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I. J. O’Dwyer,9 and B. D. Wandelt8,9

1Department of Physics, University of California, One Shields Avenue, Davis, California 95616, USA
2Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N -0315 Oslo, Norway

3Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway
4Jet Propulsion Laboratory, M/S 169/327, 4800 Oak Grove Drive, Pasadena, California 91109, USA

5California Institute of Technology, Pasadena, California 91125, USA
6Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland

7Jet Propulsion Laboratory, M/S 126/347, 4800 Oak Grove Drive, Pasadena, California 91109, USA
8Department of Physics, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801-3080, USA

9Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801-3080, USA
(Received 3 December 2004; published 10 May 2005)
*Email add
†Email add
‡Email add

1550-7998=20
We study the Blackwell-Rao (BR) estimator of the probability distribution of the angular power
spectrum, P�C‘ j d�, by applying it to samples of full-sky no-noise CMB maps generated via Gibbs
sampling. We find the estimator, given a set of samples, to be very fast and also highly accurate, as
determined by tests with simulated data. We also find that the number of samples required for convergence
of the BR estimate rises rapidly with increasing ‘, at least at low ‘. Our existing sample chains are only
long enough to achieve convergence at ‘ & 40. In comparison with P�C‘ j d� as reported by the WMAP
team we find significant differences at these low ‘ values. These differences lead to up to �0:5� shifts in
the estimates of parameters in a 7-parameter �CDM model with nonzero dns=d lnk. Fixing dns=d lnk � 0
makes these shifts much less significant. Unlike existing analytic approximations, the BR estimator can be
straightforwardly extended for the case of power spectra from correlated fields, such as temperature and
polarization. We discuss challenges to extending the procedure to higher ‘ and provide some solutions.
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I. INTRODUCTION

As predicted [1–3], observations of the cosmic micro-
wave background (CMB) anisotropies (e.g. [4–6]) have
provided very tight constraints on cosmological parameters
(e.g. [7–9]). The standard approach to estimating cosmo-
logical parameters, given a map of the CMB, is to first
estimate the probability distribution of the angular power
spectrum from the map or time-ordered data, P�C‘ j d�,
and then use P�C‘ j d� to get the probability distribution of
the cosmological parameters assuming some model. While
it is possible to estimate the cosmological parameters
without ever estimating P�C‘ j d�, going through this in-
termediate step has several advantages. Chief among these
is that one can estimate parameters for many different
parameter spaces, each time starting from the same P�C‘ j
d� instead of from an earlier point in the analysis pipeline,
thereby reducing demands on computer resources.

The path from P�C‘ j d� to cosmological parameter
constraints is most often traversed by the generation of a
Monte Carlo Markov chain (MCMC) [10–12]. The chain is
a list of locations in the cosmological parameter space
which has the useful property that the probability that the
true value is in some region of parameter space is propor-
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tional to the number of chain elements in that region of
parameter space. The chain is generated using a
Metropolis-Hastings algorithm that requires evaluation of
P�C‘ j d� at tens of thousands of randomly chosen trial
locations.

At low ‘ P�C‘ j d� is significantly non-Gaussian. Non-
Gaussian analytic forms, whose parameters can be esti-
mated from the data, have been investigated [13–15] and
widely used. The validity of these analytic approximations
however is not under rigorous mathematical control. It is
established on a case-by-case basis by comparison with
computationally expensive brute-force evaluations of
P�C‘ j d�. Further, these comparisons do show some level
of discrepancy which may be significant for parameter
estimation.

Here we calculate P�C‘ j d� with the Blackwell-Rao
(BR) estimator as suggested by Wandelt et al. [16]. This
estimator is a sum over P�C‘ j si� where the si are a chain
of possible all-sky signal maps produced as a by-product of
the Gibbs sampling procedure. The BR estimator has some
appealing properties. First, it is exact in the limit of an
infinite number of samples. Second, given the samples, it
can be very rapidly calculated.

Of course, the BR estimator is only accurate given a
sufficient number of samples for convergence. We study
convergence of the BR estimate from samples generated
from first-year Wilkinson Microwave Anisotropy Probe
(WMAP) Q, V and W band data as described by Eriksen
-1  2005 The American Physical Society
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et al. [17] and O’Dwyer et al. [18]. We find that the number
of samples rises exponentially with increasing maximum
multipole considered, ‘max, due to the rising volume of the
space to be explored. Beyond ‘� 40 we need more
samples than the 955 that we have.

