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Renormalized broken-symmetry Schwinger-Dyson equations and the two-particle irreducible
1=N expansion for the O�N� model
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We derive the renormalized Schwinger-Dyson equations for the one- and two-point functions in the
auxiliary field formulation of Coleman, Jackiw, and Politzer [S. Coleman, R. Jackiw, and H. D. Politzer,
Phys. Rev. D 10, 2491 (1974).] for ��4 field theory, to order 1=N, in the 2PI-1=N expansion. We show
that the renormalization of the broken-symmetry theory depends only on the counter terms of the
symmetric theory with � � 0, as discussed in our previous paper [F. Cooper, B. Mihaila, and
J. F.Dawson, Phys. Rev. D 70, 105008 (2004).]. We find that the 2PI-1=N expansion violates the
Goldstone theorem at order 1=N. In using the O�4� model as a low energy effective field theory of pions
to study the time evolution of disoriented chiral condensates one has to explicitly break the O�4� symmetry
to give the physical pions a nonzero mass. In this effective theory, we expect that the additional small
contribution to the pion mass due to the violation of the Goldstone theorem in the 2PI-1=N equations to be
unimportant for an adequate description of the phenomenology.
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I. INTRODUCTION

Lately there has been interest in using two-particle
irreducible (2PI)-1=N methods to investigate various as-
pects of quantum field theory [1,2]. In a previous work [3]
we showed how to renormalize the Schwinger-Dyson (SD)
equations for the symmetric phase of the O�N� model in
the auxiliary field formalism, to order 1=N. This was done
by first using the multiplicative renormalization approach
[4] to find the exact renormalized SD equations, and then to
realize that to leading order in 1=N one only needs to set
the renormalized vertex function for��� to one (�R � 1),
in order to consistently truncate the infinite hierarchy of
renormalized Green’s functions. Here, � is the auxiliary
field related to �2.

In order to carry out dynamical simulations with non-
zero values of h�i, which occurs, for example, when chiral
condensates are produced [5], it is important to extend
that result to the case of broken symmetry, � � 0. In this
paper we show that by extending the multiplicative renor-
malization scheme used for the symmetric phase, we can
obtain finite renormalized SD equations for the broken-
symmetry phase. Since the 2PI-1=N approach is a resum-
mation of the ordinary 1=N expansion, it is important
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to ask to what extent the Ward-Takahashi identities pre-
served in the original perturbative 1=N approach [4] are
preserved in the 2PI-1=N approach. One of these identities
leads to the Goldstone theorem [6]. Goldstone’s theorem
states that if continuous symmetry is broken, and there is
a residual symmetry, there should be massless particles
in the theory corresponding to the number of symmetries
left unbroken.

As has been previously pointed out for the 2PI-1=N, the
Goldstone theorem is formally satisfied if one determines
the masses from the inverse propagators derived from the
one-particle irreducible (1PI) generating functional for the
� fields [2,7]. However one expects (and we find) that the
inverse propagators obtained directly from the 2PI-1=N
generating functional for the would be massless particles
do not vanish as p2 as p2 ! 0 in violation of Goldstone’s
theorem. What we explicitly find is that the condition for
the spontaneous symmetry breakdown found from the
renormalized equation for the expectation value of h�ii
leads to a mass for the would be Goldstone bosons at order
1=N. The evolution equations obtained from the 2PI-1=N
effective action are energy preserving.

If we modify by hand these equations to enforce the
Goldstone theorem, we would then violate energy conser-
vation at order 1=N. This violation of the Goldstone theo-
rem can be more satisfactorily remedied by constructing
an improved effective action functional as discussed in
Van Hees and Knoll [7]. However, this then leads to a
-1  2005 The American Physical Society
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much more complicated set of equations which includes
(in addition to solving for the one- and two-point function
equations) solving simultaneously the Bethe-Salpeter
equations for the vertex function. Given present computa-
tional power, this would be not feasible for 3� 1
dimensional calculations at this time. The improved effec-
tive action is not entirely satisfactory in that the propaga-
tors on internal lines still do not obey the Goldstone
theorem.

