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We present a top-condensation model in which the CP symmetry is spontaneously broken at the
electroweak scale due to the condensation of two composite Higgs doublets. In particular the CP-violating
phase of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix is generated. A simpler model where
only one quark family is included is also discussed. In this case, for a general four-fermion interaction
(Gtb � 0), the particle spectrum is the one of the one Higgs doublet model.
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I. INTRODUCTION

Top-condensation models [1–6]1 are interesting candi-
dates for a realistic theory of electroweak symmetry break-
ing (EWSB). They are a particular case of models of
dynamical EWSB [13], where the electroweak (EW) gauge
symmetry is broken due to the condensation of fermion-
antifermion bilinears. In top-condensation models the con-
densates are made of known fermions, mainly of the top
quark. In the minimal models no new particles are postu-
lated. The fundamental degrees of freedom are only fer-
mions and gauge bosons. No fundamental scalar fields
such as the standard model (SM) Higgs field are present.
On the other hand the spectrum of the theory includes one
or more composite Higgs particles. They are fermion-
antifermion bound states and play a similar role as the
fundamental Higgs particles in the SM and its extensions.

Besides the well-established SU�3� � SU�2�L �U�1�Y
gauge interactions a new four-fermion interaction is postu-
lated. It provides the dynamics responsible of EWSB and
the generation of SM fermion masses at the same time.
Note that in general two different sectors are necessary for
these purposes. In technicolor, for example, technicolor
gauge interactions trigger EWSB while extended techni-
color interactions are required to generate fermion masses.
Because of the nonperturbative nature of the new interac-
tion some approximation is needed. Calculations at first
order in the 1=N expansion, where N � 3 is the number of
colors are often made, obtaining a version of the Nambu-
Jona-Lasinio (NJL) model [14]. Next-to-leading order cal-
culation are also available [15,16].

The four-fermion term postulated in top-condensation
models is generally seen as an effective interaction. At
some high energy scale � an asymptotically free gauge
interaction becomes strongly-coupled. For energies below
� the new interaction is effectively described by operators
constructed with the fields corresponding to the light
(mparticle <�) degrees of freedom of the theory. At low
energies the most important nonrenormalizable operators
–12] for more phenomenological aspects.
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are the ones having the lowest mass dimension. Therefore
dimension-six four-fermion operators are considered.
Normally only four-fermion operators made of (pseudo)-
scalar fermion bilinears are taken into account. They are
the ones leading to (pseudo)scalar composite fields. Axial
vector and vector fermion bilinears are ignored. Note,
however, that the distinction between (pseudo)scalar and
(axial)vector bilinears is ambiguous due to Fierz identities.
The new interaction must violate the flavor symmetry, i.e.
must be nonuniversal, in order to generate the observed
fermion mass pattern. Topcolor models [17] are examples
of a theory of this type. In a second scenario the four-
fermion interaction term acquires a more fundamental
status. It is assumed that the SM with the Higgs sector
being replaced by a general dimension-six four-fermion
interaction is a (nonperturbatively) renormalizable theory
[18]. This is the case if one or more non-Gaussian ultra-
violet stable fixed points are established beyond the point-
like approximation [18]. In this note the four-fermion
interaction term is used as a starting point. Therefore,
besides the four-fermion and the SM gauge couplings,
the scale � at which the whole Lagrangian is defined, is
also a parameter of the theory.

For � much bigger than the electroweak scale, comple-
mentary to the NJL approach a perturbative renormaliza-
tion group analysis can be made [4,19–23].2 This method,
which incorporates the SM gauge interactions, provides
reliable values for the top-quark and Higgs-boson masses.
In this approach the information that composite Higgs
doublets appear at the scale � is encoded in the composite-
ness condition. To have a very high scale � is, however, not
very attractive because the theory suffers from fine-tuning
in exactly the same way as the SM. Another important
point is the one related to the distinction between funda-
mental and composite Higgs particles. If the composite-
ness scale � is very high, the composite nature of these
particles cannot be directly verified by experiments in the
near future. A more interesting possibility is to have a scale
2In this case, however, the 1=N expansion is difficult to justify
[15,16].

-1  2005 The American Physical Society



CRISTIAN VALENZUELA PHYSICAL REVIEW D 71, 095014 (2005)
� not very much higher than the EW scale, ��
5–10 TeV. In this case no fine-tuning problem appears.
Besides, the generation of the scale � could be explained
from dimensional transmutation. This would solve or avoid
the hierarchy problem. A perturbative renormalization
group analysis cannot be justified in this case. Topcolor
assisted technicolor [24], and top-quark seesaw [25,26] are
examples of theories of this type. In these theories the NJL
approach is widely used.

In this paper, we present a top-condensation model in
which, together with the EW symmetry, the discrete CP
symmetry is spontaneously broken. ACP-conserving four-
fermion interaction term including the three quark gener-
ations is considered. Under certain conditions the CP
symmetry is spontaneously broken and the CP-violating
phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
is generated. Besides, realistic mixing angles and quark
masses are obtained. Leading order approximation in the
1=N expansion is adopted. A more detailed treatment of
the model is presented in [27].

The first model with spontaneous CP violation was
considered by T. D. Lee in 1973 [28], the same year that
M. Kobayashi and T. Maskawa published their important
paper [29]. In the Lee model (or its generalization for the
case of 3 quark families) two fundamental Higgs fields are
considered. For certain values of the parameters of the
model the CP-symmetric effective potential has a
CP-nonsymmetric minimum. As a result the model has a
number of CP-violating interactions, namely W� boson
exchange (as in the SM), charged and (flavor violating and
flavor conserving) neutral Higgs boson exchange. Flavor
changing neutral currents (FCNCs) are present in this
model already at tree level. This requires a mechanism
for their suppression in order to avoid conflict with experi-
mental data.

There are two potential problems in models of sponta-
neous CP-symmetry breaking at the EW scale. The first is
the one related with FCNCs. It can be shown [30,31] that
the requirements of spontaneous CP symmetry breaking at
the EW scale, absence of FCNCs at tree level,3 and a
realistic CKM matrix cannot be simultaneously satisfied.
Therefore, models presenting spontaneous CP-symmetry
breaking at the EW scale have tree-level nondiagonal
Yukawa coupling matrices. In order to have a realistic
model, a suppression mechanism is needed. The second
potential problem is a domain wall problem which arises in
a cosmological context. The effective potential has in
general degenerate minima corresponding to complex con-
jugate vacuum expectation values (VEVs). At the EW
phase transition domains with different signs of the VEV
phases are formed. These domains are separated by walls
with energy density much bigger than the closure energy of
3Here we refer to the general case without assuming any
discrete symmetry.
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the universe (after taking into account the effect of the
universe expansion) [32]. If one considers this problem to
be a serious one, some solution must be found in order that
spontaneous CP symmetry breaking at the EW scale is
viable.

