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Unified parametrization of quark and lepton mixing matrices
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We present a unified parametrization of quark and lepton mixing matrices. By using some simple
relations between the mixing angles of quarks and leptons, i.e., the quark-lepton complementarity, we
parametrize the lepton mixing matrix with the Wolfenstein parameters � and A of the quark mixing
matrix. It is shown that the Wolfenstein parameter � can measure both the deviation of the quark mixing
matrix from the unit matrix, and the deviation of the lepton mixing matrix from the exactly bimaximal
mixing pattern.
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Introduction—To describe the behaviors of quarks and
leptons in a grand unified theory (GUT) is one of main
goals of particle physics. Among all the characters of
quarks and leptons, the mixing between different genera-
tions is one of the fundamental problems. Before more
underlying theory of the origin of the mixing is found, to
parametrize the quark mixing (CKM) matrix [1] and the
lepton mixing (PMNS) matrix [2] phenomenologically is
the first step to understand this problem. However, these
two mixing matrices were parametrized in isolated ways,
with the parameters in these two mixing matrices being
uncorrelated with each other. The purpose of this paper is
to show that one can parametrize the quark and lepton
mixing matrices in a unified way by adopting some simple
relations between the mixing angles of quarks and leptons

�23 � �023��atm� �
�
4
; �31 � �031��chz�;

�12��C� � �012��sol� �
�
4
;

(1)

where �ij and �0ij (for i; j � 1; 2; 3) are the mixing angles
of the i and j generations of the CKM matrix and the
PMNS matrix (�12 is the Cabibbo mixing angle �C).
These relations, which have been suggested by Raidal [3]
as a support of the grand quark-lepton unification or certain
quark-lepton symmetry, are in perfect agreement with
experimental data (for example, �C � 12:9� and �sol �
32:6� at the best fit points, and �C � �sol � 45:5�). The
third numerical correlation has been pointed out by
Smirnov [4], and is called the quark-lepton complementar-
ity (QLC) [5].

From these relations, we can find that the mixing angles
of quarks and leptons are not independent of each other. So
we can get the trigonometric functions of the mixing angles
of leptons in terms of these of quarks, and link the parame-
ters of the PMNS matrix with these of the CKM matrix.
Therefore, we can parametrize the PMNS matrix with the
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parameters of the CKM matrix, and express the CKM and
the PMNS matrices in a same framework.

The quark and lepton mixing matrices—Both quark and
lepton mixing matrices can be written as
0
@ c31c12 c31s12 s31e�i�

�c23s12�s23s31c12e
i� c23c12�s23s31s12e

i� s23c31
s23s12�c23s31c12ei� �s23c12�c23s31s12ei� c23c31

1
A

(2)

where sij � sin�ij, cij � cos�ij (for i; j � 1; 2; 3), and � is
the CP-violating phase. Altogether there are four parame-
ters in the mixing matrix, describing both the real and the
imaginary parts of the mixing matrix.

For the CKM matrix V, the best fit values of the three
mixing angles are �12��C� � 12:9�, �23 � 2:4�, and �31 �
0:2� [6], and we can find that all the three mixing angles
are not large. So the CKM matrix is a small deviation from
the unit matrix, and it can be parametrized as [7]

V�

0
@ 1� 1

2�
2 � A�3��� i��

�� 1� 1
2�

2 A�2

A�3�1��� i�� �A�2 1

1
A; (3)

where � measures the strength of the deviation of V from
the unit matrix (� � sin�C � 0:2243	 0:0016), and A, �
and � are the other three parameters, with the best fit
values A � 0:82, � � 0:20 and � � 0:33 [6].

However, for the PMNS matrix U, the situation is quite
different from the CKM matrix. With the help of the
experimental data from KamLAND [8], SNO [9], K2K
[10], Super-Kamiokande [11] and CHOOZ [12] experi-
ments, we know that the mixing angles of leptons are not
as small as those of quarks [3],

sin22�atm � 1:00	 0:05; sin22�chz � 0	 0:065;

tan2�sol � 0:41	 0:05; (4)

where �atm, �chz, and �sol are the mixing angles of atmos-
pheric, CHOOZ and solar neutrino oscillations, and we
have �atm � 45:0� 	 6:5�, �chz � 0� 	 7:4� and �sol �
32:6� 	 1:6�. So the numerical relations in Eq. (1) are
satisfied to a good degree of accuracy.
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Therefore, we can get the PMNS matrix and find that
almost all the nondiagonal elements of the PMNS matrix
are large. According to the results of the global analysis of
the neutrino oscillation experimental data, the elements of
the modulus of the PMNS matrix are summarized as [13]

jUj �

0
@ 0:77� 0:88 0:47� 0:61 <0:20
0:19� 0:52 0:42� 0:73 0:58� 0:82
0:20� 0:53 0:44� 0:74 0:56� 0:81