Even at ‘ � 30 where our BR estimate has converged,
we find significant differences between our BR-estimated
P�C‘ j d� and that given by the WMAP team as described
by Hinshaw et al. [19] (hereafter H03) and Verde et al.
[15]. These differences are not due solely to BR though,
but the combined effect of a number of differences in our
analysis procedures. To investigate the significance of
these differences we estimate cosmological parameters in
two cases: (i) using the WMAP team’s description of
P�C‘ j d� and (ii) using a hybrid scheme where we replace
the WMAP team’s P�C‘ j d� at ‘ � 30 with the BR esti-
mate. Assuming a zero mean curvature �CDM cosmology
parametrized by the primordial power spectrum amplitude
and power-law index, reionization redshift, baryon density,
cold dark matter density and a cosmological constant, we
find no significant changes to the parameter constraints.
With this model, the data at ‘ > 30 can be used to predict
the low ‘ behavior sufficiently well that the low ‘ P�C‘ j
d� differences are unimportant. However, when we allow a
logarithmic scale dependence to the power-law spectral
index, the high ‘ data cannot predict the low ‘ data as
accurately and the discrepancies at low ‘ are important. We
find that the evidence for a running index is weakened
when using our improved description of the likelihood.

That small differences in P�C‘ j d� can lead to signifi-
cant differences in parameter constraints has been pointed
out already by Slosar et al. [20]. They also used a hybrid
procedure, calculating the ‘ � 12 likelihood of the pa-
rameters directly from a coarsened version of the WMAP
maps at every step in the generation of the Markov chain.
They further used a more conservative treatment of the
uncertainty from foreground contamination than was used
in our and the WMAP team’s own modeling. Nevertheless,
Slosar et al. [20] also found significantly weakened evi-
dence for nonzero running, in agreement with the present
analysis.

Our current inability to use Gibbs sampling for parame-
ter estimation over the whole range of ‘ [entirely bypassing
analytic approximations to P�C‘ j d�] is unfortunate. With
the inclusion of foregrounds (in particular point sources)
and/or with data from multiple detectors, each with their
own beam profile uncertainties, reliable analytic descrip-
tions of the uncertainty inC‘ at high ‘ do not exist either. In
principle, sampling approaches can take these uncertain-
ties into account with arbitrary accuracy. Below we discuss
challenges to extending sampling procedures to high ‘.
Further, we demonstrate that a simple modification to the
BR estimator can dramatically reduce the number of inde-
pendent samples required for convergence.

The BR estimate, given samples of maps for temperature
and polarization as well, can easily be extended to estimate
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the joint probability distribution of the temperature and
polarization auto- and cross-correlation power spectra. In
contrast, there are no other existing methods for describing
this probability distribution other than expensive brute-
force direct evaluation from the maps, or neglect of the
cross correlations in the power spectrum errors. Neglecting
these correlations can lead to significant errors [21].

A strong case for a hybrid estimator, similar to the one
used in the current paper, was made by Efstathiou [22]. The
idea was to use an approximate, but computationally
cheap, pseudo-C‘ method at high ‘, and a more accurate
quadratic estimator at low ‘’s where the pseudo-C‘ ap-
proach is significantly suboptimal. Here we point out that
Gibbs sampling together with the BR estimator can replace
the quadratic estimator for the low ‘ range. Certainly, the
computational cost is significantly higher because of the
sampling stage, and the method does not lend itself as
easily to Monte Carlo simulations. But BR does have
several advantages. First, the complete description of un-
certainties due to monopole and dipole subtraction, fore-
ground marginalization and correlated noise is much more
transparent in this approach. Second, the computational
scalings of the two methods are very different, implying
that the ‘‘low’’ ‘ regime can be extended to significantly
higher multipoles with the Gibbs sampling method than
with the quadratic estimator. Finally, the BR estimator
accurately describes the significantly non-Gaussian distri-
bution, P�C‘ j d�, which is assumed to be Gaussian in [22].

In Sec. II we briefly review Gibbs sampling and the BR
estimator. In Sec. III we discuss convergence. In Sec. IV
we compare BR with the analytic approximations of the
WMAP likelihood code in a 2-parameter space of ampli-
tude and tilt, demonstrating the convergence of the chains
and our discrepancies with WMAP. In Sec. V we present
the cosmological parameter results. In Sec. VI we discuss
modifications to BR to allow extension to higher ‘ values.
In Sec. VII we conclude.

II. GIBBS SAMPLING AND THE BLACKWELL-
RAO ESTIMATOR

The current paper is a natural extension of the work on
CMB analysis through Gibbs sampling initiated by Jewell
et al. [23] and Wandelt et al. [16], and applied to the first-
year WMAP data by Eriksen et al. [17] and O’Dwyer et al.
[18]. Here we only briefly review the conceptual points
behind this method, and refer the interested reader to those
papers for full details.

In this paper we focus on the first-year WMAP data, in
which case the observed data may be written in the form

d � As� n: (1)

Here d is a noisy sky map, s is the true sky signal, A
denotes beam convolution, and n is instrumental noise.
The sky signal is assumed to be Gaussian distributed
with zero mean and a harmonic space covariance matrix
-2
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C‘m;‘0m0 � C‘�‘‘0�mm0 . The noise is also assumed to be
Gaussian distributed, with zero mean and a pixel-space
covariance matrix Nij � �2

0=
��������������
Nobs�i�

p
�ij which is per-

fectly known.