This paper is organized as follows: we begin in Sec. II by
presenting the minimal scheme in top-condensation mod-
els. We continue, in Sec. III, with a model having a four-
fermion interaction term which includes only quarks of the
third family. Section IV corresponds to the central part of
this paper. Here we consider a model with a four-fermion
interaction term including the three quark families. In this
model the CP symmetry is broken by the vacuum. In
Sec. V the conclusions are given. In Appendix A the
calculation of the effective potential in the leading 1=N
expansion is sketched. In Appendix B convenient basis
changes for the auxiliary fields are given. In
Appendices C and E composite-field two-point functions
are calculated for the models of Secs. III and IV, respec-
tively. In Appendix D some definitions used in Sec. IV are
given.
II. MINIMAL SCHEME

We start with the simplest Lagrangian leading to EWSB
in the context of top-condensation models. CP is in this
case a symmetry of the Lagrangian and of the vacuum. In
top-condensation models the SM Lagrangian without the
Higgs sector is considered. In its place a four-fermion
interaction term made of SM fermions is postulated:

L �
X
k

��ki�
�D��k �

1

4

X
i

�F�i�a
�� �2 �L4f ; (1)

where the first sum is over all left- and right-handed
fermions of the theory and the second contains the 3
Yang-Mills terms of the SM-symmetry group, SU�3�c �
SU�2�L �U�1�Y . The Lagrangian L is locally invariant
under this symmetry group. In the simplest model [4] the
four-fermion interaction term L4f , is given by

L 4f � Gt� � LtR���tR L�; (2)

where  L � �tL; bL�
T , and t and b are the top and bottom

quark fields. The SU�3�c and SU�2�L indices are sup-
pressed. A color-index contraction in each parenthesis
and a SU�2�L-index contraction between � L and  L are
understood. The coupling constant Gt has mass dimension
m�2. The theory is defined at the scale � with all heavier
degrees of freedom integrated out. All momentum integrals
of the theory are regularized using � as a spherical cutoff.

In order to study the vacuum of the theory, it is very
convenient to use the auxiliary field formalism [33,34],
especially if one goes beyond the minimal scheme as we do
in the next sections. The formalism is also useful for
-2
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studying next-to-leading order corrections in the 1=N ex-
pansion [15,16,35].4 Let us introduce a scalar auxiliary
field H which possesses the same quantum numbers as
the fermion bilinear �tR L, i.e., the quantum numbers of the
Higgs doublet field in the SM. The term L4f is replaced by
Laux:

L 4f ���! Laux � �m2
HH

yH � gt� � LtRH � h:c:�; (3)

with real mass parameter m2
H and Yukawa coupling con-

stant gt. The Lagrangian Laux depends on the auxiliary
field H only quadratically. One recovers L4f , with Gt �
g2t =m

2
H, either integrating out the field H from the generat-

ing functional in the path integral formulation, or imposing
the constraints over the nondynamical field H (Euler-
Lagrange equations).

The vacuum of the theory is obtained by minimizing the
effective potential related to the fieldH. From Appendix A
we have the effective potential in the N ! 1 limit:

Veff�v0� � m2
H
v02

2
�

N

8"2

Z �2

0
k2dk2 log�k2 � g2t v02=2�;

(4)

with HyH � v02=2. From the minimum condition which
involve the first derivative of Veff with respect to v0 one
gets the gap equation

v0
�
m2
H �

g2t N

8"2

Z �2

0

k2dk2

k2 � g2t v
02=2

�
� 0: (5)

This equation has in general two solutions. A symmetrical
one located at v0 � 0, and, if Gt > Gcrit � 8"2=N�2, a
second one with v0 � 0 which breaks the EW symmetry.
Evaluating the second derivative of Veff�v0� at these two
points it can be seen that the nonsymmetrical solution
corresponds to the minimum of the effective potential if
Gt > Gcrit. In this case the corresponding value of v0 (or
equivalently ofmt) at the minimum is given by the solution
of

Gt

�
1�

m2
t

�2 log�2=m2
t

�
� Gcrit; (6)

with m2
t � g2t v

02=2. Note that in order to fulfill the last
equation having m2

t  �2, fine-tuning of Gt is needed.
Thus, if Gt > Gcrit the electroweak symmetry is sponta-
neously broken to the U�1� electromagnetic one. As in the
SM, three Goldstone bosons appear and the Higgs mecha-
nism provides the gauge bosons with masses.

The fourth degree of freedom % of the auxiliary field H
describes a scalar top-antitop bound state. The inverse
propagator of the field % is given by
4To see the connection between the formalisms with and
without auxiliary fields in the case of one auxiliary field, see
[36]. In this paper the effective potential is calculated
diagrammatically.
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i�%;%�p
2� �

ig2t N

16"2 �p
2 � 4m2

t �

�
Z �2

0

k2dk2

��p� k�2 �m2
t ��k

2 �m2
t �
: (7)

The propagator has a pole located at p2 � �2mt�
2. The

model predicts in this approximation a scalar bound state
with a mass equal to twice the top-quark mass.5 The
auxiliary field H plays a similar role as the Higgs field in
the SM. For this reason we call it (composite) Higgs field in
the following.
III. THIRD-GENERATION CASE

We generalize Eq. (2) for the case in which the four
chiral fields of the third family of quarks interact. We
consider the most general (dimension 6) gauge-invariant
four-quark interaction term involving the four chiral fields
that can be written as a sum of products of fermion bi-
linears with the quantum numbers and Lorentz structure of
the SM Higgs boson

L 4f � Gt� � LtR���tR L� �Gb� � LbR�� �bR L�

� �Gtb'
ab� � aLbR�� � 

b
LtR� � h:c:�; (8)

where

'ab �
0 �1
1 0

� �
:

Because of the hermiticity of the Lagrangian Gt andGb are
real. One can set Gtb also real (or positive) by redefining
one of the right-handed fermion fields. In this way the
interaction term L4f possesses only real coupling constants
and the complete Lagrangian is invariant under a conven-
tional CP transformation.6

Repeating the procedure followed in the previous sec-
tion we introduce n spin-zero auxiliary fields H�i�. The
term L4f is replaced by

L aux � �
Xn
i�1

m2
Hi
H�i�yH�i� �LYukawa; (9)

with

LYukawa � �
Xn
i�1

�g�i�t � LtRH�i� � g�i�b '
ab � aLbRH

b�i�� � h:c:�;

(10)

where g�i�t and g�i�b are the real Yukawa coupling constants
and m2

Hi
are mass parameters associated with the auxiliary
5If one modifies L4f in Eq. (1) in order to provide all the 6
quarks with masses in such a way that L4f can be rewritten with
help of only one composite Higgs field (see below), then the
mass of the bound state remains almost unaffected � 2mt.