1
A: (5)

We can see from Eq. (5) that the PMNS matrix deviates
from the unit matrix significantly, but it is quite near the
bimaximal mixing pattern, which reads
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So, for the parametrization of the PMNS matrix, it is
unpractical to imitate the Wolfenstein parametrization of
the CKM matrix indiscriminately. The parametrizations of
the PMNS matrix on the basis of the bimaximal mixing
pattern have been discussed by Rodejohann [14] and us
[15]. However, these parametrizations only concern about
the experimental data of leptons, without taking into ac-
count their relations with quarks. Thus, the CKM and the
PMNS matrices are parametrized irrelevantly, and the
parameters in them are not correlated with each other.
However, with the relations in Eq. (1), we can parametrize
the quark and lepton mixing matrices with correlated
parameters.

Parametrization of the PMNS matrix—In Wolfenstein
parametrization of the CKM matrix, we have (to the order
of �3)
sin�12 � �; cos�12 � 1�
1

2
�2; sin�23 � A�2; cos�23 � 1; sin�31e�i� � A�3��� i��; cos�31 � 1:

(7)
For the case of leptons, using Eq. (1), we have (to the
order of �3)
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where A and � are just the Wolfenstein parameters of
the CKM matrix. So the CKM and the PMNS matrices
have only one set of parameters in this unified parametri-
zation. Because there are totally four angles in the mix-
ing matrix (three mixing angles and one CP-violating
phase angle), and only two precise numerical relations
are known (Eq. (1)), we have to introduce another two
new parameters � and � to describe the PMNS matrix
fully.

In Eq. (8), we set sin�031e
�i�0

� A�3�� � i��. Because
of the inaccurate experimental data of neutrino oscilla-
tions, we have not fixed the value of jUe3j, and only known
its upper bound [13]. Therefore, we may also set
sin�031e

�i�0
� A�2�� 0 � i�0�. Choosing which of them is

to be determined by the future experimental data, and we
discuss these two cases here, respectively.

Case 1: sin�031e
�i�0

� A�3�� � i��.
Substituting Eq. (8) into Eq. (2), we can get the PMNS

matrix as
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Now we give some discussion about Eq. (9):
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(1). The bimaximal mixing pattern is derived naturally
as the leading-order approximation. However, it is chosen
as the basis for the expansion of the PMNS matrix by hand
before [14,15]. So we can even freely choose other bases
for the parametrization of the PMNS matrix (for example,
to parametrize the PMNS matrix in the tribimaximal mix-
ing pattern [16]). Now we find that the leading-order term
of the PMNS matrix must be the bimaximal mixing pattern
as long as we accept the numerical relations in Eq. (1).

(2). The Wolfenstein parameter � can characterize both
the deviation of the CKM matrix from the unit matrix (see
Eq. (3)), and the deviation of the PMNS matrix from the
exactly bimaximal mixing pattern (see the next-to-leading-
order term in Eq. (9)). However, in the previous work
[14,15], � in the PMNS matrix is introduced indepen-
dently, without considering its relation with the
Wolfenstein parameter � in the CKM matrix. Now, we
can see that in this unified parametrization these two differ-
ent deviations of quarks and leptons are correlated essen-
tially, and can be measured by only one single parameter �,
as Raidal pointed out [3].

(3). Comparing with the parametrizations in bimaxiaml
mixing pattern [14,15], we can see that this unified pa-
rametrization is equivalent to them to the leading and next-
to-leading orders. In [14], the elements of the PMNS
matrix are set to be Ue2 �

��
2

p

2 �1� ��, Ue3 � A�ne�i�,

and U�3 �
��
2

p

2 �1� B�m�. If we let B ! A and fix m to
be 2, and n to be 3, we can find that the parametrization in
[14] is just the unified parametrization here. Similarly, in
[15], Ue1 �

��
2

p

2 � �, Ue3 � b�2, and U�3 �
��
2

p

2 � a�2. If

we rescale � !
��
2

p

2 � and a ! �
���
2

p
A, we can find that the

first two terms of the expansion in [15] are just the same as
Eq. (9) (in [15], Ue3 is set to be b�2, not b�3, but this only
affects the terms of higher orders). So the parametrizations
in [14,15] have been rederived as the natural results in this
unified parametrization.
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(4). The range of � in [15] is calculated in detail, 0:08<
�< 0:17. Now, in this unified parametrization, � here is
just the Wolfenstein parameter of the CKM matrix, � �
sin�C � 0:2243. As discussed in (3), if we rescale �, and
divide it by

���
2

p
, we get � � 0:1586. We can see that the

value of the rescaled � is just in the range calculated in
[15]. So this unified parametrization is reasonable com-
pared with the experimental data.