A. Elementary Gibbs sampling

Our goal is to establish the posterior probability distri-
bution P�C‘ j d�. Since all quantities are assumed to be
Gaussian distributed, this can in principle be done by
evaluating the likelihood function (and assuming a prior).
However, this brute-force approach involves determinant
evaluation of a megapixel covariance matrix for modern
data sets, and is therefore computationally unfeasible. An
alternative approach was suggested by Jewell et al. [23]
and Wandelt et al. [16], namely, to draw samples from the
posterior, rather than evaluate it.

While it is difficult to sample from P�C‘ j d� directly, it
is in fact fairly straightforward to sample from the joint
probability distribution P�C‘; s j d� using a method called
Gibbs sampling [24,25]: Suppose we can sample from the
conditional distributions P�C‘ j s;d� and P�s j C‘;d�.
Then the theory of Gibbs sampling says that samples
�si; Ci

‘� can be drawn from the joint distribution P�C‘; s j
d� by iterating the following sampling equations:

s i�1  P�s j Ci
‘;d�; (2)
Ci�1
‘  P�C‘ j si�1�: (3)

The symbol ‘‘ ’’ indicates that a random vector is drawn
from the distribution on the right-hand side. After some
burn-in period, the samples will converge to being drawn
from the required joint distribution. Finally, P�C‘ j d� is
found by marginalizing over s.

How to sample from the required conditional densities,
and the demand on computational resources, are detailed
by Jewell et al. [23], Wandelt et al. [16] and Eriksen et al.
[17]. These papers also describe how to analyze multi-
frequency data, as well as how to deal with complicating
issues such as partial sky coverage and monopole and
dipole contributions. It is also straightforward to include
several forms of foreground marginalization within this
framework, and the uncertainties introduced by any such
effects are naturally expressed by the properties of the
sample chains; no explicit postprocessing is required.
Note that even parts of the sky that are unobserved are
constrained by the combination of the data and our implicit
assumption of statistical isotropy. For example, very high
amplitude fluctuations in the galactic plane would have
very low probability for any C‘ that is consistent with the
low level of fluctuations in the observed regions.
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B. Parameter estimation and the Blackwell-Rao
approximation

By ‘‘parameter estimation’’ we mean mapping out the
posterior distribution P�� j d�, where � is the desired set of
parameters. This is usually done by first choosing some set
of parameters from which a corresponding power spectrum
is computed by numerical codes such as CMBFAST. Second,
the distribution values for the chosen parameters are then
found by estimating P�C‘��� j d�. This procedure is then
either repeated over a grid in the parameters, or incorpo-
rated into an MCMC chain.

Thus to estimate parameters we must be able to evaluate
P�C‘ j d� for any model C‘. While we could compute the
histogram of the Gibbs C‘ samples and simply read off the
appropriate values, the BR estimator suggested for this
purpose by Wandelt et al. [16] converges more rapidly.
First we expand the signal sample s in terms of spherical
harmonics,

s��;�� �
X1
‘�0

X‘
m��‘

s‘mY‘m��;��; (4)

and define its realization-specific power spectrum �‘ by

�‘ �
1

2‘� 1

X‘
m��‘

js‘mj2: (5)

Next we note that

P�C‘��� j s;d� � P�C‘��� j s�; (6)

since the power spectrum only depends on the data through
the signal component. Furthermore, it only depends on the
signal through �‘, and not its phases, and therefore

P�C‘���js� � P�C‘���j�‘�: (7)

We may then write

P�C‘ j d� �
Z
P�C‘; s j d�ds (8)

�
Z
P�C‘ j s;d�P�s j d�ds (9)

�
Z
P�C‘ j �‘�P��‘ j d�D�‘ (10)


1

NG

XNG

i�1

P�C‘ j �
i
‘�; (11)

where NG is the number of Gibbs samples in the chain.
This is called the BR estimator for the density P�C‘ j d�.
Its meaning is illustrated in Fig. 1. Note that sampling �‘
from P�C‘; �‘ j d� (which is what we do) is the same as
sampling �‘ from P��‘ j d�.

The expression in Eq. (11) is very useful because, for a
Gaussian field,
-3
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FIG. 2. Contours in �q; n� space of constant probability given
the simulated data described in the text, for both the BR
estimator (solid lines) and brute-force evaluation of the like-
lihood (dashed lines). Contours are where �2 lnP�C‘ j d� rises
by 0.1, 2.3, 6.17, and 11.8 from its minimum value, correspond-
ing (for Gaussian distributions) to the peak, and the 1, 2 and 3�
confidence regions.
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FIG. 1. A one-dimensional illustration of the BR estimator.
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i
‘� distributions, and the thick

line shows their average. This average converges toward the true
density P�C‘ j d� as the number of samples increases.
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P�C‘ j �‘� /
Y1
‘�0

1

�‘

�
�‘

C‘

�
�2‘�1�=2

e���2‘�1�=2���‘=C‘�; (12)

or

lnP�C‘ j �‘� �
X1
‘�0

�
2‘� 1

2

�
�
�‘

C‘
� ln

�
�‘

C‘

�	
� ln�‘

�
;

(13)

up to a normalization constant. Equation (13) is straight-
forward to compute analytically, and an arbitrarily exact
representation of the posterior (with increasing NG) may
therefore be established conveniently by means of
Eqs. (11) and (13).