6We ignore here the QCD )-term.
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fields. The relations between the coupling constants in the
two formulations of the model are given by

Gt �
Xn
r�1

g�r�t g
�r�
t

m2
Hr

; Gb �
Xn
r�1

g�r�b g
�r�
b

m2
Hr

;

Gtb �
Xn
r�1

g�r�t g
�r�
b

m2
Hr

:

(11)

In order to parametrize the space of couplings G, it is
enough to consider n � 2 . We restrict ourselves to n �
2 in the following.

From Appendix Awe obtain the effective potential in the
N ! 1 limit:

Veff�H
�1�; H�2�� �

X
i�1;2

m2
Hi
H�i�yH�i� �

N

8"2

�
Z �2

0
k2dk2 logdet�k2 � A�; (12)

with the 2� 2 matrix A given by

A �
g�i�t g

�j�
t H�i�yH�j� �g�i�t g

�j�
b '

abHa�i��Hb�j��

�g�i�t g
�j�
b '

abHa�i�Hb�j� g�i�b g
�j�
b H

�i�yH�j�

 !
;

(13)

where summation over the indices i and j is understood.
The ground state of the theory is found by minimizing

the effective potential with respect to the auxiliary fields
H�1� andH�2�. Because of the gauge invariance it is possible
to gauge any field configuration into the following form:

H�1� �

� v0��
2

p

0

�
; H�2� �

� w0ei/
0��

2
p

z0

�
; (14)

with v0, w0 , z0 � 0. In the following v0, w0, z0, /0 denote
the classical fields and the corresponding nonprimed sym-
bols denote their VEVs,

hH�1�i �

� v��
2

p

0

�
; hH�2�i �

�
wei/��

2
p

z

�
: (15)

In order to preserve the electromagnetic U�1� symmetry,
the VEV z must be zero. Besides, if the phase / is not a
trivial one, the CP symmetry could be spontaneously
broken. This happens if, once nontrivial quark masses are
generated, the coupling constant Gtb in the fermion mass
basis is complex.

Next we minimize the effective potential with respect to
the variables v0,w0,/0, and z0. We shall restrict ourselves to
the parameter subspace with z0 � 0 and search for local
minima in this region. It is possible to show [37] that for
z0 � 0 there is no local minimum (at least for mt � mb).
095014
The following conditions are sufficient in order to have a
local minimum at a point with z0 � 0:
(a)
-4
@Veff

@)
� 0; for ) � v0; w0; /0;

(16)
(b)
 @Veff

@z02
> 0;

�it is convenient to use z02instead of z0�;
(c) T
he 3� 3 Hessian matrix associated with the vari-
ables v0, w0, and /0 is positive definite.
The conditions (a) evaluated at the point v0 � v, w0 �
w, /0 � /, and z0 � 0 are given by

v
	
m2
H1

�
N�2

8"2

X
q�t;b

�
1�

m2
q

�2 log�2=m2
q

�

�

�
�g�1�q �2 � g�1�q g

�2�
q
w
v
cos/

�

� 0; (17)

w
	
m2
H2

�
N�2

8"2

X
q�t;b

�
1�

m2
q

�2 log�2=m2
q

�

�

�
�g�2�q �2 � g�1�q g

�2�
q
v
w

cos/
�


� 0; (18)

vw
X
q�t;b

�
1�

m2
q

�2 log�2=m2
q

�
g�1�q g

�2�
q sin/ � 0; (19)

where

mq �

��������g�1�q v���
2

p � g�2�q
wei/���

2
p

��������: (20)

The first derivative of the effective potential with respect to
z02 is given by

@Veff

@z02
� m2

H2
�
N�2

8"2

X
q�t;b

�
1�

m2
q

�2 log�2=m2
q

�
�g�2�q �2

�
N

8"2

Z �2

0

k2dk2

�k2 �m2
t ��k2 �m2

b�

v2

2

� �g�1�t g
�2�
b � g�2�t g

�1�
b �2: (21)

Using Eq. (18), with w � 0, the last expression can be
written as

@Veff

@z02
�
N�2

8"2

X
q�t;b

�
1�

m2
q

�2 log�2=m2
q

�
g�1�q g

�2�
q
v
w

cos/

�
N

8"2

Z �2

0

k2dk2

�k2 �m2
t ��k

2 �m2
b�

v2

2

� �g�1�t g
�2�
b � g�2�t g

�1�
b �2: (22)
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Because we are studying the possibility of having spon-
taneous CP symmetry breaking, the interesting case is
when both auxiliary field doublets condense (v;w � 0)
and Gtb � 0.7 We look for a local minimum of this form.
However, usingGtb � 0 we immediately note that Eq. (19)
can only be fulfilled if

sin/ � 0: (23)

Thus, Higgs VEVs are all real and CP is a symmetry of the
theory.

The first derivative conditions Eqs. (17) and (18) deter-
mine the top and bottom quark masses. These equations
can be fulfilled by choosing the adequate values of the
mass parameters m2

H1
and m2

H2
. In a similar way as for

the minimal scheme, these conditions are fine-tuned if
mq  �.

Considering only terms of order �2 in Eq. (22), condi-
tion (b) is equivalent to

�g�1�t g
�2�
t � g�1�b g

�2�
b � cos/> 0: (24)

For given couplings g�i�q , the last inequality can be fulfilled
by choosing the sign of cos/ properly.

Finally we check condition (c). The Hessian of the
effective potential with respect to v0, w0, and /0 is given by

@2Veff

@)a@)b
�
N�2

8"2

X
q�t;b

�
1�

m2
q

�2 log
�
�2

m2
q
� 1

��
g�1�q g

�2�
q

� cos/

w=v �1 0

�1 v=w 0

0 0 vw

0BB@
1CCA

�
N

8"2

X
q�t;b

Z �2

0
2m2

q
dxx

�x�m2
q�

2

�

�g�1�q �2 g�1�q g
�2�
q cos/ 0

g�1�q g
�2�
q cos/ �g�2�q �2 0

0 0 0

0BBB@
1CCCA; (25)

with )a � v0; w0; /0. To obtain Eq. (25) the first derivative
conditions were used. Considering condition (b) which
determines the sign of cos/ � �1, one can see that the
last matrix has 3 positive eigenvalues.

In summary, we considered the model defined by (8)
withGtb � 0 when both auxiliary fields condense breaking
the EW symmetry but respecting the U�1� electromagnetic
symmetry. This occurs if Eqs. (17) and (18) are fulfilled.
For mq  � these two equations are fine-tuned. The sign
of cos/ � �1 is determined by condition (24). Further-
more, spontaneous CP symmetry breaking does not occur.
The spectrum of the model is calculated in Appendix C.
We found that only 4 of the 8 degrees of freedom related to
7We briefly discuss the case Gtb � 0 below.
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the two auxiliary Higgs doublets are relevant at low ener-
gies. Three of them are Goldstone bosons and the fourth is
a physical Higgs particle with mass � 2mt. At energies
much lower than � this model cannot be distinguished
from the one which has only one auxiliary Higgs doublet
from the beginning [in this case the condition GtGb � G2

tb
must hold, see Eq. (11)].

