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Bounds on cubic Lorentz-violating terms in the fermionic dispersion relation
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We study the recently proposed Lorentz-violating dispersion relation for fermions and show that it leads
to two distinct cubic operators in the momentum. We compute the leading order terms that modify the
nonrelativistic equations of motion and use experimental results for the hyperfine transition in the ground
state of the 9Be� ion to bound the values of the Lorentz-violating parameters �1 and �2 for neutrons. The
resulting bounds depend on the value of the Lorenz-violating background four-vector in the laboratory
frame.
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I. INTRODUCTION

The possibility of violation of the Lorentz symmetry has
been widely discussed in the recent literature (see e.g. [1]).
Indeed, the spontaneous breaking of this fundamental
symmetry may arise in the context of string/M-theory
due to existence of nontrivial solutions in string field
theory [2], in loop quantum gravity [3,4], in noncommu-
tative field theories [5]1, in quantum gravity inspired space-
time foam scenarios [7] or through the spacetime variation
of fundamental coupling constants [8]. This breaking could
be tested, for instance, in ultrahigh energy cosmic rays [9].

Recently, it has been proposed a method of introducing
cubic modifications into dispersion relations by means of
dimension five operators for fermions [10]. The upper
bounds for the parameters that characterize these modifi-
cations are based on low-energy experiments, being j�j &

10�6 for the electromagnetic sector, j�Q;u;dj & 10�6 for
first quark generation and j�eL;Rj & 10�5 for electrons [10].

In this paper, we shall consider cubic Lorentz-violating
terms for fermions in the nonrelativistic limit and obtain
new upper bounds for neutrons, based on spectroscopical
results for the 9Be� ground state, as discussed by Bollinger
et al. [11].
II. THE MODEL

We consider terms in the Lagrangian density which
describes a Dirac spinor field, correspondig to dimension
five operators which break the Lorentz symmetry by means
of a background four-vector n� [10]. These terms have the
following features: (i) have one more derivative than the
usual kynetic term, (ii) are gauge invariant, (iii) are Lorentz
invariant, apart from n�, (iv) are irreducible to lower
dimension operators by means of the equations of motion
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and (v) do not correspond to a total derivative and are
suppressed by a single power of the Planck mass, MP.

Under these conditions, the two possible operators can
be combined in the following form [10]:

L f �
1

MP

� ��1n6 � �2n6 �5��n � @�2 : (1)

The parameters �1 and �2 can, for instance, in the case
of string theory, be regarded as vacuum expectation values
of tensor operators arising from the spontaneous symmetry
breaking mechanism [2].

First, it should be pointed out that the Lagrangian den-
sity Eq. (1) is not symmetric in what respects the fields  
and � and, thus, one should include its hermitian conju-
gate. The complete fermionic Lagrangian density is, hence,
given by

L f� � �i@6 �m� �
1

MP

� ��1n6 ��2n6 �5��n �@�2 �h:c:;

(2)

which must satisfy the following Euler-Lagrange equa-
tions:

@L
@’

� @�

�
@L

@�@�’�

�
� @�@�

�
@L

@�@�@�’�

�
� 0; (3)

where ’ denotes a generic field of the Lagrangian density.
For ’ � � , Eq. (3) leads to the modified Dirac equation:

�
i@6 �m�

1

MP
��1n6 � �2n6 �5��n � @�

2

�
 � 0: (4)

For ’ �  , we obtain, as expected, the hermitian conju-
gated equation.