C. Comparison with brute-force likelihood evaluation

In order to verify that the method works as expected, we
apply it to a simulated map, and compare the results to a
brute-force evaluation of the likelihood. Since this like-
lihood computation requires inversion of the signal plus
noise covariance matrix, we limit ourselves to a low-
resolution case, with properties similar to those of the
COBE-DMR data [26], but with significantly lower noise.
Specifically, we simulate a sky using the best-fit WMAP
power-law spectrum, including multipoles between ‘ � 2
and 30. We then convolve this sky with the DMR beam, add
0.5% of the 53 GHz DMR noise (in order to regularize the
covariance matrix as the beam drops off), and finally we
apply the extended DMR sky cut.

This simulation is then analyzed both using the Gibbs
sampling and BR machinery as described above, and by
computing the full likelihood over a parameter grid using
the Cholesky decomposition method of Górski [27]. The
model power spectrum chosen for this exercise is of the
103002
form

C‘�q; n� � q
�
‘
‘0

�
n
Cfid
‘ ; (14)

where q is an amplitude parameter, n is a spectral index, ‘0
is a reference multipole, and Cfid

‘ is a fiducial power
spectrum, which we take to be that of a flat �CDM model
that fits the data well. The fiducial spectrum is chosen to be
the input spectrum, and consequently, we should expect the
likelihood of the parameters to peak near �q; n� � �1; 0�.

The comparison between the brute-force evaluation and
the BR approximation is not quite as straightforward as one
would like. The problem lies in how to truncate the spheri-
cal harmonics expansion at high ‘’s. The brute-force like-
lihood computation requires that the full signal component
is contained in the included harmonic expansion, which
means that the noise power has to be larger than the
convolved signal power before truncation. On the other
hand, the Gibbs sampling approach requires a large num-
ber of samples to converge in this low signal-to-noise
regime. The simulation was therefore constructed as a
compromise: a very small amount of noise was added to
make the covariance matrix well behaved at the very high-
est ‘’s included, but not more than necessary. Still, small
differences between the two approaches must be expected.
-4
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The results from this exercise are shown in Fig. 2. The
contours show the lines of constant likelihood where
�2 lnP�C‘ j d� rises by 0.1, 2.3, 6.17 and 11.8 from the
minimum, corresponding to the peak and the 1, 2, and 3�
regions for a Gaussian distribution. The solid lines show
the results from the BR computation, and the dashed lines
show the results from the exact likelihood computation.
Obviously, the agreement between the two distributions is
excellent, considering the very different approaches taken,
and the above-mentioned high-‘ truncation problem.
III. CONVERGENCE OF THE BR ESTIMATOR
APPLIED TO WMAP DATA

The ultimate goal of this paper is to apply the methods
described above to the first-year WMAP data. In order to
do so, we first need to determine the accuracy of the BR
estimator given our finite number of samples. In this sec-
tion we do so by examining how the BR estimator fluc-
tuates as different subsets of the Gibbs chains are used.

The Gibbs machinery was applied to the first-year
WMAP data by O’Dwyer et al. [18], and the primary
results from that analysis were a number of C‘ and �‘
sample chains. These chains are available to us, and form
the basis of the following analysis. The data we use here
are those computed from the eight cosmologically inter-
esting WMAP Q, V and W bands, comprising 12 indepen-
dent chains of about 80 samples each for a total of 955
samples. For more details on how these samples were
generated, we refer the reader to O’Dwyer et al. [18] and
Eriksen et al. [17].

The main question we need to answer before proceeding
with the actual analysis is, how well does this finite number
of samples describe the full likelihood for a given range of
multipoles? To answer this question, we define a simple
test based on the �q; n� model of Eq. (14) as follows: We
construct two subsets from the 955 available samples, each
containing Ns < 955=2 samples, and map out the proba-
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FIG. 3. Illustration of the convergence criterion defined by Eq. (15)
then they are completely separated. The two distribution pairs show
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bility distribution for each subset, including only multi-
poles in the range 2 � ‘ � ‘max. From the two resulting
probability distributions, P1�q; n� and P2�q; n�, we com-
pute the quantity

f �

R
jP1�q; n� � P2�q; n�jdqdnR

P1�q; n�dqdn
; (15)

which measures the relative normalized difference be-
tween the two distributions; if f � 0 then the two distri-
butions overlap perfectly, and if f � 2, they are completely
separated. We then increase Ns until f < 0:05 for the first
time. Two sets of such distributions are shown in Fig. 3,
having f � 0:06 and f � 0:47 respectively.

Of course, the chain is likely to go in and out of con-
vergence as Ns is increased further for quite some time, and
therefore there will be a large random contribution to this
particular statistic. For that reason we repeat the experi-
ment 11 times, each time scrambling the full 955 sample
chains, and define the median of the resulting Ni

s’s as the
number of samples required for convergence [28]. The
process is then repeated for various values of ‘max.

