power spectra.

Our fast numerical code is publicly available.
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L. INTRODUCTION

The CMB temperature and polarization anisotropies are
being measured with ever increasing precision. The statis-
tics of the anisotropies already provide valuable limits on
cosmological parameters, as well as constraints on early-
universe physics. As we enter the era of precision mea-
surement, with signal-dominated observations out to small
angular scales, nonlinear effects will become increasingly
important. One of the most significant of these over scales
of most interest for parameter estimation is weak gravita-
tional lensing by large-scale structure. Fortunately it can be
modeled accurately as a second-order effect: the linear
gravitational potential along the line-of-sight lenses the
linear perturbations at the last scattering surface (see e.g.
Refs. [1-3] and references therein). Modelling of fully
nonlinear evolution is not required for the near future on
scales of several arcminutes (corresponding to multipoles
[ = 2000) for the temperature and electric polarization
power spectra. Nonlinear corrections can easily be applied
to the lensing potential if and when required, provided that
its non-Gaussianity can be ignored [1].

In principle, the weak-lensing contribution to the ob-
served sky can probably be subtracted given sufficiently
accurate and clean high-resolution observations. Early
work in this area [4-7] suggested a limit on the accuracy
of this reconstruction due to the statistical nature of the
(unknown) unlensed CMB fields. More recently, it has
been argued that polarization removes this limit in models
where lensing is the only source of B-mode polarization on
small scales [8]. If subtraction could be done exactly we
could recover the unlensed Gaussian sky, and use this for
all further analysis. However current methods for subtract-
ing the lensing contribution are approximate, and not easy
to apply to realistic survey geometries. The result of im-
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perfect lensing subtraction is a sky with complicated, non-
Gaussian statistics of the signal, and significantly more
complicated noise properties than the original (lensed)
observations. For observations in the near future, a much
simpler method to account for the lensing effect is to work
with the lensed sky itself, modelling the lensing effect by
the expected change in the power spectra and their cova-
riances. The effects of lensing non-Gaussianities on the
covariance of the temperature and E-mode polarization
power spectra are likely to be small, but this will not be
the case for the B-mode spectrum once thermal-noise
levels permit imaging of the lens-induced B modes [9].
In this paper we discuss how to compute the lensed power
spectra accurately. The simulation of lensed skies and the
effect on parameter estimation is discussed in Ref. [10].
On scales where the non-Gaussianity of the lensing
potential can be ignored, the calculation of the lensed
power spectra is straightforward in principle. However,
achieving good accuracy on both large and small scales
for all the CMB observables is surprisingly difficult. The
lensing action on the CMB fields at scales approaching the
root mean square (r.m.s.) of the lensing deflection angle
( ~ 3 arcmin) cannot be accurately described with a first-
order Taylor expansion, as in the full-sky harmonic method
of Ref. [3]. There is not much power in the unlensed CMB
on such scales, but a first-order Taylor expansion still gives
lensed power spectra that are inaccurate at the percent level
for / = 1000. The lensed CMB on scales well below the
diffusion scale is generated by the action of small-scale
weak lenses on the (relatively) large-scale unlensed CMB,
and a Taylor expansion should become more accurate
again [11]. (However, nonlinear effects are also important
on such scales.) The breakdown of the Taylor expansion
can be easily fixed by using the flat-sky correlation-
function methods of Refs. [1,2], which can handle the
dominant effect of the lensing displacement in a nonper-
turbative manner. However, a new problem then arises on
scales where the flat-sky approximation is not valid. As
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noted in Ref. [3], this is not confined to large scales due to
the mode-coupling nature of lensing: degree-scale lenses
contribute significantly to the lensed power over a wide
range of observed scales. In this paper we develop a new
method for computing the lensed power spectra that is
accurate on all scales where non-Gaussianity due to non-
linear effects is not important. We do this by calculating the
lensed correlation functions on the spherical sky. This
allows us to include both the nonperturbative effects of
displacing small-scale CMB fluctuations, and the effects of
sky curvature.

This paper is arranged as follows. We start in Section II
with a brief introduction to CMB lensing, then in Sec-
tion III we review previous work on flat-sky correlation-
function methods and present our new full-sky method and
results. In Section IV we compare our new results with the
flat-sky correlation-function results of Refs. [1,2] and the
perturbative harmonic result of Ref. [3], and explain why
the latter is not accurate enough for precision cosmology.
The effect of nonlinear evolution of the density field on the
lensed power spectra is considered in Section V. We end
with conclusions, and include some technical results in the
appendices.

II. CMB LENSING

Gradients in the gravitational potential transverse to the
line of sight to the last scattering surface cause deviations
in the photon propagation, so that points in a direction h
actually come from points on the last scattering surface in a
displaced direction fi’. Denote the lensed CMB tempera-
ture by ©(fi) and the unlensed temperature by O (i), so the
lensed field is given by O(f) = @(fi’). The change in
direction on the sky can be described by a displacement
vector field a(fi) = Vi, so that (symbolically) i’ = f +
V. Here i is the lensing potential which encapsulates the
deviations caused by potentials along the line of sight.
More rigorously, on a unit sphere the point i’ is obtained
from fi by moving a distance |Vi| along a geodesic in the
direction of Vi¢/(fi), where V is the covariant derivative on
the sphere [12]. We assume that the lensing is weak, so that
the potentials may be evaluated along the unperturbed path
(i.e. we use the Born approximation). Lensing deflections
are a few arcminutes, but are coherent over degree scales,
so this is a good approximation.