The case of having Gtb � 0 is qualitatively very differ-
ent because the Lagrangian possesses a Peccei-Quinn U�1�
symmetry. In this case it is possible to introduce two
auxiliary fields in such a way that one couples only to
the field tR and the other only to the field bR (2 Higgs
doublet (2HD) model type II). If Gt;Gb > Gcrit both
auxiliary fields condense and one obtains a particle spec-
trum as follows: In the neutral sector two scalars with
masses equal to 2mt and 2mb, a Goldstone boson, and
an axion appear.8 In the charged sector one obtains a
charged Goldstone boson and a charged particle with

mass �
�������������������������
2�m2

t �m2
b�

q
.

We see that for both the case of having Gtb � 0 and for
Gtb � 0 (at least when both auxiliary fields condense), the
number of parameters at low energies is two. Once one
fixes them, e.g. the quark masses, the model is completely
specified. For the case Gtb � 0 one would like to under-
stand why the number of parameters is only two and not
three. The reason is that in order to satisfy Eqs. (17) and
(18) simultaneously (with Gtb � 0), the following relation
must hold:

1

Gcrit
�Gt �Gb� �

1

G2
crit

�GtGb �G2
tb� � 1�O�m2

q=�
2�:

(26)

For a given Gtb ( � 0), the values of Gt and Gb which
fulfill the last equation describe a hyperbola.
IV. SPONTANEOUS CP SYMMETRY BREAKING

In order to generate the CP-violating phase of the CKM
matrix and thus reproduce the observed mechanism of CP
symmetry violation, quarks of the three generations must
be included in the four-fermion interaction. We are inter-
ested in the situation in which the CP symmetry is sponta-
neously broken by the vacuum. Therefore, our starting
point is a CP-invariant Lagrangian with the four-fermion
interaction given by a generalization of Eq. (8):

L4f � Gijkl� � iLujR�� �ulR kL� �G0
ijkl�

� iLdjR�� �dlR kL�

� �G00
ijkl'

ab� � aiLdjR�� � 
b
kLulR� � h:c:�; (27)

where the coupling constantsG and the quark fields uR, dR,
 L � �uL; dL�T have indices i, j, k, l, which go from the
first to the third quark generation. The Lagrangian L4f
8An axion at the electroweak scale is experimentally ruled out.
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includes four-fermion terms which mix quark fields of
different quark families.

Because we demand the Lagrangian to be CP-invariant,
all the coupling constants G in L4f are considered to be
real. In this case the number of parameters of Eq. (27) is
171,9 where we do not count the cutoff � which is also a
parameter of the model.

We now rewrite the interaction term, Eq. (27), in terms
of auxiliary fields which have the quantum numbers of the
SM Higgs doublet field as we did in the previous sections.
We do not consider completely arbitrary couplings G. For
simplicity we restrict ourselves to the subset for which the
theory can be described by means of only two auxiliary
fields, H�1� and H�2�. In terms of these auxiliary fields the
four-fermion term L4f is replaced by

L 4f ���! Laux � �
X2
i�1

m2
Hi
H�i�yH�i� �LYukawa; (28)

where

LYukawa � �
X2
i�1

�g�i�kl � kLulRH
�i� � h�i�kl '

ab � akLdlRH
b�i��

� h:c:�; (29)

with g�i� and h�i� 3� 3 real matrices. The relations between
the real coupling constants in the two formulations of the
model are given by

Gijkl �
Xn
r�1

g�r�ij g
�r�
kl

m2
Hr

; G0
ijkl �

Xn
r�1

h�r�ij h
�r�
kl

m2
Hr

;

G00
ijkl �

Xn
r�1

h�r�ij g
�r�
kl

m2
Hr

:

(30)

In consequence, we restrict ourselves to a model with
36, essentially the four 3� 3 Yukawa matrices, parameters
(plus the cutoff scale �).

We are now confronted with the following problem. We
want to find the values of the parameters of the model such
that the vacuum of the theory breaks the EW symmetry in
the observed way (spontaneous CP symmetry violation
keeping the electromagnetic U�1� symmetry unbroken).
Besides, the generated CKM matrix and the quark masses
must correspond to their measured values. However, the
relation between the 36 parameters of our model and the
quantities to be reproduced is rather complicated. In order
to find an analytical solution we introduce a self-consistent
approach to the problem.

First, we assume that the minimum of the effective
potential (denoted by nonprimed symbols) is given by a
field configuration with nontrivial values of v, w, and /
9After requiring hermiticity of the Lagrangian there are 45
independent couplings G, 81 couplings G0, and further 45
couplings G00.

095014
( � 0; ") and with z � 0:

hH�1�i �

� v��
2

p

0

�
; hH�2�i �

�
wei/��

2
p

0

�
: (31)

VEVs of this form are necessary in order to have a theory
with spontaneous CP symmetry breaking and unbroken
U�1�em symmetry.

Inserting the Higgs VEVs in the Yukawa interactions,
Eq. (29), one gets the quark mass term:

L m � �
X2
i�1

�g�i�kl �ukLulRh%
0�i�i � h�i�kl �dkLdlRh%

0�i�i�

� h:c:�; (32)

with H�i� � �%0�i�; %��i��T . The quark mass matrices for
the up- and down-type quarks in the last equation are in
general nondiagonal. In order to diagonalize them we
perform the following chiral rotations:

uiR � Wu
iju

0
jR; uiL � Uu

iju
0
jL;

diR � Wd
ijd

0
jR; diL � Ud

ijd
0
jL;

(33)

where the primed fields denote the fermion fields in the
mass basis and Uu, Ud, Wu, Wd are basis transformation
matrices. The CKM matrix is given by VCKM � UuyUd. In
the new basis the quark mass matrices, which are now
diagonal and real are given by

Mu � 7�1�u
v���
2

p � 7�2�u
wei/���

2
p ;

Md � 7�1�d
v���
2

p � 7�2�d
wei/���

2
p ;

(34)

where the Yukawa couplings in the mass basis 7�i�u , 7�i�
d are

defined by

g�i� � Uu7�i�u Wuy; for i � 1; 2;

h�i� � Ud7�i�yd Wdy; for i � 1; 2:
(35)

We emphasize that the Higgs VEVs in Eq. (34) are still not
determined.