The results from this exercise are summarized in Fig. 4.
Two important conclusions may be drawn from the infor-
mation shown in this plot. First, the number of samples
required for convergence increases very rapidly with ‘max;
we expect an approximately exponential dependence on
‘max since taking n samples in each direction requires
n�‘max�2� samples.

Second, while it is strikingly clear from Fig. 4 that the
existing number of samples is inadequate for probing the
full multipole range properly, we may still conclude that
the multipole range 2 � ‘ � 30 is quite stable given that
we have 955 samples. In the analysis described in the next
section, we therefore construct a hybrid likelihood consist-
ing of the BR likelihood for ‘ � 30 and the analytic
WMAP approximation at higher ‘’s.
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. If f � 0, the two distributions overlap perfectly, while if f � 2,
n here have f � 0:06 and f � 0:47, respectively.
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A second demonstration of the same result is shown in
Fig. 5, where we have computed the two-parameter like-
lihood using the BR estimator, splitting the sample chain
into two parts, for three disjoint ‘ ranges (‘ 2 �2; 12�,
[13,20] and [21,30]). Here we see that the estimator is
very stable over each of the three ‘ ranges.

We have also considered the question of burn-in of the
12 independent sample chains, by repeating the analyses
described above with reduced chains. Specifically, we
removed the five or ten first samples from each chain,
FIG. 5. Constraints on q and n where C‘�q; n� � q�‘=‘0�nCfid
‘

and Cfid
‘ is a fiducial �CDM power spectrum for ‘0 � 8, 17, and

25 from left to right. Solid lines are for one-half of the BR
samples and dashed lines are for another half. Contour levels are
as in Fig. 2.
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and repeated the analyses. Neither result changed as an
effect of this trimming, implying that burn-in is not a
problem for the Gibbs sampling approach at low ‘’s
when the estimated WMAP spectrum is used to initialize
the Gibbs chains. This result is in good agreement with the
results presented by Eriksen et al. [17], who showed that
the correlation length of the Gibbs chain is virtually zero
when the signal to noise is much larger than 1.
IV. BLACKWELL-RAO VS WMAP P�C‘ j d�

There are a number of differences between our analysis
and the WMAP team’s analysis. Here we examine the
resulting differences in P�C‘ j d� and in the next section
on estimates of cosmological parameters. Our goal is to
understand the significance of these low ‘ differences. We
do not attempt to completely disentangle which P�C‘ j d�
differences are due to which analysis differences.

There are at least four areas where the WMAP team’s
analysis differs from ours:
(1) T
-6
hey use a pseudo-C‘ technique to estimate the
most likely C‘;
(2) a
t ‘ < 100, in order to reduce residual foreground
contamination they do not include Q-band data;
(3) th
eir pseudo-C‘ estimate places zero weight on the
autocorrelation of maps from the individual differ-
encing assemblies; and,
(4) th
ey use a variant of the analytic approximation of
Bond et al. [13] to the shapes of the likelihoods.
A number of these differences in analysis procedures
were discussed by H03 and Verde et al. [15]. Regarding
(1), one can see in H03 Fig. 12 differences at low ‘
between a maximum-likelihood analysis and pseudo-C‘
analysis as applied to V-band data. Regarding (2), in
Fig. 3 of H03 one can see differences at low ‘ between
inclusion and exclusion of the Q-band data. Regarding (3),
one can see differences at low ‘ in Fig. 6 of H03 depending
on whether the autocorrelations are included.

The net result of all these effects is shown in Figs. 6 and
8. In Fig. 6, we compare the univariate likelihood functions
for all multipoles up to ‘ � 25, as computed using both the
WMAP analytic approximation (dashed curves) and the
BR approximation (solid curves). The BR likelihoods are
computed by varying one single multipole at a time, keep-
ing the other multipoles fixed at the best-fit power-law
model value.

There are a few clear differences between the two sets of
distributions shown in Fig. 6, the most prominent being a
small horizontal shift in most cases, or in other words,
different power spectrum estimates. This was anticipated,
given the differences discussed above.

More important than these shifts are the relative shapes
of the two distributions. Such features are most easily
compared when the two distributions have identical modes,
which is the case for ‘ � 2, 4, 9 and 14. In the quadrupole
case we see that the BR distribution has a heavier tail than
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FIG. 6. Comparison of the BR (solid curves) and the analytic WMAP (dashed curves) univariate likelihood functions for each
multipole up to ‘ � 25. The vertical lines indicates the value of the best-fit WMAP power-law model (not including a running spectral
index). The univariate likelihood functions are computed by slicing through the multivariate likelihood, fixing all other multipoles at
the corresponding best-fit value. Notice that all distributions shown here are strongly non-Gaussian.
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the WMAP distribution, while the opposite is true for the
other three cases. On the other hand, we find spectacular
agreement for the ‘ � 17 and 18 cases. All in all, the
results shown in this figure are consistent with the idea
that the Gibbs sampling approach is an optimal method,
while the WMAP approach is based on a pseudo-C‘
method, and the latter is therefore expected to have slightly
larger error bars. The only case for which this rule is
obviously broken is the quadrupole, and thus we have
reason to question the accuracy of this particular multipole.