In terms of the zero-shear acceleration potential W, the
lensing potential in a flat universe with recombination at
conformal distance y. is given by the line-of-sight integral

A Xx A P
Yy(h) = —2ﬁ dxW(yh: ny — ) XX

XX

Here we neglect the very small effect of late-time sources,
including reionization, and approximate recombination as
instantaneous so that the CMB is described by a single
source plane at y = y.. The quantity 1y, — y is the con-
formal time at which the photon was at position yfi. With

ey

PHYSICAL REVIEW D 71, 103010 (2005)

FIG. 1 (color online). The power spectrum of the lensing
potential for a concordance ACDM model. The linear theory
spectrum (solid line) is compared with the same model including
nonlinear corrections (dashed line) from HALOFIT [21] using
Eq. (67).
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In linear theory we can define a transfer function
Ty(k, n) so that W(k; n) = Ty(k, n)R(k) where R (k)
is the primordial comoving curvature perturbation (or other
variable for isocurvature modes). We then have
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where the primordial power spectrum is P (k). This can

be computed easily numerically using CAMB' [13], and a
typical spectrum is shown in Fig. 1.
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II1. LENSED CORRELATION FUNCTION
A. Flat-sky limit

We start by calculating the lensed correlation function in
the flat-sky limit, broadly following the method of Ref. [1].
We use a 2D Fourier transform of the temperature field

dzl

Ox) = [ 5_0We i, (6)

and the power spectrum for a statistically isotropic field is
then

(OMO*I)y =CcPs - 1'). (7)
Lensing remaps the temperature according to
O(x) = O(x + ), (8)

where in linear theory the displacement vector « is a
Gaussian field. We shall require its correlation tensor
(a;(x)a;(x)) to compute the lensed CMB power spectrum.

Introducing the Fourier transform of the lensing potential,
(1), we have

(& .
ao) =i [ 5 1wDen ©)
so that
&l :
TP L1,CYe™x=x) (10)

By symmetry, the correlator can only depend on §;; and the
trace-free tensor r(;r;, where r = x — x'. Evaluatmg the
coefficients of these two terms by taking the trace of the
correlator, and its contraction with rir/, we find

1
27

<ai(X)C¥j(X/)> =

(aj(x)a;(x'))

] dIPC)Jy(In8,; —

x ] Al BCYI, (1), (11)

where J,(x) is a Bessel function of order n. Note that the
trace-free term is analytic at » = 0 due to the small-r
behavior of J,(Ir). Following Ref. [1], let us denote
(a(x) - a(x’)) by Cy(r) so that

Calr) = — f Al BCY (7). (12)
Similarly we define the anisotropic coefficient
Cya(r) = iﬁ f diBCY 1y (Ir), (13)
so that
(a;(x)a;(x)) = ECgl(r)aij — Cy2 (17 7). (14)

The lensed correlation function &(r) is given by
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d?l

i) = (©00) = [ 55

Cl® eil~r<eil~[a(x)— a(x)] >,

(15)

where we have assumed that the CMB and lensing poten-
tial are independent (i.e. we are neglecting the large-scale
correlation that arises from the integrated-Sachs-Wolfe
effect and has only a tiny effect on the lensed CMB).
Since we are assuming « is a Gaussian field, - [a(x) —
a(x’)] is a Gaussian variate and the expectation value in
Eq. (15) reduces to

. , 1
(1o = exp( = (1 o = )P
1
= exp(— Elz[az(r)

+e0s2(dr — 0)Ca]) (10
where we have used I'l/7,;#; = > cos2(¢; — ¢,)/2 and
defined o(r) = C,1(0) — Cy(r). Here, e.g. ¢, is the angle
between I and the x-axis. The cos2(¢; — ¢,) term in
Eq. (16) is difficult to handle analytically. Instead, we

expand the exponential and integrate term by term.
Expanding to second order in Cy,, we find

&r) = iﬁ f ldlClelz"z(’)/z[(l + %l“Cél‘z(r))Jo(lr)
512 Can(PalIn) + z4c2 z(r)J4(lr)} a7

Expanding to this order is sufficient to get the lensed power

4x1077  6x10

2x107"7

FIG. 2. The functions o?(B) = Cy(0) — Cy(B) [solid line]
and Cy,(B) [dashed line] as a function of angular separation
B (in radians) for a typical concordance model. The results are
calculated using the full-sky definitions of Eqs. (35), and use the
linear power spectrum for C }/’
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spectrum to second order in c’; higher order terms in Cy; »
only contribute at the O(107%) level on the scales of
interest. Note that the exp(—1?0/2) term is easily handled
without resorting to a perturbative expansion in C}ﬂ. Since
o? is significantly less than Cq» (as shown in Fig. 2), the
perturbative expansion in Cy, converges much faster than
one in o . Equation (17) extends the result of Ref. [1] to
second order in Cy 5.