Using the last definitions, the relations between the
composite fields H�i� and their constituent quark fields
are given by:

%0�i� � �
1

m2
Hi

� �u0R7
�i�y
u u0L � �d0L7

�i�y
d d0R�;

%��i� � �
1

m2
Hi

� �u0R7
�i�y
u VCKMd0L � �u0LVCKM7

�i�y
d d0R�;

(36)

for i � 1; 2. Besides, the interaction term LYukawa is given
in this basis by
-6



SPONTANEOUS CP SYMMETRY BREAKING AT THE . . . PHYSICAL REVIEW D 71, 095014 (2005)
LYukawa � �
X2
i�1

� �u0L7
�i�
u u0R%

0�i� � �u0LVCKM7
�i�y
d d0R%

��i�

� �d0LV
y
CKM7

�i�
u u0R%

��i� � �d0L7
�i�y
d d0R%

0�i��

� h:c:�; (37)

with %��i� � %��i��.
Combining Eqs. (34) and (35) and using the fact that the

matrices g�i� and h�i� are real, it is possible to write the
Yukawa couplings in the weak basis, g�i�, h�i�, as a function
of the Higgs VEVs, the quark masses, and the basis trans-
formation matrices:

g�1� �

���
2

p

v
�Re�UuMuW

uy� � cot/Im�UuMuW
uy��;

g�2� �

���
2

p

w sin/
Im�UuMuWuy�;

h�1� �

���
2

p

v
�Re�UdMdW

dy� � cot/Im�UdMdW
dy��;

h�2� � �

���
2

p

w sin/
Im�UdMdWdy�: (38)

We have in this way transformed the original problem
into one which can be solved in a self-consistent way: We
must find values of v, w, and /, to which we associate the
Yukawa couplings given in Eqs. (38), such that the result-
ing effective potential has its minimum at the same values
v, w, and / (besides z � 0). For this purpose we can vary
the basis transformation matrices Uu, Ud, Wu, and Wd.
These are arbitrary unitary matrices which must obey the
condition UuyUd � VCKM.

The effective potential related to the four-fermion inter-
action (27) is given in Appendix A. A detailed analysis of
the local minimum conditions given in (16) is presented in
[27]. The conditions obtained in order to have a model
presenting spontaneous CP symmetry violation, realistic
quark masses, and the observed CKM matrix are:
(i) T
he first derivative conditions associated with the
variables v0 and w0 which are given by

m2
H1

�
N�2

8"2

X6
i�1

�
1�

m2
i

�2 log
�
�2

m2
i

� 1
��

�

�
'�1�
ii �

w0

v0
Re�'�0�

ii e
i/0
�

����������v;w;/;0�
;

m2
H2

�
N�2

8"2

X6
i�1

�
1�

m2
i

�2 log
�
�2

m2
i

� 1
��

�

�
'�2�
ii �

v0

w0
Re�'�0�

ii e
i/0
�

����������v;w;/;0�
; (39)

where the 6� 6 matrices '�i� are given in
Appendix D. These conditions can easily be ful-
filled by choosing suitable mass parameters m2

Hi
.

For mq  � both conditions require fine-tuning.
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(ii) C
-7
omplex Higgs VEVs are obtained only if the
factor c, defined in Appendix D, is different from
zero. In this case, the first derivative condition
associated with the variable /0 leads to:

cot/ � �
a

b� c
; (40)

where the real factors a, b, and c are given in
Appendix D. It can be seen that for c � 0 this first
derivative condition also requires from fine-tuning
if mq  �.
(iii) T
he alignment condition @Veff

@z02
> 0 takes the follow-

ing form:

�
2c

w2sin2/
�

X
i � u; c; t
j � d; s; b

jTijj2

�2 I�m2
i ; m

2
j �> 0;

(41)

with the 3� 3 matrix T and I�m2
i ; m

2
j � given in

Appendix D.

(iv) T
he Hessian matrix associated with the variables

v0, w0, and /0 must be positive definite. The
Hessian matrix is given by

@2Veff

@)a@)b
j�v;w;/;0� �

cN�2

4"2sin2/

�

�1=v2 1=vw 0

1=vw �1=w2 0

0 0 �1

0BB@
1CCA
ab

�
N

8"2

X6
i;j�1

I�m2
i ; m

2
j �
@Aij
@)a

�
@Aji
@)b

���������v;w;/;0�
; (42)

with )a; )b � v0; w0, and /0. The first derivatives of
the 6� 6 matrix A are given in Appendix D. There
are no quadratically divergent terms in Eq. (42)
(c / 1=�2). They cancel after imposing the fine-
tuned first derivative conditions.
Once one has a set of parameters g�i�, h�i�, m2
Hi

which
fulfills the previous conditions, the corresponding cou-
plings G are obtained using Eqs. (11). For a detailed
analysis of these conditions using a quark mass expansion
see [27].

The composite-field two-point functions, which allow us
to find the composite Higgs masses, are calculated for the
charged and neutral sectors in Appendix E. Besides the
three Goldstone bosons, there are three neutral and one
charged composite Higgs bosons. In this approximation we
find that one neutral Higgs mass is �2mt and that the rest
of the Higgs masses are much smaller. We think this is a
consequence of the crude approximation we adopted and
not a property of the theory. For further comments see our
conclusions.
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V. CONCLUSIONS

In this paper we considered a top-condensation model
with spontaneous CP symmetry breaking. We started with
a CP invariant four-fermion interaction defined at some
scale � which involves quarks of the three generations.
We restricted ourselves to the case in which the four-
fermion interaction can be rewritten with the help of two
auxiliary fields. The minimum of the effective potential is
obtained in a self-consistent manner. This leads to the
relevant conditions on the parameters of the model in
order to obtain a realistic CKM matrix, including the
CP-violating phase, and the quark masses. The following
conditions are found: (i) first derivative conditions related
to the variables v0 and w0 [Eqs. (39)], (ii) the condition for
spontaneous CP symmetry breaking c � 0, (iii) the pres-
ervation of the electromagnetic symmetry condition, and
(iv) the second derivative conditions. A more detailed
treatment of these conditions including an analysis using
a quark mass expansion can be found in [27].

The spectrum of the theory corresponds to the one of the
2HD extension of the SM. The Higgs particles are quark-
antiquark bound states. The related composite fields are
given (at the scale �) by Eq. (36). Thus, due to the
hierarchy of the Yukawa couplings, the composite Higgs
particles are made mainly of the quarks of the third gen-
eration having their wave functions only a small light-
quark component. In our approximation only one (neutral)
composite Higgs has an acceptable mass value ( � 2mt).
The other two neutral and the charged composite Higgs are
unacceptably light.10 We think this could change beyond
the 1=N expansion used here. For example, for � � �EW

a perturbative renormalization group approach where the
SM gauge interactions are taken into account leads to much
bigger composite Higgs masses [19–23].

Spontaneous CP symmetry breaking at the EW scale
presents two potential problems, namely, tree-level FCNCs
[30,31] and a domain wall problem [32]. We just comment
(in relation to the first potential problem) that in the context
of top-condensation models it is not understood why
FCNCs are suppressed (if we simultaneously generate
quark mixing angles) independently of having spontaneous
or explicit CP symmetry violation.