In order to obtain the correspondent dispersion relation,
we operate Eq. (4) with (i@�m� 1

MP
��1n6 � �2n6 �5�	

�n � @�2), and after neglecting terms of order M�2
P we

obtain, by using

f@6 ; n6 g � 2�n � @�; (5)

f@6 ; n6 �5g � �@6 ; n6 �5 � �2i�5���n�@�; (6)
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that

���m2� �
2i
MP

��1�n �@�
3� i�2�5�

��n�@��n �@�
2� :

(7)

Finally, in the frame where n� � �1; 0; 0; 0�, we find the
dispersion relation

E2 � j ~pj2 �m2 �
2

MP
��1E

3 � i�2�5�
0�p�E

2� � 0:

(8)

Thus, we conclude that the terms in �1 and �2 yield two
different cubic modifications in the momentum operator of
the fermionic dispersion relation. The first one is similar to
the one of Ref. [10], while the second is a new term
identified here for the first time.
III. THE NON-RELATIVISTIC LIMIT AND THE
9Be� ION ENERGY SPECTRUM

Let us now determine how the Lorentz-violating terms
in Eq. (4) affect the equations of motion in the nonrelativ-
istic limit. For this, we can write the four component spinor
 in the form

 �

�
’̂
�̂

�
; (9)

where ’̂ and �̂ are two component spinors. Equation (4)
can be, thus, written as a system of two equations:

i@0’̂� i� ~� � ~r��̂�m’̂��
1

MP
�A�n �@�2’̂�B�n �@�2�̂;

(10)

i@0�̂� i� ~� � ~r�’̂�m�̂��
1

MP
�A�n �@�2�̂�B�n �@�2’̂;

(11)

where A � �1n0 � �2� ~n � ~�� and B � �2n0 � �1� ~n � ~��.
In the low-energy limit, E�m� m, and we can separate
the slowly and the rapidly time-varying parts of spinors ’̂
and �̂ in the following way:�

’̂
�̂

�
� e�imt

�
’
�

�
: (12)

Hence, Eqs. (10) and (11) become:

i@0’� i� ~� � ~r�� � �
1

MP
�A�F’� � B�F��; (13)

i@0�� i� ~� � ~r�’� 2m� � �
1

MP
�A�F�� � B�F’�;

(14)

where the operator F is given by

F � n20�@
2
0 � 2im@0 �m2�

� 2n0��im� @0�� ~n � ~r� � � ~n � ~r�2: (15)
097901
As we are looking for the leading order terms for
Lorentz violation in the nonrelativistic limit, we can ne-
glect terms of order M�1

P in Eq. (14) in order to obtain a
zeroth-order relation between the spinors ’ and �. As �
varies slowly in time, we can also neglect its time deriva-
tive, and so

� �
�i� ~� � ~r�

2m
’ �

� ~� � ~p�
2m

’� ’: (16)

Substituting this result into Eq. (13) and neglecting terms
of order m=MP and m2=MP, as well as those terms which
include time derivatives of the spinors that are suppressed
by the Planck mass MP, we obtain

i@0’�
1

2m
r2’�

1

MP

�
A� ~n � ~r�2�

i
2m

B� ~n � ~r�2� ~� � ~r�

�
’:

(17)

We have then found the two leading order terms that
modify the kynetic term of the Schrödinger equation for
the positive energy spinor ’. In general, these terms will
modify the Hamiltonian for a system ofN particles through
a Lorentz-violating potential given by:

V̂ � �
1

MP

XN
k�1

�
��1n0 � �2� ~n � ~���� ~n � ~rk�

2

�
i

2mk
��2n0 � �1� ~n � ~���� ~n � ~rk�

2� ~� � ~rk�

�
(18)

where ~rk � @=@~rk, and ~rk, k � 1; . . . ; N, is the position
vector of the k-th particle with mass mk, respectively.

In a 1989 paper, Steven Weinberg proposed the use of a
hyperfine transition in the ground state of the 9Be� ion to
test a nonlinear generalization of quantum mechanics [12].
Although we are looking for the effects of linear Lorentz-
violating operators in the Schrödinger equation,
Weinberg’s method can be easily adapted to our purposes.

Consider a system in a coherent superposition of two
quantum states,  1 and  2, whose energy eigenvalues in
the absence of Lorentz violation are E1 and E2, respec-
tively. This system is described by the Hamiltonian Ĥ �

Ĥ0 � V̂, where V̂ can be treated as a perturbative potential
compared to the system’s Lorentz invariant Hamiltonian
Ĥ0, as we expect the effects of the Lorentz invariance
violation to be small at this energy scale. To first order in
perturbation theory, the Schrödinger time-dependent equa-
tion for state  k, k � 1; 2, takes the form

i �h
@ k
@t

� �Ek � hV̂ik� k � �h!k k; (19)

where hV̂ik � h kjV̂j ki, and has the general solution
 k � cke�i!kt.