1. Polarization

The polarization calculation is also straightforward in
the flat-sky limit [14]. We use the spin-2 polarization P =
Q + iU, where Q and U are the Stokes’ parameters mea-
sured with respect to the fixed basis composed of the x and
—y axes. Expanding P(x) in terms of the Fourier trans-

forms of its electric (E) and magnetic (B) parts, we have
|
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dz
- ] k) -

where (9, — id,)?e"*/I* = —e *%1e* is a spin-2 flat-
sky harmonic. The polarization correlation functions are
defined as

P(x) = iB(l))e %biex  (18)

£.() = (NP REAHPRY),  (19)
£-(r) = (4 Px)* P(X)), 0)
£x(r) = (OX)e % P(x) e

where 7 — ¢, is the angle to rotate the x-axis onto the
vector joining x and x/, so that e.g. ¢*?P(x) is the
polarization on the basis adapted to x and x’. Then the
lensed correlation functions to second order in Cy, are

E.(n) = % f 1dI(CE + c;*)elzvz<r>/2[(1 + —614c§12(r)>10(1r) + _12 Can(NIo(1r) + — l4C§12(r)J4(lr)} (22)

i (r)—— f 1dI(CE — c,B)e-lz(f2<r>/2[<1 +16[4C212(r)>J4(lr)+12 Canlr)5 L) + 74001

n %mgm(r)%[fo(zr) n Jg(lr)]}

(23)

gx(r)=%7_ [ ldche12”2<r>/2[< +i614c212(r)>12(1r)+ 2c gl2(r) [Jo(lr)+J4(lr)]

+%Z4C212(r) [J2(1r) +16(”)]}

Here CF and C? are the E-mode and B-mode power
spectra, and Cf is the ®-E cross correlation. This is the
straightforward extension of the result in Ref. [14] to
higher order;> see that paper for further details of the
calculation.

The lensed &,(r) has the same structure as for the
temperature since the unlensed correlation functions in-
volve the same J,,(Ir), and there are no complications due
to the different local bases defined by the displacement r
and its image under lensing r — &’ + « since the phase
factors from the rotations cancel. This is not the case for
the lensed £_(r) and &x(r).

2. Limber approximation

At high [ the power spectrum Py (k) varies slowly
compared to the spherical Bessel functions in Eq. (4),
which pick out the scale k ~ [/ y. Using

>Note that we dlsagree with the statement in Ref. [14] that a
O(C"') expansion is very accurate Indeed CMBFAST 4.5 actually
uses the nonperturbatlve o term (a@ advocated here) rather than
the lowest-order series expansion given in the paper.

(24)

f K2k () ji (k') = 2—7;2 S(x—x) (5

we can Limber-approximate Cf’ as

872

cf ~—%

. . — xX\2
Y xdx Pyl x:mo — )()(X X) . (26)
0 X=X

Changing variables to k = [/ y, we find
Cyl(r) = 4WfdkjdX?w(k§ Mo — X)

*

X (X *X_ X )210(er), 27)

in agreement with Ref. [1] if we note that his P4 (k) =
Py (k)/(4mk?) outside radiation domination. Ref. [1] also
defines Cy,(r) as (in our notation)

Caa(r) = 4 f dk f Ay Py (k; 7o — x)

x (X X )sz(er), (28)

*

which is the Limber-approximation version of Eq. (13). For
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the results of this paper we do not use the Limber approxi-
mation, though the approximation is rather good.

B. Spherical sky

The flat-sky result for the lensed correlation function is
nonperturbative in o%(r) and this turns out to be crucial for
getting high accuracy in the lensed power spectrum on
arcminute scales. Consider the contribution to the lensed
correlation functions from the unlensed CMB at multipole
I. Both o2 and Cy, appear with a factor /> and so the
(dominant) />0 term cannot be handled accurately with a
low-order expansion at high /. Physically, this is because
the typical lensing displacement is then comparable to the
wavelength of the unlensed fluctuation, and so approximat-
ing the fluctuation as a gradient over the scale of the
lensing displacement is inaccurate. The error from this
gradient approximation on the lensed power spectra will
be large on any scale |I| where the dominant contribution is
from unlensed fluctuations with wave number I’ compa-
rable to the typical lensing displacement at scale |l — I'|.

As noted in the Introduction, the small-scale cutoff in the
power in the unlensed fluctuations due to diffusion damp-
ing means that the gradient approximation should not get
uniformly worse on small scales; the approximation should
be poorest on scales of a few arcminutes. We also noted
that the flat-sky approximation will be suspect on large
scales, and also on any scale where the dominant contri-
bution is from large-scale lenses, i.e. those for which their
mode-coupled wave number |I — I’| small. What is needed
for an accurate calculation (on all scales where nonlineari-
ties in the lensing potential are not important), is a non-
perturbative treatment of ¢ and a proper treatment of
curvature effects in the correlation functions. In this sec-
tion we show how to generalize the flat-sky calculation to
spherical correlation functions.

On the full sky we can expand the temperature field in
spherical harmonics

®(ﬁ) = Z®lelm(ﬁ)) (29)
Im

and the temperature correlation function is defined by
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£(B) = (0(n,)O(i,)), (30)

where 8 is the angle between the two directions (fi; - i, =
cosf3). The power spectrum is defined as the variance of the
harmonic coefficients CP = (|@,,,|?) for a statistically-
isotropic ensemble.