We also note that a similar analysis was carried out by
Slosar et al. [20]. One of their major results was a signifi-
cantly broader likelihood than the WMAP likelihood (as
FIG. 7. Comparison of the BR (solid curves) and the analytic
WMAP (dashed curves) bivariate likelihood functions for ‘ � 2
and ‘ � 3. The asterisk indicates the value of the best-fit WMAP
power-law model (not including a running spectral index). The
bivariate likelihood function is computed by slicing through the
multivariate likelihood, fixing all other multipoles at the corre-
sponding best-fit value.

103002
well as a strong shift toward larger amplitudes) for ‘ � 10.
The main difference between that analysis and the present
is that they marginalized over three foreground templates,
and, given the results shown in this section, this additional
degree of freedom is most likely the cause of the broadened
likelihood, rather than inherently underestimated errors in
the WMAP likelihood code. Slosar et al. [20] also found a
coherent shift toward larger amplitudes. We see this our-
selves to a lesser degree in Fig. 6. Seven out of the 11 C‘ in
the ‘ � 2 to 12 range show some amount of shift to higher
‘.

Because of the nearly all-sky nature of the observations,
the one-dimensional slices in Fig. 6 almost completely
describe the full likelihood. There is very little dependence
of the distribution of C‘ on the value of C‘0 . The lack of any
strong dependence can be seen, for example, in Fig. 7. We
will use this fact below to motivate a more efficient BR
estimation algorithm.

To further study the differences in P�C‘ j d� between the
BR approximation and the analytical approximation used
by the WMAP team, we once again adopt the two-
parameter nonphysical model defined in Eq. (14),
C‘�q; n� � q�‘=‘0�nCfid

‘ , and map out in Fig. 8 the two
likelihoods in q and n using the two approximations. We
display these likelihoods over the same ‘ ranges as in
Fig. 5. We can see in the left panel (the ‘ � 2 to 12 range)
clear evidence for a shift to higher power hinted at by the
individual multipole distributions in Fig. 6. The peak shifts
by�3=4� and the BR contours are slightly tighter than the
WMAP ones. Discrepancies are smaller in the ‘ � 13 to 20
range and smaller still in the 21 to 30 range, especially near
n � 0. Note that the likelihood at jnj * 1 is irrelevant for
physical models since their spectral shapes do not deviate
that strongly from that of the fiducial.

To summarize this section, we have seen that the BR
estimate and that of WMAP for P�C‘ j d� do differ slightly
at low ‘’s. This should result in differences in parameter
estimates, to which we now turn.
-7



FIG. 8. Constraints on q and n where C‘�q; n� � q�‘=‘0�
nCfid

‘ and Cfid
‘ is a fiducial �CDM power spectrum for ‘ � 2 to ‘ � 12 with

‘0 � 8 (left panel), ‘ � 13 to ‘ � 20 and ‘0 � 17 (center panel) and ‘ � 21 to ‘ � 30 with ‘0 � 25 (right panel). Solid lines are for
BR and dashed lines are for the WMAP likelihood code. Contour levels are as in Fig. 2.
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V. EFFECT ON COSMOLOGICAL PARAMETERS

We now explore how significant these low ‘ differences
are for estimates of cosmological parameters. We consider
two different cosmological model parameter spaces. The
first is a flat �CDM cosmology with a power-law primor-
dial power spectrum. The second parameter space allows
for a logarithmic scale dependence to the power-law spec-
tral index so that ns�k� � ns�k0� � dns=d lnk ln�k=k0�. The
dns=d lnk parameter is commonly referred to as the ‘‘run-
ning of the spectral index,‘‘ a reference to the analogous
dependence of gauge coupling strength with energy scale
in quantum field theories.

We explore the parameter spaces via the MCMC mecha-
nism as described by, e.g., Christensen et al. [11]. For the
6-parameter cosmological models we use !b, !d, ��, zrei,
A, ns (baryon density, cold dark matter density, dark energy
density, redshift of reionization, amplitude of the primor-
dial power spectrum at k � 0:05 Mpc�1 and the scalar
index; the total matter density is !m � !b �!d) and a
calibration parameter for each of CBI [29] and ACBAR
[9,30]. For the 7-parameter cosmological model we use the
same six parameters plus dns=d lnk. We evaluate the like-
lihood given the WMAP data with the subroutine available
at the LAMBDA [31] data archive. For CBI and ACBAR
we use the offset log-normal approximation of the like-
lihood [13]. The likelihood given all these data together
(referred to as the WMAPext data set by Spergel et al. [7])
is given by the product of the individual likelihoods. For
the hybrid schemes, we replace the WMAP likelihood
calculation for the temperature power spectrum in the
103002
range 2 � ‘ � 30 with the BR estimator. In all cases, we
employ a prior that is zero except for models with 0:40<
h< 0:95, ! < 0:30, and 6:0< zrei [32] in which case the
prior is unity. All chains have 100 000 samples.

