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The spectral properties of a variety of improved staggered operators are studied in quenched QCD. The
systematic dependence of the infrared eigenvalue spectrum on (i) improvement in the staggered operator,
(ii) improvement in the gauge field action, (iii) lattice spacing and (iv) lattice volume is analyzed. It is
observed that eigenmodes with small eigenvalues and large chirality appear as the level of improvement
increases or as one approaches the continuum limit. These eigenmodes can be identified as the ‘‘zero
modes’’ which contribute to the chirality associated, via the index theorem, with the topology of the
background gauge field. This gives evidence that staggered fermions are sensitive to gauge field topology.
After successfully identifying these would-be chiral zero modes, the distribution of the remaining
nonchiral modes is compared with the predictions of random matrix theory in different topological
sectors. Satisfactory agreement is obtained.
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I. INTRODUCTION

It is well known that spectral flow of the massless Dirac
operator (D) is related to the topology of the background
gauge fields. When massless fermions are coupled to Yang-
Mills fields with nontrivial topology, one or more eigen-
values of the corresponding Dirac operator necessarily
vanish. This is formally given by the Atiyah-Singer index
theorem [1]

Q � index�D� � nL � nR; (1)

whereQ is the topological charge of the gauge field and nL
(nR) are the numbers of left (right) zero eigenmodes of the
Dirac operator.

On the other hand, until recently it was believed that
staggered fermions do not feel gauge field topology [2]
because of the lack of zero eigenmode of the operator at
finite lattice spacing. This unpleasant feature of staggered
fermions was further revealed in comparisons of the infra-
red eigenvalue spectrum obtained in simulations with the
predictions of random matrix theory (RMT) [3–5]. The
eigenvalue spectrum in all topological charge sectors was
found to be consistent with the prediction of RMT for
topological charge equal to zero [4,5].

In the past year this problem has been revisited and the
situation has changed. Recent calculations [6–8] show that
with staggered operator improvement for staggered fermi-
ons the correct response to QCD topology, governed by the
index theorem, can be obtained.1 In [8] we presented some
of our results in a preliminary form. Here we give our final
chioni et al. [9] suggested that in the Schwinger
y may be visible in the spectrum of the staggered
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results along with the study of some systematic effects not
included in our earlier work.

The failure of unimproved staggered fermion actions to
show the proper topological features is due to lattice arti-
facts, in particular, flavor-changing interactions. This was
already suggested in Ref. [10]. The staggered quark action
describes four quark flavors in the continuum limit and the
eigenvalue spectrum has a fourfold degeneracy in this
limit. At finite lattice spacing, the flavor-changing inter-
actions break the flavor symmetry and the degeneracy is
lifted. Consequently, staggered fermions do not have exact
zero modes at finite lattice spacing because the continuum
chiral modes (if there are any) are scattered on the
lattice. One thus expects staggered fermions to show better
topological properties if flavor-changing effects can be
suppressed.

In addition to lattice artifacts, the spectral density in the
infrared limit also depends sensitively on the volume of the
lattice. This can be seen from the fact that, because the
topological susceptibility defined by hQ2i=V is indepen-
dent of the volume V, the ensemble average hQ2i scales
approximately with V. For example, previous studies
[11,12] on the spectral properties of the overlap operator
have revealed this strong finite volume effect (in contrast
with the staggered Dirac operator, the overlap fermion
operator [13] has exact chiral symmetry [14] on the lattice
and has true zero modes even at finite lattice spacing, see
Sec. III). In particular, it has been shown that satisfactory
agreement with the predictions of RMT can be achieved
only when the physical volume of the lattice exceeds
�1:2 fm�4. On smaller volumes the agreement is less ap-
pealing and the sensitivity to topology disappears.