One can hope, however, from a phenomenological point
of view, that the violation of the Goldstone theorem by this
approximation is not very serious. In making a realistic
phenomenological model of pions using the O�4� model
one has to explicitly break the O�4� symmetry if we want
the pion to have the correct physical mass. This is done by
introducing an external source coupling to the field with
nonvanishing expectation value (i.e. the 
 particle). One
then determines the magnitude of this external source by
using the partially conserved axial current equation
(PCAC). This was discussed in a previous paper on dis-
oriented chiral condensates [5]. As long as the mass gen-
erated by the breakdown of the Goldstone theorem is small
compared to the mass generated by the explicit violation of
the symmetry then this breakdown should not be important
for phenomenological applications. Our renormalization
procedure will lean heavily on our previous result for
obtaining renormalized SD equations in the symmetric
vacuum [3].

Before continuing with our approach we will discuss
some previous approaches to Goldstone theory problems.
Firstly, in a direct 1=N expansion to order 1=N2, Binoth et
al. [8] have performed all renormalizations. They found no
inconsistencies with the Goldstone theorem, and the resid-
ual O�N � 1� symmetry is preserved. This is a very com-
forting result, but as we have discussed previously [9], a
direct 1=N expansion leads to secularity problems in the
dynamics which is our main interest here. In an important
paper, Arrizabalaga et al. [10] realized that one can avoid
the problems with the Goldstone theorem discussed here,
by breaking the symmetry and then taking the limit of zero
symmetry breaking. This is valid if one is interested in
O�N�-invariant initial conditions, but also having
Goldstone particles. We will discuss this approach later.
Finally, Ivanov et al. [11] have discussed how to preserve
the Goldstone theorem in the simpler Hartree approxima-
tion, by adding terms to the 2PI generating functional
which vanish when the symmetry is restored, but which
explicitly enforce the Goldstone condition. This is a prom-
ising approach, which needs to be explored further.
II. THE O�N� SCALAR FIELD THEORY

In the auxiliary field formulation of Coleman et al. [12],
the O�N� model can be described by an action written in
terms of the auxiliary field �
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S	�i; �
 �
Z

ddx
�
�
1

2
�i�x�	� � ��x�
�i�x�

�
�2�x�
2g

�
�2

g
��x�

�
: (2.1)

Here and in what follows we let g � �=N. To treat the N �
1 fields on equal footing we introduce the notation

�a�x� � 	��x�; �1�x�; �2�x�; . . . ; �N�x�
;

ja�x� � 	j0�x�; j1�x�; j2�x�; . . . ; jN�x�
;
(2.2)

with a � 0, i � 1; . . . ; N. Using this notation, the complete
action for the O�N� model is given by:

S	�; j
 � �
1

2

Z
ddx

Z
ddx0�a�x�


�1
ab �x; x

0��b�x
0�

�
Z

ddx
�
�
1

6
�abc�a�x��b�x��c�x�

��a�x�ja�x�
�
; (2.3)

where 
�1
ab �x; x

0� � 
�1
ab �x���x; x

0� with


�1
ab �x� �

�1=g 0
0 ��ij

� �
; (2.4)

and where �abc � �a0�ij � cyclic permutations. Here we
have put j0�x� � J�x� ��2=g. The coupling constant g �
�=N is of order 1=N. For the dynamics the integrals and
delta functions �C�x; x0� are defined on the closed time path
(CTP) contour, which incorporates the initial value bound-
ary condition [13].

The generating functional Z	j
 and connected Green’s
function generator W	j
 are defined by a path integral:

Z	j
 � eiW	j
 �
YN
a�0

Z
d�ae

iS	�;j
: (2.5)

We define one-point functions by:

�a�x� �
�W	j

�ja�x�

; (2.6)

which satisfy the equations:


�1
ab �x��b�x��

1

2
�abcf�b�x��c�x��Gbc�x;x�=ig� ja�x�;

(2.7)

where Gab�x; x
0� is the two-point Green’s function, defined

by:

Gab�x; x
0� �

��a�x�
�jb�x0�

�
�2W	j


�ja�x��jb�x0�

�
D�x; x0� Kj�x; x

0�

Ki�x; x0� Gij�x; x0�

� �
: (2.8)

We also define the generating functional �	�
 of 1PI
vertices by a Legendre transformation:
-2



RENORMALIZED BROKEN-SYMMETRY SCHWINGER- . . . PHYSICAL REVIEW D 71, 096003 (2005)
�	�
 � W	j
 �
Z

ddx�a�x�ja�x�; (2.9)

and one-point vertex functions by:

��1�
a �x� � �

��	�


��a�x�
� ja�x�; (2.10)

so that from (2.7), we have:

��1�
a �x� � 
�1

ab �x��b�x� �
1

2
�abcf�b�x��c�x�

�Gbc�x; x�=ig; (2.11)

which gives the familiar equations of motion

	����x�
�i�x��Ki�x;x�=i� ji�x�;

��x����2�gj0�x��
g
2

X
i

	�2
i �x��Gii�x;x�=i
:

(2.12)

The two-point vertex functions are defined by:

��2�
ab�x; x

0� � �
�2�	�


��a�x���b�x0�
�

�ja�x�
��b�x0�

; (2.13)

so that by differentiating (2.11), we find:

��2�
ab�x; x

0� � G�1
0ab�x; x

0� � �ab�x; x
0�; (2.14)

where

G�1
0ab�x; x

0� � 	
�1
ab �x� � �abc�c�x�
��x; x

0�

�
D�1

0 �x; x0� 
K�1
0j �x; x

0�

K�1
0i �x; x

0� G�1
0ij �x; x

0�

 !
; (2.15)

with

D�1
0 �x; x0� � �g��x; x0�;

G�1
0ij 	�
�x; x

0� � 	� � ��x�
�ij��x; x0�;

K�1
0i 	�
�x; x0� � 
K�1

0i 	�
�x; x0� � �i�x���x; x0�:

and

�ab�x;x0��
1

2i
�abc

�Gbc�x;x�
��b�x

0�
�

��x;x0� �j�x;x0�

�i�x;x

0� �ij�x;x
0�

 !
:

(2.16)

The two-point vertex and Green’s functions are inverses of
each other:Z

ddx0��2�
ab�x; x

0�Gbc�x0; x00� � �ac��x; x00�; (2.17)

from which we find schematically that

�Gab

��c
� �Gaa1Gbb1�

�3�
a1;b1;c

; (2.18)

where

��3�
abc�x; x

0; x00� � �
�3�	�


��a�x���b�x0���c�x00�
(2.19)
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is the three-point vertex function. So the self-energy
�ab�x; x

0� can be written as:

�ab�x; x0� �
i

2
�aa1b1Ga1a2Gb1b2�a2;b2;b: (2.20)

Differentiating Eq. (2.14) again with respect to �c�x00�
gives an equation for the three-point vertex function:

��3�
abc�x; x

0; x”� � �abc��x; x
0���x; x”� � 
��3�

abc�x; x
0; x”�;

(2.21)

where


��3�
abc�x; x

0; x00� �
��ab�x; x0�
��c�x00�

�O�1=N�: (2.22)

For the purpose of renormalization it is useful to think of
Eq. (2.21) as an identity

� � �� 
� � 
�; (2.23)

since we have showed that both � and 
� renormalize the
same way in our previous paper [3].

For the exact equations it is convenient to introduce the
notations

��2�
ab�x; x

0� �
D�

2 1�x; x
0� �j�x; x0�


�i�x; x0� G�1
2;ij�x; x

0�

 !
; (2.24)

such that

��2�
00 � D�1

2 �x; x0� � D�1
0 �x; x0� ���x; x0�;

��2�
ij � G�1

2;ij�x; x
0� � G�1

0;ij�x; x
0� � �ij�x; x

0�;

��2�
0j � �j�x; x

0� � K�1
0;j �x; x

0� ��j�x; x
0�;

��2�
i0 � 
�i�x; x0� � K�1

0;i �x; x
0� � 
�i�x; x0�:

In the homogeneous vacuum we can invert these equations
in momentum space to obtain schematically

D�1
2 D��m


Km � �C; 
�iD�G�1
2;im


Km � 0;

D�1
2 Kj ��mGmj � 0; 
�iKj �G�1

2;imGmj � �ij�C:

(2.26)

We find:

Ki � 
Ki � �D2�mGmi � �G2;im

�mD; (2.27)

D � �g� g 
�D; (2.28)

Gij � G0�ij �G0

�inGnj; (2.29)

where we have introduced the notations


� ij � �ij �

�iD2�j; (2.30)


� � ���mG2;mn

�n: (2.31)

The above equations are, in principle, exact. In practice,
however, the exact SD hierarchy of equations needs to be
truncated. Two approximation schemes have been devel-
oped in the past few years: the bare vertex approximation
-3



FIG. 1. Graphs included in the 2PI effective action �2	G
.
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(BVA) [14], where the resulting dynamics is based on
ignoring vertex corrections (i.e. � � �), and the 2PI-1=N
expansion [1], where one further ignores terms of order
1=N2.