We also treated a simpler top-condensation model where
only quark fields belonging to the third generation are
included in the four-fermion interaction [see Eq. (2)].
This Lagrangian is used as an intermediate step in theories
like topcolor assisted technicolor [24] or top-quark seesaw
[25,26]. We found that in the general case (without an extra
Peccei-Quinn symmetry), the spectrum of the theory cor-
responds to the one of the SM with the composite neutral
Higgs particle having a mass �2mt. Further modes asso-
10Theories like topcolor assisted technicolor provide a mecha-
nism for increasing the value of the composite Higgs boson
masses.
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ciated with masses of order � are present. � is, however,
the upper limit of the validity range of the model. For this
reason these modes cannot be interpreted as particles. In
this simpler model spontaneous CP symmetry breaking
does not occur.
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APPENDIX A: THE EFFECTIVE POTENTIAL

We present in this appendix the effective potential for n
scalar auxiliary fields H�i� coupled to 3 quark generations.
We consider the leading order contributions in the 1=N
expansion, i.e. in the N ���! 1 limit keeping GN fixed,
which is equivalent to the fermionic determinant approxi-
mation. The Lagrangian is given by

L � Lkin �
Xn
i�1

m2
Hi
H�i�yH�i� �LYukawa; (A1)

where Lkin contains the quark kinetic terms and

LYukawa � �
Xn
i�1

�g�i�kl � kLulRH
�i� � h�i�kl '

ab � akLdlRH
b�i��

� h:c:�; (A2)

with complex parameters g�i�kl , h
�i�
kl , and real mass parame-

tersm2
Hi

. No kinetic term for the auxiliary fieldsH�i� and no
quartic term of the form �HyH�2 are present. The effective
potential is given by

Veff�fH�i�g� � m2
Hi
H�i�yH�i� � i

Z d4k

�2"�4

� logdet�D�1fH�i�; kg�; (A3)

where D�1 is the fermionic propagator in momentum
space, and is a function of the scalar fields H�i� and the
momentum k. After calculating the fermionic determinant
one obtains

Veff�fH
�i�g� � m2

Hi
H�i�yH�i�

�
N

8"2

Z �2

0
k2dk2 logdet�k2 � A�; (A4)

with

A �
g�i�yg�j�H�i�yH�j� g�i�yh�j�'abHa�i��Hb�j��

�h�i�yg�j�'abHa�i�Hb�j� h�i�yh�j�H�j�yH�i�

 !
:

(A5)

where summation over the indices i and j is understood.
The effective potential is, of course, gauge invariant.
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APPENDIX B: CHANGE OF AUXILIARY FIELD
BASES

In this appendix we define new bases for the auxiliary
fields in the neutral and charged sectors. We choose the
new bases in such a way that the Goldstone bosons become
basis vectors. The advantage is that in each sector, neutral
and charged, one of the basis vectors of the two-point
proper-vertex matrix is already an eigenvector with
associated eigenvalue equal to zero, i.e. a pole of the
propagator.

The Goldstone theorem tells us how to express the
Goldstone fields as a function of the scalar fields. They
are given by the infinitesimal displacements of the vacuum
under the transformation generated by the broken gener-
ators. The charged and neutral Goldstone boson fields are
given by

G� / v%��1� � wei/%��2�; (B1)

G / Im�v%0�1� � we�i/%0�2��; (B2)

where the fields %0�i�, %��i� are components of the Higgs
fields H�i� � �%0�i�; %��i��T .
095014
In the four-dimensional neutral sector we define the new
basis by

’1

’2

’3

G

0BBB@
1CCCA � R

Re%0�1�

Im%0�1�

Re%0�2�

Im%0�2�

0BBB@
1CCCA; (B3)

where the orthogonal transformation matrix R is given by

R �
1������������������

v2 � w2
p

w 0 �v cos/ �v sin/
0 w v sin/ �v cos/
v 0 w cos/ w sin/
0 v �w sin/ w cos/

0BBB@
1CCCA: (B4)

The field G is the normalized Goldstone boson given in
Eq. (B2). In this new basis the mass term of the neutral
bosonic fields is given by

�
X
i�1;2

m2
Hi
H�i�yH�i� � �

1

2
’1; ’2; ’3; G
� �

M

’1

’2

’3

G

0BBB@
1CCCA;
(B5)

with
M �
2

v2 � w2

w2m2
H1

� v2m2
H2

0 vw�m2
H1

�m2
H2
� 0

0 w2m2
H1

� v2m2
H2

0 vw�m2
H1

�m2
H2
�

vw�m2
H1

�m2
H2
� 0 v2m2

H1
� w2m2

H2
0

0 vw�m2
H1

�m2
H2
� 0 v2m2

H1
� w2m2

H2

0BBBB@
1CCCCA: (B6)

Now we turn to the charged sector formed by two charged fields. The new basis is defined by

’�

G�

� �
�

1������������������
v2 � w2

p
wei/ �v
v we�i/

� �
%��1�

%��2�

 !
; (B7)

where the charged field G� is the normalized charged Goldstone boson given in Eq. (B1). In this new basis the mass term
for the charged scalar fields is given by

�
X
i�1;2

m2
Hi
H�i�yH�i� � �

1

v2 � w2 ’� G�
� � w2m2

H1
� v2m2

H2
vwei/�m2

H1
�m2

H2
�

vwe�i/�m2
H1

�m2
H2
� v2m2

H1
� w2m2

H2

 !
’�

G�

� �
: (B8)

We also give the Yukawa couplings, Eq. (A2), in these bases. The neutral boson interaction terms are given in the
fermion mass basis by

L Yukawa�neutral � �
’1������������������

v2 � w2
p �u0�KuPR � Ky

uPL�u
0 �

’2������������������
v2 � w2

p �u0�iKuPR � iKy
uPL�u

0 �
’3������������������

v2 � w2
p �u0

���
2

p
Muu

0

�
G������������������

v2 � w2
p �u0

���
2

p
Mui�5u0 � . . . ; (B9)

where the dots represent analogous terms for the down sector. For the charged sector we found
-9
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LYukawa�charged � �
’�ei/������������������
v2 � w2

p �u0�Ky
uVCKMPL � VCKMK

y
dPR�d

0

�
G�������������������
v2 � w2

p �u0�
���
2

p
MuVCKMPL � VCKM

���
2

p
MdPR�d

0 � h:c:; (B10)
where PL and PR are the left and right projectors. The
matrices VCKM, Mq, and Kq are 3� 3 in flavor space.
VCKM � UuyUd is the CKM matrix, the matrices Mq
with q � u; d are the diagonal fermion mass matrices
from the up and down sector, and the matrices Kq are given
by

Kq � w7�1�
q � vei/7�2�q ; (B11)

with q � u; d.

APPENDIX C: TWO-POINT FUNCTIONS FOR THE
THIRD-GENERATION CASE

In this appendix we calculate the masses of the neutral
and charged composite Higgs for the case of one family of
quarks and Gtb � 0 considered in Sec. III. We do the
calculation in the auxiliary field bases defined in
Appendix B.