Both of these issues have been examined in this project
by studying the spectral flow in the infrared limit for a
variety of improved staggered operators. The improved
-1  2005 The American Physical Society
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staggered operators are designed to suppress flavor-
changing interactions by smoothing out the quark-gluon
interaction vertex [15]. Four different sources of systematic
effects have been considered:
(i) i
mprovement in the staggered operator

(ii) i
mprovement in the gauge field action
(iii) l
attice spacing

(iv) l
attice volume.
Simulations are done both with the standard Wilson gluon
action and the O�a2�s� accurate tadpole improved gluon
action [16] for a range of lattice spacings and volumes. It is
observed that eigenmodes with small eigenvalues and large
chirality appear as the level of improvement increases [6–
8]. These small eigenmodes can be identified as the chiral
zero modes associated with the topology of the background
gauge fields. Our results also show the expected strong
dependence on volume. Only a few ‘‘zero modes’’ are
observed when the physical volume is small and the num-
ber increases as the volume increases.

The paper is organized as follows. The improved stag-
gered operators and their properties will be reviewed in the
next section. A similar review on the overlap operator is
given in Sec. III. Details of the simulations are discussed in
Sec. IV and results will be presented in Sec. V. After
successfully identifying the zero modes, distribution of
the remaining nonchiral modes is compared with the pre-
dictions of RMT in Sec. VI.
II. IMPROVED STAGGERED OPERATORS

The unimproved staggered Dirac operator is

Ds�x; y� �
1

2

X
�

���x��U��x��x	�̂;y �Uy
��y��x��̂;y�; (2)

where ���x� � ��1�x1	���	x��1 is the standard staggered
fermion phase. A variety of improvement schemes are
considered here. The basic improved version is the O�a2�
tree-level improved Asq operator [17], which includes an
additional 3-link Naik term and replaces the gauge field in
(2) with Fat7 effective links (sum of the original link and
the nearby paths, up to 7-link staples). Tadpole improve-
ment of the Asq operator gives the O�a2�s� accurate
Asqtad operator. This is the staggered fermion operator
which has been used in recent dynamical fermion simula-
tions [18].

It has been found that there are alternate improvement
schemes that can suppress flavor-symmetry breaking lat-
tice artifacts even more than Asq improvement. One such
scheme is based on unitarized Fat7 (UFat7) links. The
usefulness of UFat7 smearing was first discussed by Lee
[19] and a staggered action which iterates this fattening
procedure giving the improved Asq operators �UFat7�n 

Asq was studied by Follana et al. [20]. The HYP-improved
operators �HYP�n [21] are constructed from unitarized fat
links also but only those links within the hypercubes con-
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taining the original link are included in the fattening pro-
cess. Readers are referred to the respective papers for
further details.

The staggered Dirac operator is anti-Hermitian and since
fDs; ��x�g � 0 where ��x� � ��1�x1	���	x4 , the eigenvalues
of Ds are pure imaginary and come in pairs �i�. The
commutation relation fDs; ��x�g � 0 is a remnant of the
continuum global chiral symmetry on the lattice. In addi-
tion, it is well known that �Ds�2 connects only even-even
[�Dsee�2] or odd-odd [�Dsoo�2] sites on the lattice. In this
project, we choose to compute the eigenvalues of �Dsee�2 in
favor of Ds since it is Hermitian and has real eigenvalues
�2. Note that the extra doubling of modes induced by
squaring is canceled by working only on even sites of the
lattice. To be precise, we compute the lowest 40 eigenval-
ues of �Dsee�2 which correspond to the lowest 40 positive
(imaginary) eigenvalues of Ds.

Before leaving this section it is useful to understand how
the low-lying nonchiral modes scale with the various sys-
tematics. This explains the scales used in the spectral plots
given later in Sec. V. In Ref. [22], Kalkreuter computed the
complete spectrum of the unimproved staggered Dirac
operator on 124 lattices at several lattice spacings.
Results show an accumulation of small eigenvalues with
increasing lattice spacing. In addition, the number of ei-
genvalues increases when the volume of the lattice in-
creases. Consequently, the magnitude of the nonzero
eigenvalues in the infrared limit decreases with increasing
lattice spacing and volume. On the other hand, when lattice
spacing decreases, i.e., one goes closer to the continuum
limit, an increase in the magnitude of the low-lying non-
chiral modes is expected. The same should happen as we
come closer to the continuum by improving the action.
These scaling properties will be reflected in the choice of
axes for the spectral graphs.
III. THE OVERLAP OPERATOR