We define a spin-1 deflection field | = « - (ey + iey),
where e, and e are the unit basis vectors of a spherical-
polar coordinate system. Rotating to the basis defined by
the geodesic connecting 1i; and fi,, the spin-1 deflection
(denoted with an overbar in the geodesic basis) has real and
imaginary components

aq COS¢1 = mlé(ﬁl), aq Sil’llpl = gld(ﬁl)’ (31)
and similarly at i,. Here, @y = |a(ii;)] is the length of the
lensing displacement at fi; and ¢, is the angle it makes
with the geodesic from fi; to A, (see Fig. 3). In terms of
these angles we have the lensed correlation function

&(B) = (O(})O(f))) (32)
= > CP(¥,, (81}, (85)) (33)
Im

= N cPd,, (BXY (e, Y)Y}, (ar ). (34)

Imm’

The easiest way to see the last step is to put f; along
the z-axis, and fi, in the x-z plane so that fi} has polar
coordinates (ay, ;). The harmonic at the deflected
position n) can be evaluated by rotation: Y, (@) =
[D~1(0, B,0)Y,,,1(xs, ), where [DY,, ](h) is a spherical
harmonic rotated by the indicated Euler angles. We have
neglected the small correlation between the deflection
angle and the temperature so that they may be treated as
independent fields. The remaining average is over possible
realizations of the lensing field.

We assume the lensing potential is Gaussian, so the
covariance of the spin-1 deflection field can be determined
using the results

Gat)ato) = =5 2Ll et () = a8
l

21+ 1
T

(1a*(f)),a(h,)) = Z

i

As in the flat-sky limit, it is convenient to define o*(8) =

11+ 1)C)d} (B) = Cy(B). (35)

Cy1(0) — Cy(B). The covariance of the Gaussian variates

Nya(h)), I,a(b;), N, ah,), and I, @(fi,) are determined by Eq. (35). Transforming variables to «, i, a,, and ¢, we

find their probability distribution function
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Pr(ay, ay, ¢y, i) =

daa, e~ (1/2)(ay cosyy +ay cosi)? /(07 +2Cy = Cy1 )
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e—(l/Z)(a, sing; +a singy)? /(0% +2Cy +Cy1 2)

(2m)?

X

\/0'2 + 2Cg1 - Cgl,Z

e_(l/z)(al costy —ay cosihp)? /(07 +Cy1 2)

\/0'2 + 2’Cgl + Cgl,Z

e~ (1/2)(ay sing —a, sing,)* /(02 = Cy12)

Here and below we have left the dependence of o2, C

X . (36)
1[0'2 + Cgl,2 0-2 - Cgl,Z
, o 20+1 g 2l+1 -
. EO) =Y~ —CP=>"—C @y

and Cg, on B implicit. Our general strategy to evaluate
Eq. (34) is to expand Pr(a;, a, ¢y, ,) in Cy and Cy 5, but
not o, before performing the integral over the angles i,
and ¢, in the expectation value. The remaining integrals
over a; and «, then enter through functions of the form

Ximn = / wz—()zl@)l"“z/ d()da. (37
0 o°\o

Since terms involving Cy(/3) are suppressed at high /
(they do not appear in the flat-sky results), while at low /
the leading-order result neglecting C,; and Cy , altogether
is very accurate, we neglect terms involving Cy, entirely.
This approximation is very accurate [ < O(10™%)] (for
completeness the full second-order result is given in
Appendix C). As shown in Fig. 2 the values of Cy, are
much smaller than ¢, so a perturbative treatment in Cyn 18
sufficient as in the flat-sky case. Working to second-order
in Cy,, we find

~ 20+ 1 8
&~ ZI: yp Cz@{X%ood(l)o + ) 1)Cgl,2X(/)%)()dll—1
+ Cél,z(Xézood(l)o + X%zodlz—z)}’ (38)
2

where primes denote differentiation with respect to o
[note that the X;,, are implicit functions of B via
the dependence on ¢*(B)]. In Appendix B we develop
approximations for the integrals X;,,, which are accurate
for all /. Applying these approximations, the required X;,,,,,
are

XOOO ~ e*l(l+1)(r2/4 (39)

1
X0 = Z‘/(l +2)(1 — DIl + De UeD=20/4 " (40)

The expansion of these results to O(o?) may also be
derived straightforwardly by using the series expansion
of d’,,(a) for small a. (The smallness of o> guarantees
that the integral is dominated by the small « region).
However, it is important to retain the correct nonperturba-
tive form for high 1.

In the limit of large [ the limiting result d’,,(8) —
(=1)"™J,,_,(IB) shows that the full result of Eq. (38)
reduces to Eq. (17) in the flat-sky limit and is therefore
consistent. In the limit in which the separation angle
B — 0 we have

! l

where C 1® is the lensed power spectrum. This expresses the
fact that weak lensing does not change the total fluctuation
power.

1. Polarization

We can extend the previous calculation to polarization.
Defining Stokes’ parameters with the local x-axis along the
f-direction and y along — ¢, the quantities Q * iU are spin
+2, respectively. We can expand Q * iU in terms of the
spin-weight harmonics as [15]

(Q * lU)(ﬁ) = Z(Elm + iBlm)IZYlm(ﬁ): (42)
Im

which expresses P = Q + iU as the sum of its electric (E
or gradientlike) and magnetic (B or curl-like) parts. (Our
conventions for the polarization harmonics and correlation
functions follow Refs. [16,17]; see these papers for a more
thorough introduction). The polarization correlation func-
tions can be defined in terms of the spin *£2 polarization
defined in the physical basis of the geodesic connecting the
two positions. As for the temperature, we evaluate the
polarization correlation functions by taking f; along the
z-axis and 01, in the x-z plane at angle 8 to the z-axis. With
this geometry, the polar-coordinate basis is already the
geodesic basis connecting fi; and fi, so that the lensed
correlation functions are

£ (B) = (P*(f,)P(hy)), (43)
&_(B) = (P(n))P(fy)), (44)
& x(B) = (O(f,)P(i,)). (45)

Under a lensing deflection the polarization orientation is
preserved relative to the direction of the deflection (we are
neglecting the small effect of field rotation [8]), i.e. the
polarization undergoes parallel transport. The geometry of
the deflections is shown in Fig. 3.