The constants ck can be parametrized as c1 � sin�)2� and
c2 � cos�)2� [11]. The relative phase of the two states,
correspondent to the time dependence of  y

2 1, is given by
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!p � !1 �!2 � !0 �
hV̂i1 � hV̂i2

�h
; (20)

where !0 � �E1 � E2�= �h is the frequency of the transition
between the unperturbed states. The perturbative terms
will, thus, depend on the parameter ) and, hence, measur-
ing the ) dependence of !p allows for determining the
effects of the Lorentz invariance violation on the system.

A two level system is mathematically equivalent to a
spin 1=2 system which undergoes precession about an
external uniform magnetic field, with ) being the angle
between the spin and magnetic field vectors and !p the
precession frequency. Bollinger et al. have used this idea to
search for a ) dependence of the precession frequency of
the hyperfine transition jmI;mJi � j � 1

2 ;
1
2i ! j � 3

2 ;
1
2i in

the ground state of the 9Be� ion [11].
In their discussion it has been assumed that the 9Be�

nuclear spin was decoupled from the valence electron’s
spin, so that  1 � j � 3

2 ;
1
2i and  2 � j � 1

2 ;
1
2i are pure

jmI;mJi states. With this hypothesis, they obtained the
upper bound

j
!p�)B� �!p�)A�

2,
j � 12:1�Hz (21)

for )A � 1:02 rad and )B � 2:12 rad.
To determine how the breaking of the Lorentz symmetry

produces a ) dependence in !p, we have to compute the
expectation value of the perturbative potential on states  1

and  2. We first point out that

� ~n � ~r�2� ~� � ~r� � �ininj�kpipjpk; (22)

where pi is the i-th component of the vector momentum.
As, for bound states like  1 and  2, any odd power of the
momentum operator has a zero expectation value, the term
in B will not affect the perturbative potential’s expectation
value [13].

The 9Be� ion is a system composed by three electrons,
two of which in a closed 1s shell, and a nucleus with five
neutrons and four protons. As, in the considered transition,
�mJ � 0, we expect the perturbative potential to alter both
states energy eigenvalues in the same way, not affecting the
transition frequency. In the ion’s nucleus, the pairing in-
teraction induces nucleons to group up into pairs of neu-
trons and pairs of protons with zero angular momentum
[14]. Hence, the ion’s nuclear spin is entirely carried by
one of its neutrons.

In this way,  1 and  2 can be treated as states of a
particle with spin I � 3=2 and projections on the quantiza-
tion axis, which is usually defined as the external magnetic
field’s direction, mI � �3=2 and mI � �1=2, respec-
tively. If ê3 defines the direction of the quantization axis,

hI; mIj�kjI; mIi � 2mI/k3; (23)

and therefore
097901
hV̂i1 �
jc1j2

MP
��1n0 � 3�2n

zninjhpipji1; (24)

hV̂i2 �
jc2j2

MP
��1n0 � �2n

zninjhpipji2: (25)

Hence, we find (inserting back the missing h factors)

!p�)� � !0 �
ninjhpipji
MP �h

��1n0�cos
2�)=2� � sin2�)=2��

� �2nz�cos2�)=2� � 3sin2�)=2��; (26)

where we have assumed that hpipji � hpipji1 � hpipji2.
Finally, we obtain

!p�)B� �!p�)A�

2,
�
ninjhpipji
hMP

�a�1n0 � b�2nz; (27)

where the constants a and b are defined as

a � cos�)A� � cos�)B� ’ 1:045; (28)

b � �cos2
�
)B
2

�
� 3sin2

�
)B
2

�
� cos2

�
)A
2

�

� 3sin2
�
)A
2

�
’ 2:091: (29)

As for a neutron, hp2i=m2
n � 10�2 [13], and assuming

that the Lorentz symmetry breaking does not privilege any
spatial direction, nx � ny � nz � n, we obtain:

ninjhpipji
hMP

�
9n2hp2i

hMP
� �2	 103�n2 Hz: (30)
IV. RESULTS

As presently there is no way of determining the form of
the background four-vector n�, we can only estimate
bounds on the values of the parameters �1 and �2.