The massless overlap operator is given by [13]

Do � 1	 �5��H
w�; (3)

where ��Hw� is the matrix sign function

��Hw� �
Hw

jHwj
; (4)

and Hw � �5D
w is related to the standard Wilson Dirac

operator

Dwa�;b��x; y� � �ab����x;y

� �
X
�

��1� �����U��x�ab�x;y��̂

	 �1	 �����U
y
��y�ab�x;y	�̂�: (5)

The hopping parameter � is related to the bare mass m by
-2
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� �
1

�2m	 8
: (6)

A detail description of how � should be chosen is given in
[23]. We use � � 0:21 orm � 1:62, which has been shown
to be appropriate for our study of topology [12].

The overlap operator (3) satisfies the Ginsparg-Wilson
relation [24]

f�5; Dog � Do�5Do; (7)

which has exact chiral symmetry on the lattice.
Consequently, in contrast with the staggered Dirac opera-
tor, the overlap operator has true zero modes even at finite
lattice spacing. The nonchiral modes come in complex
conjugate pairs. Again, we use the operator DoyDo which
is Hermitian and positive definite and compute the lowest 5
eigenvalues in each chiral sector. The matrix sign function
��Hw� is approximated by a 14th order Zolotarev expan-
sion [25]

��Hw� ’ Hw �
X14
i�1

ci
HwyHw 	 bi

(8)

with maximum errors �O�10�10� in the interval [0.04,1.5].
IV. SIMULATIONS

Simulations are done with both the Wilson gluon action
and the tadpole improved gauge field action for a range of
lattice spacings (or couplings) and volumes. The physical
scale is defined through the quenched string tension

����
 

p
’

0:44 GeV. A new smearing method using unitarized Fat7
links [26] is used in the computation of the Wilson loops
which substantially reduces the statistical fluctuations in
the confining potential. Simulation parameters and the
measured string tensions a2 are listed in Table I. The
couplings were chosen carefully such that lattice spacings
agree between simulations using the Wilson gluon action
and the improved gauge field action. A total of 1000
configurations were generated in each case.
TABLE I. Simulation parameters and measured string tensions
a2 . The couplings are chosen such that lattice spacings agree
between simulations using the Wilson gluon action and the
improved gauge field action.

� Action a2 a (fm) Volume V

5.85 Wilson 0.0748(7) 0.123 104

6.0 Wilson 0.0478(5) 0.0981 124

6.2 Wilson 0.0259(5) 0.0722 164

8.26 Improved 0.0724(5) 0.121 84, 104, 124, 164

8.62 Improved 0.0456(4) 0.0958 124

9.18 Improved 0.0246(5) 0.0704 164
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V. RESULTS

A. Staggered operator improvement

We first examine the effect of staggered operator im-
provement on the infrared eigenvalue spectrum. Com-
parisons are done with unimproved gauge fields for � �
5:85 (a ’ 0:123 fm) and V � 104. The same comparisons
with improved gauge fields (same lattice spacing and
volume) will be presented in the next section. Results are
shown in Fig. 1 where chirality j!j is plotted against the
eigenvalue � for the different operators. Note that the
chirality of an eigenmode is given by the expectation value
of �5, which is a 4-link operator in the staggered basis [27].
The same scale is used for the chirality. It can be observed
that the eigenvalue spectrum depends quite sensitively on
the way in which the staggered Dirac operator is improved.
Eigenmodes with small eigenvalues and relatively large
chirality appear as the level of improvement increases.
These small eigenmodes are taken to be the chiral zero
modes which contribute to the index associated with the
topology of the background gauge fields [5,10,28].
They can be identified by their separation in energy and
chirality from the rest of the spectrum (see also Ref. [6]).
Throughout this project the following criteria are used for
an eigenstate to be identified as a zero mode: (i) it is at least
a factor of 2 smaller in eigenvalue than the smallest non-
chiral mode and (ii) the chirality is at least 5 times larger
than that of the smallest nonchiral mode.