We can easily evaluate the lensed polarization on the
connecting geodesic basis (between fi; and f,) as

P(A;) = P(ay, )e 2. (46)

The rotation angle i, is that needed to rotate the spin-2
polarization from polar coordinates (coinciding with the
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n;
a1
I
B
. /
o X
(0%} ~
ny
P2

FIG. 3. The geometry of the weak-lensing deflections (shown
without curvature for clarity).

n;-fi| basis at f}) to the geodesic basis connecting fi;
and n,.

For the lensed polarization at fi, a little more work is
required. Let y’ denote the angle between the geodesics
connecting fi, to i}, and i, (along the z-axis) to A} (see
Fig. 3). The lensed polarization at i, on the geodesic basis
adapted to fi; and fi, is then

B(f,) = P(f})e? X ¢ =210, 47)

We can write it} as the direction obtained by rotating a
direction with polar angles (a5, ¥,) by an angle 8 about
the y-axis, i.e. i), = D(0, B, 0)(ay, ). Writing P as (Q —
iU)*, and using Eq. (42), we have

PHYSICAL REVIEW D 71, 103010 (2005)

Using the rotation properties of the spin-s harmonics (see
Appendix A), we then find

i)(ﬁz) — eZi)(’e—Zilﬂze—ZiK Z (Elm + iBIm)*DZm/(Or B: 0)

Imm’
X ,Y (e ). 49)

The angle « is the rotation about i} that is required to bring
the polar basis there onto that obtained by rotating the polar
basis at (a,, i) with D(0, B, 0). Since the latter is aligned
with the geodesic basis adapted to fi, and i, we have k =
x' and the lensed polarization at fi, simplifies to

P(h,) = e % Z (Epy + iBy,)*d (B).Y5 (s, ).

Imm’

(50)

We can now quickly proceed to the following expressions
for the lensed polarization correlation functions:

£ = > (ci+chd,,.(B

Imm'

X <ezi¢]2Y1m(a1: 'ﬁl)zY;n/(a'Z: ‘/’2)3_2i¢2>, (51)

E_(B) = Z (CF—CByd. (B
Imm'
X (e 2 Y, (ay, 4),Y; (ag, gh)e¥2),
(52)

Ex(B) = > cfd., (BXYi(ay, $1),Y;, (e, dp)e 2¥2),

Imm’

(53)

where the expectation values are over lensing realizations.
Here, CF and C? are the power spectra (|E,|*) and
(IBj,u]?), respectively. The cross-correlation power spec-
trum is C¥ = (0O,,E},).

We evaluate the expectation values in Egs. (51)—(53)
following the earlier calculation for the temperature, i.e.
expanding Pr(a;, ay, ¢, ) to second order in Cy; , before
integrating. As for the temperature, C, terms contribute

negligibly (see Appendix C for the full result). We find the

P(h) = Z(Elm + iBy,)%, Y, (0). (48)  following results for the lensed polarization correlation
Im functions to second order in Cy5:
|
z 20+ 1 g B\fy2 i 1 2 /N2l I
& = Z yp= (CT + CPORXGnadyy + 2Cq0X 130X 101d5; + Cgp5[(Xpn)*diy + XoanXonodiolh (54)
Imm'
DR i Sl WO R (e 2l 2 0 1 Lo ooyt e 2 gl 4 oy2 gl
&= Z . (CT7 = CPNXady 5 + Cal X di—y + Xigpdy 5]+ ECgl,Z[z(XO22) dy_p + X5hodiy + Xapdy 411,
Imm’

(35)
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20 + 1 2X}
o= {onzxooodéz + Cyn —— 00 (X, pdt ) + Xipdi_y)
Imm’ l(l + 1)
1
+ = C212[(2X622X600 + X%,0)dh + Xan0Xaspd! 24]}, (56)
|
where 3. Numerical implementation
Xop = oL+ 1)—4]0? /4 (57) . The correlatiorll-.function methoq is inherently very effi-
cient, only requiring the evaluation of one-dimensional
1 4+ 1)—8/3102/4 sums and integrals. For an accurate calculation of C? it is
X = — 5V (I+2)(I = De 7, (58)  essential to compute the full range of the correlation func-
tion because it is sensitive to large and small scales.
1 However, when C? is not needed the lensing is only a
~ —_./ — ), —[l1+1)-20/3]02/4 ) 1 .

X3 2 (1 +3)(1 =2t PRI, 59 small-scale effect and we only need to integrate some of

Xaiy = T+ A0+ 30 = 20 = F)e W-1003
(60)

These expressions for the X;,,, are accurate to O(o?) at low
[, and have the correct nonperturbative form at high /.
Since only X and X, enter at lowest order, the other
exponentials may be further safely approximated as ~ X
since their contributions will be negligible at low /.

In the limit of zero separation 8 — 0 we have

21+ 1, -
£.(0) = Z—(c’f P =3+,
I
(61)

E_(0) = &(0) =0,

where CF and CP are the lensed E- and B-mode power
spectra, respectively. This shows that lensing does not
change the total polarization power, though it mixes E
and B modes as well as different scales.