First, we consider the case where n� is a timelike four-
vector in some cosmic frame (n � n � 1). Thus, in the
laboratory frame, n0 � 1 and the typical size of the spatial
components will be of order n� 10�3 due to the relative
motion of our galaxy, the Solar System and the Earth
[10,15]. Hence,

!p�)B� �!p�)A�

2,
’ �2	 10�3�1 � 4:5	 10�6�2� Hz:

(31)

Using Bollinger et al. result Eq. (21), we obtain the
following upper bounds for the Lorentz-violating parame-
ters:

j�1j & 6	 10�3; j�2j & 3; (32)

where we have assumed �1��2� � 0 to obtain a bound for
�2��1�.
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If n� is spacelike in some cosmic frame (n � n= -1), we
will have, in the laboratory frame, n0 � 10�3 and n����
3

p
=3. Thus,

!p�)B� �!p�)A�

2,
’ �0:76�1 � 8:7	 102�2� Hz; (33)

and, in this case, we obtain the upper bounds

j�1j & 2	 10�5; j�2j & 1	 10�8: (34)

Finally, considering the case where n� is a lightlike four-
vector in the laboratory frame (n � n � 0), with n0 � 1 and
n�

���
3

p
=3, we get

!p�)B� �!p�)A�

2,
� �7:5	 102�1 � 8:7	 102�2� Hz;

(35)

and the correspondent upper bounds

j�1j & 2	 10�8; j�2j & 1	 10�8: (36)

V. CONCLUSIONS

In this paper, we have considered the introduction of
cubic Lorentz-violating terms in the fermionic dispersion
relation. We have concluded that the two possible Lorentz-
violating parameters yield different terms in the fermionic
dispersion relation, both cubic in the momentum operator
components. In the nonrelativistic limit, we have found the
two leading order terms altering the equations of motion
for fermions and determined the effect of these terms in the
9Be� ion’s energy spectrum. Using the method developed
by Weinberg and the experimental result of Bollinger et al.,
097901
we have obtained new bounds on the value of the parame-
ters �1 and �2 for neutrons. We have determined j�1j &

6	 10�3 and j�2j & 3 for a timelike background Lorentz-
violating four-vector, j�1j & 2	 10�5 and j�2j &

1	 10�8 for a spacelike four-vector, and j�1j &

2	 10�8 and j�2j & 1	 10�8 for a lightlike four-vector.
The values of the Lorentz-violating parameters �1 and

�2 are, hence, highly dependent on the form of the back-
ground four-vector, particularly on its spatial components.
Bollinger et al. experimental results are consistent with
high values for these parameters, especially j�2j, in the
case where the spatial components of n� have small values
in the laboratory frame, n� 10�3 (a timelike background
four-vector). On the other hand, this experiment yields
quite strong constraints when n� 1 (a spacelike or light-
like background four-vector).

In general, n� may have different spatial components in
the laboratory frame due to the motion of the Earth with
respect to the cosmic frame where the background four-
vector has a simple form. If some of these components are
further suppressed, the upper bounds on the values of the
Lorentz-violating parameters will be larger than the ones
presented above.

In any case, it is somewhat striking that 15 yr-old experi-
ments like the one considered in this paper can lead to
relevant upper bounds for these parameters and shed some
light on the physics of very high energy scales.

ACKNOWLEDGMENTS

The authors would like to thank David Mattingly for his
useful comments and suggestions.
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[2] V. A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683
(1989); Phys. Rev. Lett. 63, 224 (1989); V. A. Kostelecký
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