One can see also that, as the level of improvement
increases, the continuum fourfold degeneracy emerges
where the scattered eigenmodes begin to form quartets.
Note that at this lattice spacing with unimproved gauge
fields the Asqtad operator is not sensitive to the topology
and lattice artifacts are still dominant. One only starts to
see a separation between the zero modes and the nonchiral
modes with further improved operators. In addition, a large
renormalization is observed for the chirality of the would-
be zero modes, which is j!j � 0:5 instead of unity. This
large renormalization was also observed in previous stud-
ies [10,29]. Nevertheless, the zero modes can be identified
without any difficulty in most of the cases for the UFat7

Asq and HYP operators.

To quantify the separation between the zero modes and
the nonchiral modes, the distribution of the ratios of ei-
genvalues between the smallest nonchiral mode and the
largest zero mode is plotted in Fig. 2 for configurations
with nontrivial topology (i.e., zero modes exist). We should
mention that the configurations in Fig. 2 are different for
different operators as the topological indices obtained by
using different operators do not always agree on a configu-
ration by configuration basis (see next paragraph). It is
possible that for a given configuration there are no chiral
modes for one operator while they exist for the others. For
comparison results of the overlap operator are also shown.
Theoretically, the ratio is infinite for the overlap operator
because exact zero modes exist on the lattice for overlap
-3
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FIG. 2. Distribution of the ratios of eigenvalues between the
smallest nonchiral mode and the largest zero mode for configu-
rations with nontrivial topology. Results are shown for unim-
proved gauge fields at � � 5:85 (a ’ 0:123 fm) and lattice
volume V � 104.
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FIG. 1. Spectral graphs for the different operators where chi-
rality j!j is plotted against the eigenvalue �. The ensemble is
generated by the standard Wilson action at � � 5:85 (a ’
0:123 fm) on 104 lattice. Results are shown for 50 configura-
tions. Note that the scale for � increases when the level of
improvement increases.
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fermions. It is finite here solely because of computational
precision. Results here show that the staggered operators
are less sensitive to the topology at this lattice spacing with
unimproved background gauge fields. The ratios are al-
ways 3 orders of magnitude for the overlap operator but the
distribution is peaked at a ratio ’ 5 for the staggered Dirac
operators. Nevertheless about 85% of the configurations
have ratios � 5 which allows the zero modes to be iden-
tified. In addition our results also show that improvements
using UFat7 links or hypercubic blocking are equally
efficient.

The identification of the topological charge index for a
given gauge filed configuration is not unique. Because of
lattice artifacts and the different ways the staggered opera-
tor is improved, it can be expected that the topological
charge indices obtained by using different operators do not
always agree on a configuration by configuration basis. It is
only when one is close to the continuum limit that the
results agree. Even with the overlap operator previous
studies [12] showed that the topological indices do not
agree on a configuration by configuration basis when, for
example, a different mass parameter is used in the kernel.
In the present case, we find that the topological charge
indices determined by the different operators agree about
60%–70% of the time, compared to 28% if the values were
completely random. More explicitly, indices from different
operators are compared pairwise and the agreement is 63%
for overlap and UFat7
 Asq, 68% for overlap and HYP,
78% for UFat7
 Asq and HYP. Note that the agreement
between UFat7
 Asq and HYP is larger than that obtained
for an improved staggered operator and the overlap opera-
tor. It is then important to check whether the charge dis-
tributions are also different because physical observables,
e.g., the topological susceptibility, are related to the en-
-4
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FIG. 3. Topological charge distributions (as a percentage of
configurations) obtained by using different operators [unim-
proved gauge fields, � � 5:85 (a ’ 0:123 fm) and V � 104].
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[� � 8:26 (a ’ 0:121 fm), V � 104]. Note that the scale for � is
larger in this case.
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semble average of the topological charge. The distributions
obtained by these operators are given in Fig. 3. It can be
observed that there is no significant difference among the
results. This is important because it indicates that physics
is independent of the discretization scheme and one would
expect topological quantities obtained by these operators to
agree.