(62)

2. CMB power spectra

Once the lensed correlation functions have been com-
puted, transforming to the CMB power spectra is straight-
forward using

Cp =2 [ EPdig(prcosp, (63

~ ~ 1 -
C—Cf =2 [ EB)lo(Bcosp, (69
Cracl=2m [ E(BdBrcoss, (65

)
m [ EBidyBacoss. (@)

For a further discussion of correlation functions and the
transform to power spectra see Ref. [17].

the angular range to compute £ (B) — &(B) (and hence the
lensing contribution C;, — C,). We find that using B, =
7r/16 is sufficient for 0.1% accuracy to [ = 2000, provid-
ing a significant factor of 16 gain in speed. Truncating the
correlation function does induce ringing on very small
scales, so if accuracy is needed on much smaller scales
the angular range can be increased. For all but very small
scales, and the C‘f spectrum, we can accurately evaluate the

[l
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FIG. 4 (color online). Difference between the lensed and un-
lensed temperature, cross correlation, and E-polarization power
spectra (top three plots), and the lensed B power spectrum
(bottom) for a fiducial concordance model. The unlensed model
has no tensor component (so no B-mode power), and the lensed
B power spectrum shown is not highly accurate due to the
neglect of nonlinear evolution in the lensing potential. The
magnitude of the lensing effect depends on the fluctuation
amplitude in the model; here the model has curvature perturba-
tion power A, = 2.5 X 1072 on 0.05 Mpc ™! scales and spectral
index n; = 0.99.
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sums over [ to compute the lensed correlation functions by
sampling only every 10th [/, yielding an additional signifi-
cant time saving.

Our code is publicly available as part of CAMB,” with
execution time being dominated by that required to com-
pute the transfer functions for the CMB and the lensing
potential. Once these have been computed, the time re-
quired to compute the unlensed C; and then lens the result
is about a hundred times less (if C¥ is not required accu-
rately). This means that efficient methods for exploiting
“fast” and ‘“‘slow” parameters [18,19] during Markov
Chain Monte Carlo parameter estimation can still be ap-
plied when lensing is accounted for via the lensed power
spectrum.

Sample numerical results for the lensed CMB power
spectra compared to the unlensed spectra are shown in
Fig. 4.

IV. COMPARISON OF METHODS

We are now in a position to compare our new, accurate
full-sky result with previous work. In Fig. 5 we compare
our result with the full-sky lowest-order perturbative har-
monic result of Ref. [3] [correct to O(C;/’)] for a typical
concordance model. We also compare to the flat-sky result
of Refs. [1,2] which is nonperturbative in o2. [We extend
their results to second order in Cgy, using Egs. (17) and
(21)]. In all cases we use an accurate numerical calculation
of C”, rather than the Limber approximation, and ignore its
nonlinear contribution.

It is clear that the lowest-order perturbative harmonic
method of Ref. [3] is not sufficiently accurate for precision
cosmology, with ~1% errors on the temperature and ~5%
on the E-mode polarization by / ~ 2000. These errors are
sufficient to bias parameters even with the planned Planck®
satellite observations. The perturbative harmonic result is
equivalent to expanding the correlation-function result
self-consistently to first order in C}/’. As discussed in
Sec. III B, this is inaccurate because /o in the isotropic
terms is not very small for large /, so many terms need to be
retained to get accurate results. It is possible to extend the
harmonic result to higher order [20], however the multi-
dimensional integrals required scale exponentially badly
with increasing order. Even a self-consistent expansion to
second order in C}p is not good enough at / > 2000, so at
least third order would be required. Furthermore we see
that for C? the method is also somewhat inaccurate on
large scales: because the B-mode signal comes from a wide
range of /, and the E-mode power peaks on small scales,
the nonperturbative effects can be significant on all scales.
In fact, the large-scale lensed E-mode power also receives
most of its contribution from small-scale modes since the

*http://camb.info
*http://sci.esa.int/planck
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FIG. 5 (color online). Comparison of our new result with the
o(C }/’) harmonic result of Ref. [3] (dashed line) and the flat-sky
nonperturbative result of Ref. [1], extended to second order in
Cg,» (solid line). The magnitude of the difference depends on the
exact model and we have neglected nonlinear contributions to
the lensing potential.

unlensed polarization power spectrum rises steeply with /
on large scales. However, lensing is still only a small
fractional effect for E-polarization on large scales and so
the perturbative expansion is relatively more accurate for E
than B.

The correlation-function methods can easily handle the
isotropic term nonperturbatively. The accurate flat-sky re-
sult is much more accurate than the lowest-order harmonic
full-sky result, with only ~0.3% curvature corrections to
the temperature.’ The polarization errors are rather larger,
with percent-level difference on CZ. Although this is
smaller than the effect of nonlinearities in the lensing
potential (see Section V), the latter can be accurately
accounted for with better modelling (e.g. Ref. [21]) or
simulations. While the accurate flat-sky result is probably
sufficient to Planck sensitivities, curvature effects must be
taken account for truly accurate results approaching the
cosmic-variance limit. Although the curvature is negligible
on the scale of the deflection angles, it is not negligible on
the scale of the lensing potential coherence length.
Computing our full-sky accurate result is not much harder

*Due to the ogposite sign of curvature and second-order
corrections in C;, the flat-sky correlation result correct to
O(Cy) is actually slightly more accurate than the result correct
to O(Cy,)-
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or slower than computing the flat result, so we recommend
our new calculation for future work.