The results for the 6-parameter case using the WMAP
likelihood code (column 2 of Table I) reproduce those
reported by Spergel et al. [7]. We see that the hybrid
scheme leads to almost no differences, with any shifts in
most likely values smaller than 1=3�. Thus there is only a
very weak dependence on the differences in P�C‘ j d� at
low ‘. The reason for this is that with the 6-parameter
model the data at high ‘ tightly constrain the range of C‘
values at low ‘.

Now we turn to the difference between columns 4 and 5,
where the only difference in their derivation is the treat-
ment of the temperature power spectrum at ‘ � 30. With
the extra freedom in the 7-parameter model, the high ‘ data
can no longer be extrapolated to low ‘ with as much
confidence. The data at low ‘ are thus more informative
than in the 6-parameter case and the differences at low ‘
become more important. Four parameters show shifts
greater than 1=3�: ns, !b, !m and dns=d lnk. The biggest
shift is in dns=d lnk. It reduces a 2:5� detection to a 2�
detection.

We checked to make sure these shifts are significant,
given our limited number of chain elements. To do so, we
looked at 4 subsamples of the 7-parameter case chains,
each with 25 000 samples, to examine fluctuations in the
subsample mean values of each parameter. We found these
subsample means to deviate from the total sample means
with an rms of �0:2�. We thus estimate the sample
-8



TABLE I. Cosmological parameter means and standard deviations derived from the WMAPext data set using the WMAP likelihood
code (columns 2 and 5) and using our hybrid approach where the WMAP likelihood code for the temperature angular power spectrum
is replaced at ‘ � 30 with our BR estimate of P�C‘ j d�. The columns labeled ‘‘difference/�’’ give the difference in the parameter
means divided by the standard deviation of the hybrid method. Note that the finite number of chain samples gives rise to an uncertainty
in each mean of �0:1�.

dns=d lnk fixed to zero dns=d lnk free to vary
Parameter WMAP P�C‘ j d� Hybrid Difference=� WMAP P�C‘ j d� Hybrid Difference=�

ns 0:97� 0:03 0:97� 0:03 0.0 0:880� 0:048 0:903� 0:047 0.4
! 0:132�0:097

�0:048 0:140�0:080
�0:053 0.1 0:202� 0:065 0:208� 0:063 0.1

A 0:80� 0:10 0:79� 0:10 0.1 0:91� 0:11 0:90� 0:11 0.1
!b 0:023� 0:001 0:023� 0:001 0.0 0:0215� 0:0013 0:0219� 0:0012 0.3
!m 0:136� 0:014 0:132� 0:013 0.3 0:140� :015 0:134� 0:014 0.4
h 0:72� 0:05 0:73� 0:05 0.2 0:682� 0:054 0:708� 0:054 0.5
dns=d lnk � � � � � � � � � �0:079� 0:031 �0:063� 0:031 0.5
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variance error in our sample means to be �0:1�. We also
ran a chain with 100 000 samples with the switch at ‘ �
20, and found it to be consistent with the hybrid chain with
the switch at ‘ � 30.

The direction of the changes is consistent with Fig. 8. We
see our own analysis has a higher level of power and lower
level of tilt in the ‘ � 2–12 range and is more restrictive of
upward power fluctuations in the ‘ � 13–20 range com-
pared to the WMAP team’s analysis. Thus we want the
model power spectra to be more negatively sloped at low ‘.
This is accomplished by the 0.026 increase in the running
which reduces ns�k� at k � 0:009 Mpc�1 (which projects
to ‘ � 12) by 0.11 from its value at k0 � 0:05 Mpc�1.

It should be noted that the parameter values are strongly
dependent on the high ! cut. In fact we have found that
most of the probability is at ! > 0:3, as has been noticed for
WMAP� VSA [9,20] and for WMAP� CBI [6]. At these
high ! values, the running tends to be negative also. Having
high ! and a negative running though is a priori unlikely in
hierarchical models of structure formation, and is also
disfavored when large-scale structure data is included [20].

VI. EXTENDING BR TO HIGHER ‘’S

We face two challenges to extending the BR estimator to
higher ‘ values. The first is that the greater the range of ‘
values, the greater the volume of parameter space to be
explored (in units of the width of the posterior in each
direction) and therefore the larger the number of samples
required. The second is that as the signal-to-noise ratio
drops below unity, the correlation length of the Gibbs
samples, produced by the algorithms of Wandelt et al.
[16] and Jewell et al. [23], starts to get very long thereby
reducing the effective number of independent samples. We
do not address this second problem here, which becomes
important around ‘� 350, except to say that we are cur-
rently implementing potential solutions.

We see evidence of the first problem in Fig. 4. Here we
discuss two solutions, both of which rely on the low level
of dependencies between the errors in C‘ at different ‘
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values. For the first solution, we replace the BR estimate
with a ‘‘band BR’’ estimate where the averaging over
samples is done in discrete bands of ‘ that are then multi-
plied together. Specifically,

P�fC‘g j d� � (BhP�Cl<�B�; Cl<�B��1 . . . ; Cl>�B�

j �i
l<�B�

; �i
l<�B��1 . . . ; �

i
l>�B�
�i (16)

where h� � �i indicates averaging over samples and the lower
and upper ‘ values of each band B are denoted by ‘<�B�
and ‘>�B�.