Let us first calculate the composite Higgs masses in the
neutral sector. As we saw in Sec. III the theory is
CP-invariant. As a consequence the CP-even (’1 and
’3) and the CP-odd (’2 and G) fields do not mix and the
4� 4 two-point proper-vertex matrix is a block diagonal
matrix. The Feynman diagrams we have to calculate are
shown in Fig. 1. Using the first derivative conditions in the
calculation, the nonvanishing two-point functions are

i�’2;’2�p2� �
iN

8"2�v2 � w2�

(
p2

X
q�t;b

K2
qI�m

2
q;p

2� � 2�2

�
X
q�t;b

�
1�

m2
q

�2 log��2=m2
q�

�

�

�
w3

v
�
v3

w
� 2vw

�
7�1�q 7

�2�
q cos/

)
; (C1)

i�G;G�p2� �
iN

8"2�v2 � w2�
p2

X
q�t;b

2m2
qI�m2

q;p2�; (C2)
FIG. 1. Feynman diagrams contributing to the neutral two-
point proper vertices of auxiliary fields in the case of one quark
family. The fields ’ and ’0 stand for the four bosonic fields ’1,
’2, ’3, and G.
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i�’2;G�p
2� �

iN

8"2�v2 � w2�
p2

X
q�t;b

���
2

p
mqKqI�m2

q;p2�;

(C3)

in the CP-odd sector, and

i�’1;’1�p2� �
iN

8"2�v2 � w2�

( X
q�t;b

�p2 � 4m2
q�K

2
qI�m

2
q;p

2�

� 2�2
X
q�t;b

�
1�

m2
q

�2 log��2=m2
q�

�

�

�
w3

v
�
v3

w
� 2vw

�
7�1�
q 7

�2�
q cos/

)
; (C4)

i�’3;’3�p2� �
iN

8"2�v2 � w2�

X
q�t;b

2m2
q�p2 � 4m2

q�I�m2
q;p2�;

(C5)

i�’1;’3�p2� �
iN

8"2�v2 � w2�

X
q�t;b

���
2

p
mq�p2 � 4m2

q�

� KqI�m
2
q;p

2�; (C6)

in the CP-even sector. The integral I�m2
q;p

2� is given by

I�m2;p2� �
16"2

i

Z d4l

�2"�4
1

�l2 �m2���l� p�2 �m2�
:

(C7)

The masses of the bound states are given by the values of
p2 at which the proper-vertex matrix has vanishing eigen-
values. From Eqs. (C2) and (C3) we see that at p2 � 0 a
zero eigenvalue with associated eigenvector G, the neutral
Goldstone boson, appears. In the CP-even sector the
FIG. 2. Feynman diagrams contributing to the charged two-
point proper vertices of auxiliary fields in the case of one quark
family. The fields ’� and ’0� denote the charged fields ’� and
G�.
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�’1; ’1� entry of the 2� 2 matrix is of order11 �2 and
therefore, for p2  �2, much bigger than the other matrix
elements. In the first approximation the smaller eigenvalue
of this matrix is given by i�’3;’3�p2�. From Eq. (C5) we see
that the propagator has a pole at p2 � �2mt�

2. The other
11If the factor of �2 in this expression were zero, we had Gtb � 0
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two eigenvalues, associated with a CP-even and a CP-odd
field, are of order �2.

Now we treat the charged sector in an analogous way.
For the two-point proper vertices, represented by the dia-
grams of Fig. 2, we obtain
i�’�;’��p2� � �
iN�2

8"2�v2 � w2�

X
q�t;b

�
1�

m2
q

�2 log��2=m2
q�

��
w3

v
�
v3

w
� 2vw

�
7�1�
q 7

�2�
q cos/

�
iN

16"2�v2 � w2�
f��p2 �m2

t �m2
b��K

2
t � K2

b� � 4mtmbKtKb�I�m2
t ; m2

b;p
2�

� �K2
t � K2

b��m
2
t log��

2=m2
t � �m2

b log��
2=m2

b��g; (C8)

i�’�;G��p2� �

���
2

p
iN

16"2�v2 � w2�
f�p2�mtKt �mbKb� � �mtKt �mbKb��m

2
t �m2

b��I�m
2
t ; m

2
b;p

2� � �mtKt �mbKb�

� �m2
t log��

2=m2
t � �m2

b log��
2=m2

b��g (C9)

i�G�;G��p2� �
iN

8"2�v2 � w2�
f�p2�m2

t �m2
b� � �m2

t �m2
b�

2�I�m2
t ; m2

b;p
2� � �m2

t �m2
b��m

2
t log��

2=m2
t �

�m2
b log��

2=m2
b��g; (C10)

with

I�m2
t ; m2

b;p
2� �

16"2

i

Z d4l

�2"�4
1

�l2 �m2
t ���l� p�2 �m2

b�
: (C11)

We have here a similar situation as in the neutral CP-odd sector. The �’�; ’�� element is of order �2 and the other
elements of the matrix vanish at p2 � 0. Therefore, the two poles are located at p2 � 0 and at p2 � O��2�.

APPENDIX D: DEFINITIONS USED IN SECTION IV

'�0� �
7�1�yu 7�2�

u 0
0 7�2�d 7

�1�y
d

 !
; '�i� �

7�i�yu 7�i�u 0
0 7�i�d 7

�i�y
d

 !
; for i � 1; 2: (D1)

a � tr�Re�WuMuUuy�Im�UuMuWuy� � Im�WdMdUdy�Re�UdMdWdy��

�
X

i�u;c;t

m2
i

�2 log��2=m2
i �Re�WuyRe�WuMuUuy�Im�UuMuWuy�Wu�ii

�
X

i�d;s;b

m2
i

�2 log��2=m2
i �Re�WdyIm�WdMdUdy�Re�UdMdWdy�Wd�ii; (D2)

b � tr�Im�WuMuU
uy�Im�UuMuW

uy� � Im�WdMdU
dy�Im�UdMdW

dy��

�
X

i�u;c;t

m2
i

�2 log��2=m2
i �Re�WuyIm�WuMuU

uy�Im�UuMuW
uy�Wu�ii

�
X

i�d;s;b

m2
i

�2 log��2=m2
i �Re�WdyIm�WdMdUdy�Im�UdMdWdy�Wd�ii; (D3)
.
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c � �
X

i�u;c;t

m2
i

�2 log��2=m2
i �Im�W

uyRe�WuMuU
uy�Im�UuMuW

uy�Wu�ii

�
X

i�d;s;b

m2
i

�2 log��2=m2
i �Im�W

dyIm�WdMdU
dy�Re�UdMdW

dy�Wd�ii; (D4)

T �
v0���
2

p �7�2�yu VCKM7
�1�y
d � 7�1�yu VCKM7

�2�y
d �; I�m2

i ; m
2
j � �

Z �2

0

k2dk2

�k2 �m2
i ��k

2 �m2
j �
; (D5)

@A
@v0

j�v;w;/;0� � v'�1� �
w
2
�'�0�ei/ � '�0�ye�i/�;

@A
@w0

j�v;w;/;0� � w'�2� �
v
2
�'�0�ei/ � '�0�ye�i/�;

