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Entropy of spatial monopole currents in pure SU(2) QCD at finite temperature
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We study properties of spacelike monopole trajectories in the Maximal Abelian gauge of quenched
SU(2) QCD at finite temperature. We concentrate on infrared monopole clusters which are responsible for
the confinement properties of the theory. We determine numerically the effective action of the monopoles
projected onto the three-dimensional time-slice. Then we derive the length distributions of the monopole
loops and fix their entropy.

DOI: 10.1103/PhysRevD.71.094506 PACS numbers: 11.15.Ha, 12.38.Gc, 14.80.Hv
I. INTRODUCTION

The interest in the Abelian monopoles in the non-
Abelian gauge theories is motivated by a central role of
these objects in the dual superconductor mechanism [1] of
color confinement. The Abelian monopoles can be consid-
ered as particular configurations of gluon fields with mag-
netic quantum numbers. In pure non-Abelian gauge
theories the Abelian monopoles do not exist at the classical
level. However, these topological defects can successfully
be identified given a configuration of the gluon fields in a
particular Abelian gauge [2]. There are many Abelian
gauges among which the most popular one is the
Maximal Abelian (MA) gauge [3]. In this gauge the off-
diagonal gluon fields are suppressed and short-ranged con-
trary to the diagonal (Abelian) gluon fields [4]. There are
many numerical experiments confirming that Abelian de-
grees of freedom are responsible for the confinement of
color (for a review, see Ref. [5]). In particular, it was
observed in Refs. [6,7] that the tension of the chromo-
electric string is dominated by the Abelian monopole con-
tributions. Moreover, the monopole condensate—which
guarantees the formation of the chromoelectric string be-
tween the quarks—exists in the confinement phase and
disappears in the deconfinement phase [8,9].

The trajectories of the Abelian monopoles form two
different types of clusters. A typical configuration contains
a lot of finite-sized clusters and one large percolating
cluster [10,11]. The percolating cluster (or, the infrared
(IR) cluster) occupies the whole lattice while the sizes of
the other clusters have an ultraviolet nature. The monopole
condensate corresponds to the so-called percolating (infra-
red) cluster of the monopole trajectories. The tension of the
confining string gets a dominant contribution from the IR
monopole cluster [11] while the finite-sized ultraviolet
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(UV) clusters do not play any role in the confinement.
Various properties of the UV and IR monopole clusters
were investigated previously in Refs. [11–13].

At high temperatures the Abelian monopoles become
static. In the high temperature phase the IR monopole
cluster disappears [10,11] and, consequently, the confine-
ment of the static quarks is lost. Since the static currents do
not play any role in confinement we concentrate below on
the spatial components of the IR monopole cluster. We
investigate the action, the length distribution and the en-
tropy of spatial components of the infrared monopole
clusters. We follow Ref. [13] where energy and entropy
of the monopole currents were studied at zero temperature.
Our preliminary results were reported in Ref. [14].

The plan of the paper is as follows. In Sec. II we describe
the model and provide the description of the monopole
currents. The details of numerical simulations are also
given in this section. Section III is devoted to the inves-
tigation of the Abelian monopole action obtained by the
inverse Monte-Carlo method for the clusters of the
spatially-projected Abelian monopoles. In Sec. IV we
study the length distributions of the infrared clusters of
the spatially-projected monopole clusters. The knowledge
of the monopole action and cluster distribution allows us to
calculate the entropy of the spatial monopole currents
which is discussed in Sec. V. Our conclusions are presented
in the last section.

II. MODEL

We study pure SU(2) QCD with the standard Wilson
lattice action for gluon fields,

S�U� � �
�
2
Tr
X
P

UP; (1)
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where � is the coupling constant, the sum goes over all
plaquettes of the lattice, and UP � Us;�	 �

Us;�Us��̂;	U
y
s�	̂;�U

y
s;	 is the SU(2) plaquette constructed

from link fields, Us;�. We work in the MA gauge [3]
defined by the maximization of the lattice functional

R �
X
s;�̂

Tr��3
~U�s; ���3

~Uy�s; ���; (2)

with respect to the gauge transformations U�s; �� !
~U�s;�� � ��s�U�s;���y�s� �̂�. In the continuum limit
the local condition of maximization (2) can be written in
terms of the differential equation, �@� � igA3

��	

�A1
� � iA2

�� � 0. Both this condition and the functional
(2) are invariant under residual U(1) gauge transforma-
tions, �Abel�!� � diag�ei!�s�; e�i!�s��.

After the Abelian gauge is fixed we perform the projec-
tion of the non-Abelian gauge fields, Us;�, onto the
Abelian ones, us;� � ei�s;� :

~U�s;�� �

 
�1� jc�s;��j2�1=2 �c��s; ��

c�s;�� �1� jc�s;��j2�1=2

!

	

 
u�s;�� 0

0 u��s;��

!
; (3)

where c�s; �� corresponds to the charged (off-diagonal)
matter fields.