The advantage of the band BR estimator is that it re-
duces the volume of the space to be explored from one with
‘max � ‘min � 1 dimensions to a product over spaces with
number of dimensions equal to the width of the bands,
greatly reducing the volume in units of the extent of the
posterior. The approximation here ignores interband de-
pendencies. Tests though have shown these to be negligibly
small for bands of width 12.

To demonstrate the reduction in the number of samples
necessary for convergence, we redo Fig. 4. In Fig. 4 ‘min

was fixed to 2 as ‘max increased. Here as ‘max increases so
does ‘min so that ‘max � ‘min � 1 � 12. We see in Fig. 9
that switching to the band BR estimator flattens out the
trend of the necessary number of samples with ‘max.

It may be possible to exploit the near independence of
different ‘ values further. We can use BR (or even a fit to
the histogram of C‘ values in the chain) to estimate uni-
variate marginalized distributions, multiply these together
as if they were independent, and then correct for the
correlations with an analytic correction factor. Namely,

lnP�fC‘g j d� �
X
‘

ln�P�C‘ j d��

�
X
‘

�C2
‘

2C‘‘
�

X
‘;‘0
�C‘F‘‘0�C‘0=2 (17)

where �C‘ � C‘ � hC‘i, F‘‘0 is the C‘ Fisher matrix and
C‘‘0 is its inverse. These matrices can be computed as in
-9
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H03. Note that the above expression is exact for a Gaussian
distribution, with the first term in the log of the correction
factor simply canceling out the sum of the logs of the
marginalized one-dimensional distributions. Such a proce-
dure will only require a handful of independent samples.
Further, one could combine our two solutions here by using
band BR with an analytic correction for the neglected
interband dependencies.

Certainly this use of analytics could be extended further
to reduce the demand for the number of independent
samples. We expect that an adequate analytic form can
be found for the posterior. One would then use the BR
estimator, or the C‘ samples, to fit the parameters of this
analytic form. Such an approach could greatly reduce the
demand for the number of independent samples.
Essentially, we would be exploiting the fact that P�fC‘g j
d� is a very smooth distribution with a lot of regularity,
such as the structure of inter-‘ correlations and shapes of
univariate distributions. Such an approach will probably be
necessary in the high ‘ regime where larger correlation
lengths (at least for current sampling techniques) greatly
reduce the number of independent samples.

In the low signal-to-noise regime the number of inde-
pendent samples required, even to explore the posterior for
a single ‘ value, increases because the width of the BR
estimator from an individual sample is much smaller than
the width of the posterior (since the former is for a noise-
less sky). This problem can be mitigated by artificially
broadening the BR kernel. Specifically, we would set

ln�P�C‘ j �‘�� �
n‘
2

�
�
�‘

C‘
� ln

�
�‘

C‘

�	
� ln��‘�

and n‘ � �2‘� 1��1� %N‘=C‘�
�2 (18)
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whereN‘ is the noise contribution to the power spectrum of
the map. Setting %> 0 broadens the kernel for each sam-
ple from / C‘ to / �C‘ � %N‘�. Unfortunately it also
broadens the posterior from / �C‘ � N‘� to / �C‘ � �1�
%�N‘�. Thus one must choose % small enough so the
posterior is not overly broadened. At high C‘=N‘ this
broadening makes no difference. At low C‘=N‘ the sample
kernel is broadened by a large factor (1� %N‘=C‘) while
the posterior is broadened only by 1� %. Thus one can
broaden the sample kernel in the low signal-to-noise re-
gime (exactly where we want to broaden it) by a very large
amount, without significantly broadening the posterior.
The number of independent samples required for conver-
gence will drop by this same factor.

Finally, we mention one more way to reduce the dimen-
sionality of the space to be explored, and thus the number
of samples required. And that is to replace the C‘’s with
band powers. In the low signal-to-noise regime such a
replacement need not lead to significant loss of informa-
tion, assuming models with smooth C‘’s.
VII. CONCLUSIONS

We have found BR to be a useful step in the process of
converting CMB anisotropy data, and a model of it, into
estimates of P�C‘ j d�. We have shown that precise char-
acterization of this distribution at low ‘ is a key step in the
estimation of cosmological parameters. The differences
between P�C‘ j d� as computed by us with a hybrid ap-
proach that uses BR at ‘ � 30 and as computed by the
WMAP team can lead to important differences in estimates
of cosmological parameters.

The BR estimator converges rapidly at low ‘, but re-
quires many independent samples at high ‘. By exploiting
the weak inter-‘ dependence in P�C‘ j d� we were able to
modify the BR estimator to greatly improve convergence
without significantly sacrificing accuracy. Extensions that
will allow its use with correlated data, such as temperature
and polarization, or weak lensing shear from multiple
redshift bins, and to higher ‘ are worth pursuing.
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