@A
@/0

j�v;w;/;0� �
ivw
2

�'�0�ei/ � '�0�ye�i/�:
(D6)

APPENDIX E: TWO-POINT FUNCTIONS FOR THE THREE FAMILY CASE

In this appendix we calculate the composite-field two-point functions of the three family case considered in Sec. IV. The
situation is analogous to the one of Appendix C, where only one family of quarks was considered. The values of the flowing
momentum for which an eigenvalue of the proper-vertex matrix becomes zero, correspond to the composite Higgs masses
we are looking for. We use the neutral and charged auxiliary field bases defined in Appendix B. In the calculation we also
apply the first derivative conditions from the minimization of the effective potential. The nonvanishing neutral proper
vertices are given by

i��’1;’1�=�’2;’2��p
2� �

iN

8"2�v2 � w2�

�
4c�2

sin2/

�
w2

v2
�
v2

w2 � 2
�

�
X6
i�1

m2
i log�

2=m2
i �w

2�'�1�
ii � ~'�1�

ii � � v2�'�2�
ii � ~'�2�

ii � � 2vwRe��'�0�
ii � ~'�0�

ii �e
i/��

�
X3
r;s�1

X
q�u;d

I�m2
r ; m2

s ;p2���p2 �m2
r �m2

s��Kq�rs�K
y
q �sr �mrms��Kq�rs�Kq�sr � �Ky

q �rs�K
y
q �sr��

�
;

(E1)
where the minus sign in the last term corresponds to i�’1;’1

and the plus sign to i�’2;’2 . The matrices ~'�i� are defined
by

~'�0� �
7�2�
u 7

�1�y
u 0

0 7�1�y
d 7�2�d

0@ 1A;
~'�i� �

7�i�
u 7

�i�y
u 0

0 7�i�y
d 7�i�

d

0@ 1A; for i � 1; 2:

(E2)

Further neutral proper vertices are given by

i�’1;’2�p2� �
2iN

8"2�v2 � w2�

�
X3
r;s�1

X
q�u;d

mrmsIm��Kq�rs�Kq�sr�

� I�m2
r ; m

2
s ;p

2�; (E3)
095014
i�’3;’3�p2� �
2iN

8"2�v2 � w2�

�
X6
i�1

�p2 � 4m2
i �m

2
i I�m

2
i ; m

2
i ;p

2�; (E4)

i�G;G�p2� �
2iN

8"2�v2 � w2�
p2
X6
i�1

m2
i I�m

2
i ; m

2
i ;p

2�; (E5)

i�’1;’3�p2� �
iN

8"2�v2 � w2�

X6
i�1

�p2 � 4m2
i �

�
���
2

p
miRe��Ku=d�ii�I�m

2
i ; m

2
i ;p

2�; (E6)

i�’2;G�p
2� �

iN

8"2�v2 � w2�
p2

�
X6
i�1

���
2

p
miRe��Ku=d�ii�I�m

2
i ; m

2
i ;p

2�; (E7)
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FIG. 4. Diagrammatic representation of the contributions to
the charged two-point proper vertices.

r=u,c,t

s=u,c,t

r=d,s,b

s=d,s,b

FIG. 3. Diagrammatic representation of the contributions to
the neutral two-point proper vertices.
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i�’1;G�p
2� �

iN

8"2�v2 � w2�
p2
X6
i�1

���
2

p
miIm��Ku=d�ii�

� I�m2
i ; m

2
i ;p

2�; (E8)

i�’2;’3�p2� �
iN

8"2�v2 � w2�

X6
i�1

�4m2
i � p2�

���
2

p
mi

� Im��Ku=d�ii�I�m
2
i ; m

2
i ;p

2�; (E9)
095014
where in Eqs. (E6)–(E9) Ku=d stands for Ku for i � 1; 2; 3
and for Kd for i � 4; 5; 6. The relevant diagrams of the
neutral sector are shown in Fig. 3.

In the charged sector the two-point proper vertices are
given by
i�’�;’��p2� �
2iN

8"2�v2 � w2�

c�2

sin2/

�
w2

v2
�
v2

w2 � 2
�

�
iN

16"2�v2 � w2�

X
r � u; c; t

s � d; s; b

f�Ky
uVCKM�rs�V

y
CKMKu�sr�J�m

2
s ; m

2
r ;p

2� � 2m2
s�

� �VCKMK
y
d �rs�KdV

y
CKM�sr�J�m

2
r ; m

2
s ;p

2� � 2m2
r� � ��Ky

uVCKM�rs�KdV
y
CKM�sr

� �VCKMK
y
d �rs�V

y
CKMKu�sr�2mrmsI�m

2
r ; m

2
s ;p

2�g; (E10)

i�G�;G��p2� �
�iN

8"2�v2 � w2�

X
r � u; c; t
s � d; s; b

�VCKM�rs�V
y
CKM�srfm

2
rJ�m2

s ; m2
r ;p2� �m2

sJ�m2
r ; m2

s ;p2�g; (E11)

i�’�;G��p2� �
�

���
2

p
iNei/

16"2�v2 � w2�

X
r � u; c; t
s � d; s; b

�VCKM�rsfmr�V
y
CKMKu�srJ�m

2
s ; m

2
r ;p

2� �ms�KdV
y
CKM�srJ�m

2
r ; m

2
s ;p

2�g;

(E12)
where J�m2
r ; m

2
s ;p

2� defined by

J�m2
r ; m2

s ;p2� � m2
r log�

2=m2
r �m2

s log�
2=m2

s

� �p2 �m2
r �m2

s�I�m2
r ; m2

s ;p2�; (E13)

vanishes at p2 � 0. The relevant diagrams of the charged
sector are shown in Fig. 4.

In all the two-point proper vertices the quadratic diver-
gences cancel. As expected, the neutral and charged
Goldstone bosons correspond to eigenvectors of the
proper-vertex matrix at p2 � 0 with vanishing eigenval-
ues. Besides these three Goldstone bosons, there are three
neutral and one charged Higgs particles. The masses of
these particles are roughly �2mq, with mq a general quark
mass. We find that in this approximation one neutral Higgs
mass is �2mt and the rest of the Higgs masses are much
smaller.
-13



CRISTIAN VALENZUELA PHYSICAL REVIEW D 71, 095014 (2005)
[1] Y. Nambu, in New Theories in Physics, Proceedings of the
XI International Symposium on Elementary Particle
Physics, Kazimierz, Poland, 1988, edited by Z. Ajduk,
S. Pokorski, and A. Trautman (World Scientific,
Singapore, 1989), p. 1.

[2] V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys.
Lett. B 221, 177 (1989).

[3] V. A. Miransky, M. Tanabashi, and K. Yamawaki, Mod.
Phys. Lett. A 4, 1043 (1989).

[4] W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev. D
41, 1647 (1990).

[5] M. Suzuki, Phys. Rev. D 41, 3457 (1990).
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