Note that the absolute precision of the lensed results is
limited by the accuracy of the computed lensing potential
and the unlensed CMB power spectra. In particular, un-
certainties in the ionization history may generate errors
significantly above cosmic variance on the unlensed C;. We
use the RECFAST code of Ref. [22] that may well be
inaccurate at above the percent level® [23,24]. However if
the ionization history can be computed reliably to high
accuracy our new lensing method can then be used to
compute the lensed power spectra accurately.

V. NONLINEAR EVOLUTION

The most important assumption we have made so far is
that the lensing potential is linear and Gaussian. On small
scales this will not be quite correct. Although our method
does not allow us to account for the non-Gaussianity, we
can take into account the effect of nonlinear evolution on
the power spectrum of the lensing potential [and hence
o?(B) and Cyg,(B) [1]]l. On scales where the non-
Gaussianity of the deflection field is small this should be
a good approximation, assuming we have an accurate way
to compute the nonlinear power spectrum of the density
field.

We use the HALOFIT code of Ref. [21] to compute an
approximate nonlinear, equal-time power spectrum given
an accurate numerical linear power spectrum at a given
redshift. HALOFIT is expected to be accurate at the few
percent level for standard ACDM models with power law
primordial power spectra (but cannot be relied on for other
models, for example, with an evolving dark energy com-
ponent). We simply scale the potential transfer functions
Tw(k, n) of Eq. (5) so that the power spectrum of the
potential W has the correct nonlinear form at that redshift:

g)non-linear(k’ T])
Ty(k, 1) = Ty(k, 7)y[—Ls—"" 67
vk, m) = Ty (k ), Pyl ) (67)

Since nonlinear effects on C;” are only important where the
Limber approximation holds, Eq. (67) should be very
accurate.

The effect of the nonlinear evolution on the power
spectrum of the lensing potential is shown in Fig. 1.
Although there is very little effect on scales where the
power peaks (I ~ 60), nonlinear evolution significantly
increases the power on small scales. The corresponding
changes to the lensed CMB power spectra are shown in
Fig. 6. The temperature power spectrum C ,0 is changed by
= 0.2% for [ ~ 2000, but there are percent level changes
on smaller scales. Thus inclusion of the nonlinear evolu-
tion will be important to obtain results accurate at cosmic-

Shttp://cosmocoffee.info/viewtopic.php?t=174
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FIG. 6 (color online). The fractional change in the lensed C;
due to nonlinear corrections using HALOFIT [21] for the same
model as Fig. 4. The lensed C, are computed using our new
accurate method.

variance levels, but is not likely to be important at / << 2000
for the near future. The effect on the B-mode power
spectrum is more dramatic, giving a >6% increase in
power on all scales. On scales beyond the peak in the
B-mode power (I = 1000) the extra nonlinear power be-
comes more important, producing an order unity change in
the B-mode spectrum on small scales. On these scales the
assumption of Gaussianity is probably not very good, and
the accuracy will also be limited by the precision of the
nonlinear power spectrum. For more accurate results,
more general models, and on very small scales where the
non-Gaussianity of the lensing potential becomes impor-
tant, numerical simulations may be required (e.g. see
Refs. [25,26]).

There are, of course, other nonlinear effects on the CMB
with the same frequency spectrum as the primordial (and
lensed) temperature anisotropies and polarization. The
kinematic Sunyaev-Zel’dovich (SZ) effect is the main
such effect for the temperature anisotropies, and current
uncertainties in the reionization history and morphology
make the spectrum C IO uncertain at the few percent level at
[ = 2000 [27]. This is a little larger than the error in the
first-order harmonic lensing result, but this does not mean
that one should be content with the error in the latter.
Precision cosmology from the damping tail will require
accurate modelling of both lensing and the kinematic SZ
effect. Errors at the percent level in the lensing power on
these scales would seriously limit our ability to constrain
reionization scenarios with future arcminute-resolution ob-
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servations. For the polarization spectra, the kinematic SZ
effect is much less significant [28].

VI. CONCLUSIONS

We have presented a new, fast, and accurate method for
computing the lensed CMB power spectra using spherical
correlation functions. Previous perturbative methods were
found to be insufficiently inaccurate for precision cosmol-
ogy, and nonperturbative results in the flat-sky approxima-
tion are in error at above the cosmic-variance level. The
method developed here should enable accurate calculation
of the lensing effect to within cosmic-variance limits to [ <
2500 under the assumptions of the Born approximation and
Gaussianity of the primordial fields. Nonlinear corrections
to the lensing potential have only a small effect on the
lensed temperature power spectrum, but are important on
all scales for an accurate calculation of the lensed B-mode
power spectrum.
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APPENDIX A: ROTATING SPIN-WEIGHT
HARMONICS

Consider evaluating s, at D i, where D is the rotation
operator corresponding to Euler angles «, 3, and 7. This is
the same as rigidly rotating the function Y, (as a scalar)

by D! and evaluating at fi. For spin-0 harmonics we know
that
Yy (D) = D, (=7, =B, —a)Y,y(R).  (AD)

For spin-s harmonics, we note that

. PRI+ 1
SYlm(n) = (_l)m WDl—mx(d)’ 0, 0)’

where (6, ¢) refer to 1i, so that

(A2)

N ;21 + 1
D}y, (=¥, =B, =) Yy (@) = (=1)" = =D}, (=y, =B, —a)D' (¢, 6,0)