In this paper, it is useful to define renormalization at
p2 � 0, for the vacuum sector. As shown in our previous
paper [3], ��p2� is quadratically divergent and requires
two subtractions. Expanding about p2 � 0, we have

��p2� � ��0� � �1p
2 ��	sub2
�p2�; (2.32)

where �1 �
d�
dp2 jp2�0, and �	sub2
 / p4 as p2 ! 0. Then,

the wave function renormalization constant is introduced
as

Z�1
2 � �

dG�1�p2�

dp2









p2�0
� 1� �1: (2.33)

The vacuum renormalized mass parameter is defined as

M2 � Z2	�� ��0�
: (2.34)

The vertex renormalization constant Z1 is equal to Z2 by
a Ward-like identity and is defined by

Z�1
1 � ��p; p�jp2�0 � 1�

@��p2�

@�









p2�0
; (2.35)

and �R�p; q� � Z1��p; q�. We have shown in the vacuum
sector, that

G�1
R �p2��Z2G

�1�p2��p2�M2��	sub2

R �p2�; (2.36)

where �	sub2

R �p2� is explicitly finite and written only in

terms of renormalized Green’s functions and renormalized
vertex functions.

Also, in 3� 1 dimensions, coupling constant renormal-
ization is needed. Since the renormalized coupling con-
stant gR is the negative of the inverse � propagator at
p2 � 0, and is a renormalization group invariant, one can
obtain a finite equation for D�1 with the following single
subtraction

D�1�p2� � �
1

gr
��	sub1
�p2�; (2.37)

with

�	sub1
�p2� � ��p2� ���0�: (2.38)

What we showed in our previous paper [3] is that one can
write:

�R�p; q� � 1�
�	sub1

R �p; q�; (2.39)

where the second term is finite, renormalized, and of order
1=N.

III. 2PI-1=N EXPANSION

Next we want to compare these exact results with the SD
equations coming from the 2PI-1=N approximation. Now
096003
we have that the generating functional is given by:

�	�a;G
�Scl	�a
�
i

2
Trln	G�1
�

i

2
Tr	G�1

0 G
��2	G
;

(3.1)

where �2	G
 is the generating functional of the 2PI graphs
[15], and Scl	�a
 is the classical action in Minkowski
space. The approximations we are studying include only
the two-loop contributions to �2 (see Fig. 1).

The exact equations following from the effective action
Eq. (3.1), are the same as Eqs. (2.12) and (2.14) listed
above, with the Green’s function G�1

0ab	�
�x; x0� defined as

G�1
0ab	�
�x; x0� � �

�2Scl
��a�x���b�x0�

; (3.2)

and the self-energy

�ab�x; x0� �
2

i

��2	G

�Gab�x; x

0�
: (3.3)

In the 2PI-1=N we keep in �2	G
 only the first of the two
graphs shown in Fig. 1, which is explicitly

�2	G
 � �
1

4

ZZ
ddxddyGij�x; y�Gji�y; x�D�x; y�: (3.4)

The self-energy, given in Eq. (3.3), then reduces to:

��x;x0��
i

2
Gmn�x;x0�Gmn�x;x0�; �i�x;x0��0;


�i�x;x
0��0; �ij�x;x

0�� iGij�x;x
0�D�x;x0�:

(3.5)

In the homogeneous case we will use the O�N� symme-
try to choose the symmetry-breaking direction to be in the
direction N. In that case only h�Ni � 0. This means that
Gij is diagonal in general, and only the fields � and �N �


 mix. To determine the 
mass one has to just diagonalize
a 2� 2 matrix. There is no mixing between � and the �i
where i < N. Thus KN is the only nonzero entry to the
mixed propagator Ki and �j�x; x

0� � �jN�N��x; x
0�. Let

us look at the momentum space equations. The integral
equations for D and Gij are now