(5). The values of � and � in the CKM matrix have been
measured by many experiments [6], and the typical values
are � � 0:20 and � � 0:33. On the contrary, the inaccur-
acy of the current experimental data of neutrinos makes it
difficult to fix the values of the elements of the PMNS
matrix to a very good degree of accuracy. So the values of �
and � have not been determined by now. At present, the
best fit point of sin2�031 is 0.006 [17], so we have

A�3
�����������������
�2 � �2

p
� 0:077, and

�����������������
�2 � �2

p
� 8:2. Therefore,

both � and � are of O�1�.
Furthermore, � and � are related with the CP-violating

process [18], and the rephasing-invariant measurement of
the lepton CP-violation is described by the Jarlskog pa-
rameter J [19], J � Im�Ue2U�3U


e3U


�2�. In this unified

parametrization, from Eq. (9), J can be expressed in a
simple form (to the order of �5),

J �
1

4
A�3��1� 2�2� � 0:0022�: (10)

We can see from Eq. (10) that J is only related with the
parameter �. So if we can observe the lepton CP-violating
process in the future neutrinoless �� decay reaction, and
can determine the value of J, then the value of � can be
fixed. And with the more precise experimental data of
jUe3j, we can determine the value of � ultimately. Thus
we can get a full understanding of the structure of the
PMNS matrix.

Case 2: sin�031e
�i�0

� A�2�� 0 � i�0�.
Repeating the former process, we get
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(11)
Similar to Case 1, we can see that:
(1). The bimaximal mixing pattern is derived as the

leading-order term naturally.
(2). The deviation of the CKM matrix from the unit

matrix, and the deviation of the PMNS matrix from the
exactly bimaximal mixing pattern can be characterized by
only one parameter �.

(3). Parametrizations in [14,15] can be transformed into
this unified parametrization, if we letB!A and fix m and n
to be 2 in [14], and rescale �!

��
2

p

2 � and a!�
���
2

p
A in [15].
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(4). The expressions of the leading-order and next-to-
leading-order terms in Case 2 are the same as those in Case
1, because the difference between them is caused by the
introductions of Ue3 at the second and the third orders. So
the expressions of the first two orders must be the same in
these two cases. Also, � in Case 2 is still consistent with
the range 0:08< �< 0:17 after rescaling.

(5). The Jarlskog parameter J can be expressed now in
the form

J �
1

4
A�2�0�1� 2�2� � 0:0099�0: (12)

Similarly, we can fix the value of �0 by observing the lepton
CP-violating process, and then can determine the value of

� 0. Now
�������������������
� 02 � �02

p
� 1:8, and � 0 and �0 are still of O�1�.

Of course, � 0 and �0 in Case 2 are not the � and � in Case 1,
and they are equivalent to the � and � in Case 1 by
rescalings � 0 ! �� and �0 ! ��.

Then we can see the merits of these two cases. If
sin2�031 � 0:006 as a preliminary estimate shows, then
Case 2 is preferable, because � 0 and �0 in Case 2 are
more close to 1 in magnitude. However, if sin2�031 �
0:0001 or less, then Case 1 is to be preferred.

Conclusions—We present a unified parametrization of
the quark and lepton mixing matrices, which is based on
the simple relations between the mixing angles of quarks
and leptons. Although the physical explanation of these
relations remains to be explored, we believe that there must
be some deeper principle behind these elegant correlations,
which are in perfect agreement with the current experi-
mental data.

If the numerical relations in Eq. (1) violate a little, we
can maintain the expressions in Eq. (8), and only need to
redefine the parameters � and A. For example, we can still
097301
set sin�023 �
��
2

p

2 �1� A0�02�. Thus, the parameter �0 and A0

are not the same as the Wolfenstein parameters � and A,
and the symmetry between the quark and lepton mixing
matrices will break slightly. This is a more general parame-
trization, and can work whether Raidal’s numerical rela-
tions keep or not. However, A0 and �0 in this more general
parametrization are still the Wolfenstein-like parameters.
The forms of s0ij, c

0
ij and expansion of the PMNS matrix

will still keep invariant, and the leading-order term is still
the bimaximal mixing pattern, only with the transition � !
�0, and A ! A0.

In conclusion, although all sorts of parametrization of
the quark and lepton mixing matrices are not based on deep
theoretical foundation, and applying any of them may not
have specific physical significance, however, it is quite
likely that this unified parametrization does have its ad-
vantages. For instance, the number of the free parameters
in this unified parametrization is fewer than the parametri-
zations in [14,15], the bimaximal mixing pattern as the
leading-order term is derived naturally, and the next-to-
leading-order is the same as [14,15] after rescalings. Also,
the Wolfenstein parameter � can measure both the devia-
tion of the CKM matrix from the unit matrix, and the
deviation of the PMNS matrix from the bimaximal mixing
pattern. So if this unified parametrization is tested to be
consistent with more precise experimental data in the
future, we can get a comprehensive understanding of the
mixings of quarks and leptons, and push forward the
exploration of grand unification.
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