B. Improvement in the gauge field action

Lattice artifacts can be further suppressed if improve-
ment is also applied to the gauge field action. This can be
seen in Fig. 4 where the infrared eigenvalue spectra of the
different staggered operators are shown for configurations
generated using the tadpole improved gauge field action.
Here � � 8:26 (a� 0:121 fm) and lattice volume is V �
104 so that both the lattice spacing and physical volume are
very similar to those used in the unimproved case. Results
here show that better topological properties are realized
when the gauge field action is also improved. In particular
even the Asqtad operator is sensitive to the topology at this
coarse lattice spacing and zero modes can be identified
unambiguously for the UFat7
 Asq and HYP operators.

To have a quantitative picture of how improvement in
the gauge field action affects the spectral flow, we again
plot the distribution of the ratios of eigenvalues between
the smallest nonchiral mode and the largest zero mode in
Fig. 5 for configurations with nontrivial topology. The
same scale is used in Figs. 2 and 5. In comparison to
Fig. 2, it can be observed that, for UFat7
 Asq and
HYP, the distribution has shifted significantly toward ratios
of 2 or 3 orders of magnitude. Overall, more than 95% of
the configurations have ratios � 5, compared to only 85%
in the case with unimproved gauge fields. Hence, gauge
field improvement clearly increases the separation between
the chiral zero modes and the nonchiral modes. We should
094508-5
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FIG. 5. Same as Fig. 2 but with improved gauge field action
[� � 8:26 (a ’ 0:121 fm), V � 104].
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again emphasize here that the ratios should be infinite
theoretically for the overlap operator since exact zero
modes exist on the lattice.

We have also compared the topological indices obtained
by the different operators in this case. It is found that the
agreement increases significantly when the gauge field
action is also improved: 91% between overlap and
UFat7
 Asq, 90% between overlap and HYP, and 96%
between UFat7
 Asq and HYP which is again the highest.
The charge distributions are given in Fig. 6. It can be
observed upon comparing with Fig. 3 that better agreement
is obtained with improved gauge fields. Results here are
significant because they indicate that different operators do
respond the same way to the topology of the background
gauge fields when discretization errors and lattice artifacts
are reduced. In particular, results here show that the charge
indices obtained by using the staggered operators and the
overlap operator, two completely different representations
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FIG. 6. Same as Fig. 3 but with improved gauge field action
[� � 8:26 (a ’ 0:121 fm), V � 104].
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of the Dirac operator on the lattice, agree even on a
configuration by configuration basis at a high percentage
as the level of improvement increases.

C. Dependence on lattice spacing

Here we examine the dependence of the infrared eigen-
value spectrum on lattice spacing and study the spectral
flow as one approaches the continuum limit. Calculations
are done at three lattice spacings with fixed physical vol-
ume V � �1:2 fm�4 (so lattice volume increases as lattice
spacing decreases, see Table I). Results are shown for the
Asqtad and UFat7
 Asq operators in Fig. 7. One sees that
separation between the zero modes and nonchiral modes
becomes more clear. In addition the continuum fourfold
degeneracy is better realized as one approaches the con-
tinuum limit. Note that the chirality of the zero modes
increases as the lattice spacing decreases and it is larger
for the UFat7
 Asq operator. This gives evidence to the
fact that discretization errors and lattice artifacts are indeed
responsible for the failure of staggered fermions to be
sensitive to gauge field topology on coarse lattices. The
chiral zero modes associated with the topology of the
background gauge fields emerge as one approaches the
continuum limit, a conclusion also obtained in [7].

Our results also show that it is necessary to use a lattice
spacing a & 0:1 fm for the Asqtad operator to be sensitive
to gauge field topology. This is similar to the lattice spac-
ings used nowadays in dynamical simulations of QCD
using the Asqtad fermion action and the tadpole improved
gauge field action. On the other hand, further improvement
of the staggered quark action, e.g, actions with unitarized
fat links UFat7
 Asq, may be necessary when working on
coarse lattices to ensure that continuum physics is repro-
duced correctly.