D � �g� g 
�D; (3.6)

Gij � G0�ij �G0

�inGnj; (3.7)

with
-4
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� ij � �ij � �iN�N

D2�jN�N; (3.8)


� � �� �mN�NG2;mn�nN�N: (3.9)

Iterating the equation for G shows it is diagonal and only
GNN is different from G2NN . For the self-energy only the
NN component is modified from the unbroken case. We
also have that

D�1 � D�1
2 ��NG2;NN�N: (3.10)

This difference will be important when we discuss
Goldstone’s theorem. It follows immediately that, in mo-
mentum space, we have

D�1�p2� � �
1

g
� 
��p2�; (3.11)

G�1
ij �p2� � ��p2 � ���ij � 
�ij�p2�; (3.12)

and

Ki�p
2� � 
Ki�p

2� � ��iN�ND2GNN: (3.13)

Now the correction to ��p2� goes like 1=p2 so this is
irrelevant at high momentum. The correction to ��p2�
goes like 1= lnp2 so this is also negligible compared to
lnp2. This implies that the renormalizability is not changed
by symmetry breaking. Also, since G and �2 renormalize
the same way the multiplicative renormalization does not
change. Introducing the notations �N � 
 and �i�i�N� �

)i and letting Gij � G�ij we have that the inverse propa-
gator for the ) mesons is

G�1
))�p

2� � �p2 � ����p2�; (3.14)

and for the 
 meson we have instead

G�1


�p

2� � �p2 � ����p2� � j�j2D2�p
2�: (3.15)
IV. GOLDSTONE THEOREM

The one-point function equation in an external source is

	� � ��x�
�i�x� � Ki�x; x�=i � ji�x�: (4.1)

This is to be interpreted as

G�1
3ij �x; x

0��j�x0� � ji�x�; (4.2)

where

G�1
3ij �x; x

0� � 	� � ��x�
�ij��x� x0� ��3ij�x; x0�: (4.3)

Now since

Ki�x; x0� � �D2�x; x0��j�x0�Gji�x; x0�; (4.4)

we see that

�3ij�x; x
0� � iGij�x; x

0�D2�x; x
0�: (4.5)

Thus apart from D ! D2, this is exactly the self-energy
�ij�x; x0�. Thus G3 is made finite by exactly the same 2
subtractions of wave function renormalization and mass
096003
renormalization as the full G. The renormalized one-point
function equation is then

G�1
3R �x; x

0��R�x
0� � 0: (4.6)

In momentum space, in the vacuum, we have

G�1
3R �p

2� � �p2 �M2
3�0� � �sub2

3R �p2�; (4.7)

where the self-energy is subtracted twice at p2 � 0. We
also have

M2
3 � Z2	���3�0�
: (4.8)

The condition for broken symmetry is that

���ij ��3ij��i � 0: (4.9)

Choosing the direction of the expectation value h ~�i to
define the i � N direction we have

���3NN � 0; (4.10)

for spontaneous symmetry breakdown. We need to ask
whether this insures N-1 Goldstone bosons (see also pre-
vious discussions on this topic in [2,7,16,17]).

Now the N-1 would be Goldstone bosons come from the
inverse propagator G�1

)), which after renormalization at
p2 � 0 gives

G�1
R �p2� � �p2 �M2�0� � �sub2

R �p2�; (4.11)

with �sub2
R (the twice subtracted at p2 � 0 renormalized

self-energy) proportional to p4 at small p2. The condition
for a Goldstone theorem is that G�1

R � ap2 for small p2 so
that there is a zero mass pole in the propagator. This
requires

M2�0� � Z2	�� ��0�
 � 0: (4.12)

However the condition for broken symmetry is that

M2
3 � Z2	���3�0�
 � 0: (4.13)

The difference between � and �3 is of order 1=N, and is
proportional to h�i2.

If we want to preserve the Goldstone theorem in our
dynamical simulations we could use D2 and not the full D
in our update equations for the self-energy. However this
would then violate energy conservation (by terms of order
1=N) previously guaranteed by the use of the effective
action. Note, however, that if were only interested in
O�4� symmetric initial condition, but having Goldstone
particles, the strategy of Arizabalaga et al. works perfectly.
By first choosing h�i small, but not zero, Eq. (4.10) must
be satisfied. Taking the limit h�i goes to zero later, the
difference between � and �3 vanishes, and we have no
conceptual problem. The difficulty only arises when one is
interested in non O�N� symmetric initial conditions for the
expectation value of �.