21+ 1
= (_1)m WDl_mml(a’ Br ’Y)D,ln/s((br 0’ O)

= (-1

Here, we have used D(a, B, ¥)D(&, 6,0) = D(¢', ¢/, k),
so that (0', ¢') refer to the image of i under D(a, B, y),
and « is the additional rotation required about D fi to map
the polar basis vectors there onto the image of the polar
basis at fi under D(a, 8, ). Denoting the polar basis (unit)
vectors at fi by e, and e, and at i’ by ej, and eiﬁ, we have

e} *iel, = e“*D(e, *+ iey). (A4)

¢

This ensures that the 2/+ 1 rank-s tensor fields
+Y,,(0) =., Y, () (e, + iey) ® - - ® (ey + iey) trans-
form irreducibly under rotations as D.Y,, =
Zm/Dfn/minm/'

APPENDIX B: EVALUATION OF X;,,,

The integrals
o2 [ a\i )
. = — | — —a?/o? gl
Ximm ﬁ) — (0_2>e d. (a)da  (Bl)

that are required for the nonperturbative calculation of the
lensed power spectra on the spherical sky can easily be

20+ 1 o
DL (8,0, k) = Y, (Die

(A3)

\
evaluated as series in o2. From the definition of the rotation
matrices, we have

(@) = (Imle~ Ly |In), (B2)

where we adopt the Condon-Shortley phase for the eigen-
states |Im) of the I:Z and [? angular momentum operators,
and we have set i = 1. Expanding the exponential as a
series in «, we have

> 1 .. Ao
Ximn = Y =07 T + 1+ i/2)Im|(=iL,)|In). (B3)
=0/
The action of the ﬁy operator on the eigenstates of ﬁz is
given by the familiar result

1

—iL,limy = %\/z(z +1) — m(m — D|lm — 1) — 5

(B4)

X I+ 1) — m(m + D|lm + 1),

and this can be used recursively to evaluate the matrix
element in Eq. (B3).
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For [ > 1/0 the series in Eq. (B3) is slow to converge
and a nonperturbative treatment of the X;,, is required.
Using the asymptotic result

dpn(@) ~ (=1)"""J,,-,[(1 + 1/2)a], (B5)

valid for / — oo with /o > 1 but @« < 1, and, noting that
we only require the case i=m —n,’ we can use
Eq. (6.6314) from Ref. [29] to show that

(l +21/2)>ie(1+1/2)20.2/4 f()r l I ——

(B6)
|

Ximn ~ <_

L8
I+ 1)

= 21+ 1

PHYSICAL REVIEW D 71, 103010 (2005)

In practice, we obtain an excellent approximation to X;,,,,,
valid for all /, by adjusting the /-independent term in the
exponent of the asymptotic result, and the prefactor, so that
its series expansion agrees with a direct evaluation of
Eq. (B3) to O(c?).

APPENDIX C: FULL SECOND ORDER RESULT

The full result for the lensed correlation functions accu-
rate to second order in Cy and Gy, is®

i {(X(%oo + 2CaX000Xg00 T+ Cél(X(/)/OOXOOO + 2X(/>20o) + C§12X(l)%)0)d60

= Xo00Xooo + 2Cg1X000)(Cg12d1 1 T Cgldn) + Cgl 2 Xopodh_y + C2 X500 4CgICgL2X(/)00X220dlzo} (CDhH

;T Cf){(xgn + 2Ca XXl + Co (XX + 2X(50) + C2 X320 d5,

+ CaXi3n(Xi3p + 2CuX[5,)dss + CyXiai(Xipy + 2Cy X5 )d; + 2Cy o[ X121 X130 + Ca(X 121 X3, + X130X15,)1d8,

1 1
5 CaXaadoo + Cg1aXo0Xoudyy = 2CyCa12(Xa20 Xty + XomXgpdyy) + 3 C§1X§4zdi4}

> 21 +1
é‘-‘_z

7
+ CapXi3(Xi30 + 2CyX|35,)d5 5

1
+2Cy(X 121 X130 + Cal X121 X5, + Xi32X15 Dy, + ECél,zX%zodéo + CaXo20Xoady

1
- 2CgngL2(X220X622d120 + X242X(’)22d5172) + ) C§1,2X%42d514}

21+

(C2)
i Cf){(x(%zz + 2Ca XXl + Cy(XihnXox + 2X5) + C3,X(50)d5—,
+ CapXi21(X121 +2CgX15)d)
(C3)

- 1 1
éx = Z ypm Cf{[xozzxooo + Ca(Xo22Xo00 + Xo00X022) + C§1,2<X600X622 + §X§zo>

1
+5 CZI(X%ZO + X000X022 + X022X000 + 4")((/)22)((l)00):|dl20

2

+ [Ca(X121 X000 T X121 X000) + X121 X000)(Cadi— + Cypodl))
VI +1)
2
+ [Ca(X132 X000 + X132X000) + X132X000)(Car 25—y + Cadly) = CaCala(XppnX220dbo + XoooX242d40)

JIA+T)

1
+ 3 Ko X Chadh + Chdly)|.

(C4)

As discussed in the main text, the Cy terms may be neglected at the 0(107*) level for realistic lensing deflection

amplitudes.

"Note that X, =

(=1)™*"X,,,, so we can always take m = n.

8Maple code to derive this result is available at http://camb.info/theory.html.
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