D. Dependence on lattice volume

As discussed in the introduction, we expect a strong
dependence of the spectral density on the volume V of
the lattice and the topological charge average hQ2i should
scale with V. In Fig. 8 the infrared eigenvalue spectrum of
the UFat7
 Asq operator is given for lattice volumes V �
84, 104, 124 and 164 at a fixed lattice spacing a � 0:121 fm
(� � 8:26) with improved gauge fields. Results from pre-
vious sections showed that zero modes should be visibly
separated from the nonchiral modes at this spacing for
configurations generated by the improved gauge action.
This is the case when the volume is ��1:2 fm�4. A similar
volume effect has been seen with the overlap fermion
operator also [11,12]. A reasonable assumption is that
this minimum volume effect is related to a property of
the gauge field, perhaps some minimum volume is neces-
sary before the topological structure is fully formed.

As the lattice volume increases the number of eigenval-
ues increases and one may expect the gap between the zero
modes and the nonchiral modes to scale as V�1 [29]. The
-6
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FIG. 7. Dependence on lattice spacing. Results are shown for the Asqtad (top) and the UFat7
 Asq (bottom) operators with
improved gauge fields. Physical volumes are ��1:2 fm�4 in all cases.
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net result is that there are more low-lying nonchiral modes
as volume gets bigger. As Fig. 8 shows, a certain volume is
necessary before the would-be zero modes show up and
sensitivity to topology is established. As the volume is
increased even further, the number of chiral zero modes
increases roughly as

����
V

p
as can be inferred from Fig. 9. In
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the configuration average, the tail of the chiral-mode dis-
tribution begins to merge with the low eigenvalue tail of the
nonchiral-mode distribution. However, the identification of
the would-be zero modes is not quite as difficult as it may
appear from Fig. 8. As seen from Fig. 9 the criteria which
we adopt for a zero mode, namely, at least a factor of 2
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smaller in eigenvalue than the smallest nonchiral mode
(R� � 2) and a factor of 5 larger in chirality (R! � 5),
are very robust even for the 164 lattice. Imposing other
values for these factors gives very similar results.

The expected increase of hjQji with the volume of the
lattice can be seen in Fig. 10 where the topological charge
distribution is shown for different lattice volumes. Most
configurations have trivial topological structure when the
volume is small and the charge average hjQji increases
gradually with the volume of the lattice.

VI. COMPARISON WITH RMT

Results from our systematic analysis give strong indica-
tions that staggered fermions are sensitive to gauge field
094508
topology when lattice artifacts are sufficiently suppressed.
It is then important to compare the distribution of the
nonchiral modes, after successfully identifying the
would-be zero modes, against the predictions of RMT. In
particular, we study the cumulative distribution of the
smallest nonchiral modes in different topological sectors
P�Q�
cumm�$� where RMT gives the predictions [5,30]

P�Q�
cumm�$� �

R$
0 P

�Q��x�dxR
1
0 P

�Q��x�dx
;

P�0�
cumm�$� �

1

2

Z $

0
xe�x

2=4dx;

P�1�
cumm�$� �

1

2

Z $

0
I2�x�e

�x2=4dx;

P�2�
cumm�$� �

1

2

Z $

0
�I2�x�2 � I1�x�I3�x��e�x

2=4dx:

(9)

Here, P�Q��x� denotes the distribution of the smallest non-
chiral modes in charge sector Q and In�x� is the modified
Bessel function of the first kind (order n). The variable $ �
��V is related to the infinite-volume chiral condensate �
which is a fitting parameter.

Calculations are done for three different operators
[�UFat7� 
 Asq, HYP, and overlap] on two ensembles of
configurations (unimproved and improved gauge fields
with a� 0:12 fm, V � 104). These ensembles are specifi-
cally chosen because the size of the lattice is limited by the
cost in computing the eigenvalue spectra of the overlap
operator while a coarse grid is used so that the physical
volume is larger than the critical value �1:2 fm�4. This
criterion is important as it ensures that we are in the
�-regime where RMT is applicable [11].