In leading order 1=N, the self-energy � is zero and the
condition for symmetry breakdown is then � � 0 which
automatically leads to N-1 Goldstone particles, and there is
-5
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no problem with the Goldstone theorem. (This fact has
been verified to order 1=N2 in a direct 1=N expansion by
Binoth et al. [8].) As for the mass of the 
 meson one has
that

m2

�0� �m2

)�0� � �Z2�2D2�0� � gR�2
R=2: (4.14)

This is the renormalized version of what happens in the
classical theory. To make a realistic model of pions, one
has to explicitly break the O�4� symmetry by setting j0 �
H as in Ref. [5]. Doing this the quantum field equation for
the 
 field becomes

	� � �

 � H: (4.15)

Therefore, H is renormalized the same way as 
, and the
renormalized PCAC equation coming from

Ai
� � )i@�
� 
@�)

i; �i � 1 . . .N � 1�; (4.16)

becomes

@�Ai
R��x� � HR)i

R�x�; (4.17)

with HR � f)m
2
). As long as the pion mass generated from

the breakdown of the Goldstone theorem is small com-
pared to the mass coming from the explicit symmetry
breakdown, the violation of the Goldstone theorem by
this approximation will not be important in dynamical
simulations of an effective theory of disoriented chiral
condensates.

One way to ‘‘solve’’ the Goldstone problem is to intro-
duce an ‘‘improved’’ action [2,7]

��	�
 � �	�;�	�
; G	�

: (4.18)

The second derivative of this action is guaranteed to satisfy
the Goldstone theorem by construction. Because of the
O�N� symmetry �� is only a function of � �� � �2.
Thus the condition for a minimum is

@��

@�i
� 2

@��

@�2�i � 0: (4.19)

So that for h�ii � 0, we have

��0 �
@��

@�2 � 0; (4.20)

at the minimum. The inverse propagator is now

G�1
ij �

@2��

@�i@�j

� 2��0	�ij ��i�j=�
2
 � �2��0 � 4��00��i�j=�

2:

(4.21)

From this equation one infers that the transverse degrees of
096003
freedom are massless and the longitudinal ones are not.
The construction of �� though feasible in 3� 1 dimen-
sions in static cases, is not at present numerically feasible
in the dynamical case where one has to solve further Bethe-
Salpeter equations for the three-point vertex functions. The
details of the construction of �� are found in [7].

Before closing, let us remark that in a recent paper,
Ivanov et al. [11] have proposed a new way of circum-
venting the violation of Goldstone’s theorem, at leading
order, in the simpler Hartree approximation. Specifically,
these authors have outlined a modified self-consistent
Hartree approximation, which preserves features present
in the �-derivable approach, such as energy conservation
and thermodynamic consistency. By adding terms to the
2PI generating functional which vanish when the symme-
try is restored, their approach explicitly enforces the
Goldstone theorem. This may be a promising approach,
and it will be interesting to see if the same strategy can be
pursued at next-to-leading order in 1=N.
V. CONCLUSIONS

In what is a follow-up to our previous paper [3], in which
we have discussed the renormalization of the symmetric
O�N� model, � � 0, to next-to-leading order in 1=N, in the
SD framework, in this paper we have shown that the
2PI-1=N expansion of theO�N� model in the homogeneous
broken-symmetry vacuum is also renormalizable to order
1=N. We have derived finite equations for the renormalized
Green’s functions, and shown that Goldstone’s theorem is
violated. We have briefly discussed some current ideas
about how to circumvent this problem. Our major interest
here was to obtain finite renormalized equations for nu-
merical simulations of O�4� model dynamics. To make a
realistic model of the time evolution of the chiral phase
transition with physical ) mesons requires introduction of
explicit symmetry breakdown [5], which will make the
violation of the Goldstone theorem unimportant in phe-
nomenological applications, when compared with the mass
generated by the explicit breaking of the O�4� symmetry.
The renormalization presented here is easily generalized to
the time-dependent equations and we are in the process of
reinvestigating the problem of disoriented chiral conden-
sates using the O�4� model in the 2PI-1=N expansion.
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