In our analysis, the would-be zero modes are first iden-
tified and the configurations are classified according to
their charge indices obtained using the index theorem
(1). We should reemphasize here that the indices obtained
by using different operators do not always agree on a
configuration by configuration basis but the charge distri-
butions are indistinguishable (see Figs. 3 and 6). It should
also be noted that all configurations are used in our analy-
sis. This is different from some previous studies [5,6]
where a small portion of the ensemble was discarded. In
these studies the topological charge indices were also
calculated using a direct discretization of the continuum
formula, Qg �

R
��() F�(F) . Only those configurations

with approximate integer value of Qg were included in the
analysis in Ref. [5], and configurations for which the
charge index obtained by the index theorem is different
from Qg were excluded in Ref. [6].

Results are shown in Fig. 11. The solid curves are
predictions from RMT. Because computing the spectra
for the overlap operator is much more expensive, the sizes
of the ensembles are different: 1000 configurations for
�UFat7� 
 Asq and HYP but only 400 for the overlap
-8
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operator. This is the reason that the overlap results appear
to have poorer agreement with the predictions of RMT.
Note that the agreement is better with improved gauge
fields. The results given here contribute to the evidence
that staggered fermions do feel gauge field topology, pro-
vided that lattice artifacts are suppressed considerable, as
the agreement with the predictions of RMT is impressive.
They should be compared with previous studies [4,5] with
the unimproved staggered operator which appeared to in-
dicate the presence of only a trivial topological sector.
VII. CONCLUSION

In this project we studied numerically the spectral prop-
erties of a variety of improved staggered Dirac operators.
Four systematics have been examined: (i) improvement in
the staggered operator, (ii) improvement in the gauge field
action, (iii) lattice spacing, and (iv) lattice volume.

It has been observed that the infrared eigenvalue spec-
trum depends sensitively on the way in which the staggered
fermion operator is improved. On coarse lattices the un-
improved operator is insensitive to gauge field topology.
As the level of improvement increases, either on the op-
erator itself or the background gauge fields, eigenmodes
with small eigenvalues and large chirality appear. These
small eigenmodes can be identified as the chiral zero
modes associated with the topology of the gauge fields.
Sensitivity to the topology also increases as one ap-
proaches the continuum limit. This gives evidence that
lattice artifacts are responsible for the failure of the unim-
094508
proved staggered operator to reflect properly the gauge
field topology on coarse lattices. Our results also show
that a lattice spacing a & 0:1 fm is enough for the
Asqtad operator to have a correct response to the topology
with improved gauge fields. This spacing is of the order of
the lattice spacings used in present-day state-of-the-act
dynamical simulations of QCD. On the other hand, the
next level of improved staggered operators, e.g., UFat7

Asq, may be required to produce configurations which
describe the correct continuum physics on coarser lattices.
We also observe that the topological charge distribution is
independent of which operator is used even though the
charge indices do not always agree on a configuration by
configuration basis. However, the agreement increases
with the level of improvement. A minimum physical vol-
ume of about �1:2 fm�4 seems to be necessary in order for
zero modes to show up and for sensitivity to topology to be
established. This effect [11,12] was observed earlier for
overlap fermions. As volume is increased the number of
would-be zero modes increases as

����
V

p
but the number of

low-lying nonchiral modes increases faster so some merg-
ing of tails of the distributions takes place. Up to the 164

volume considered here, it is still possible to make a clear
separation of would-be chiral modes from nonchiral
modes. The distribution of the nonchiral modes is matched
with the predictions of RMT. The agreement is comparable
to that obtained using overlap fermions.

Based on this and other work [6,7] done in the past year,
one has strong evidence that, provided one uses improved
staggered operators and improved gauge fields, staggered
fermions properly feel gauge field topology.
-9
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