As we have discussed above, the dominant information
about the confinement properties of the theory is located in
the monopole configurations which are identified with the
help of the Abelian phases of the diagonal fields, �s;�. The
Abelian field strength ��	�s� 2 �4�; 4�� is defined on
the lattice plaquettes by a link angle ��s;�� 2 ��;�� as
��	�s� � ��s; �� � ��s� �̂; 	� � ��s� 	̂; �� � ��s; 	�.
The field strength ��	�s� can be decomposed into two
parts,

��	�s� � ���	�s� � 2�m�	�s�; (4)

where ���	�s� 2 ��;�� is interpreted as the electromag-
netic flux through the plaquette and m�	�s� can be re-
garded as a number of the Dirac strings piercing the
plaquette.

The elementary monopole current can conventionally be
constructed using the DeGrand-Toussaint [15] definition:

k��s� �
1

2
��	��@	m���s� �̂�; (5)

where @ is the forward lattice derivative. The monopole
current is defined on a link of the dual lattice and takes the
values 0;�1;�2. Moreover the monopole current satisfies
the conservation law automatically,

@0�k��s� � 0; (6)

where @0 is the backward derivative on the dual lattice.
The monopole current (5) corresponds to the monopole

charge defined on the scale of the elementary lattice spac-
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ing, a. Obviously, the scale a becomes smaller as we
approach the continuum limit. In order to study the prop-
erties of the monopoles at fixed physical scales we use the
so-called extended monopoles [10]. The n3 extended
monopole is defined on a coarse sublattice with the lattice
spacing b � na. Thus the construction of the extended
monopoles corresponds to a block-spin transformation of
the monopole currents with the scale factor n,

k�n�� �s� �
Xn�1

i;j;l�0

k��ns� �n� 1��̂� i	̂� j�̂� l�̂�: (7)

Since the timelike monopole currents are not essential
for the confinement properties we concentrate on the spa-
tial components of the currents. Namely, we investigate
spatially-projected currents,

K�n�
i � ~s� �

XLt�1

s4�0

k�n�i �s; s4�; i � 1; 2; 3; (8)

which are integer-valued and closed.
Technically, we generate 2000–10000 configurations of

the SU(2) gauge field, U, for � � 2:3� 2:6 on the lattices
L3
s 	 Lt, with Ls � 24; 32; 48; 72 and Lt � 4; 6; 8; 12; 16.

The number of generated configuration depends on the
value of � and lattice volume. We fix the gauge with the
help of the usual iterative algorithm. In this paper we used
the same methods as in the zero–temperature case studied
in Ref. [13]. Thus we refer an interested reader to Ref. [13]
for a more detailed description of the numerical proce-
dures. Below we concentrate on the description of the
numerical results.

III. MONOPOLE ACTION

In what follows we discuss an effective model of the
monopole currents corresponding to pure SU(2) QCD.
Formally, we get this effective model through the gauge-
fixing procedure applied to the original model. Then we
integrate out all degrees of freedom but the monopole ones.
An effective monopole action is related to the original non-
Abelian action SU� as follows:

Z �
Z

DU%�X��FP�U�e�SU�

�

�Y
s;�

X1
k��s���1

��Y
s

%@0�k��s�;0

�
e�S

mon
eff k�: (9)

We omit irrelevant constant terms in front of the partition
function. The term %�X� represents the gauge-fixing con-
dition and �FP�U� is the corresponding Faddeev-Popov
determinant. As we have discussed above, the MA gauge-
fixing condition is given by a maximization of the func-
tional (2) and therefore the local condition X � 0, implied
in Eq. (9), is used here as a formal simplified notation.

Numerically, the monopole action of the 3D projected
IR monopole clusters can be defined using the inverse
Monte-Carlo method [8]. The action is represented in a
-2
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FIG. 1 (color online). The coefficient f0 of the monopole action (11) vs. the scale parameter b for the lattice sizes L3
s 	 6, Ls �

48; 72 and blocking factors, n � 1 . . . 9, at temperatures (a) T � 0:8Tc and (b) T � 0:96Tc.
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truncated form [8,16] as a sum of the m-point (m � 2)
operators Si:

SmonK� �
X
i

fiSiK�; (10)

where fi are the coupling constants. Following Ref. [13]
we adopt only the two-point interactions in the monopole
action, Si � Ki�s�Kj�s0�.

Similarly to the 4D case we find that the monopole
action of the spatially-projected currents is proportional
with a good accuracy to the length LK� of the monopole
loop K,

SmonK� ’f0LK� � const: (11)

The important property of the monopole action is that the
couplings fi are the functions of the scale b � na, Eq. (7),
at which the monopole charge is defined. To illustrate this
fact we show the dependence of the coupling constant f0
on b � na��� for various � and n in Fig. 1.

From Fig. 1 one observes the almost perfect scaling: the
coupling constant f0 depends only on parameter b and not
on either n or a separately. The action is near to the
renormalized trajectory which corresponds to the contin-
uum effective action. Moreover, the result does not depend
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FIG. 2 (color online). The distributions of the spatial monopole cu
the UV-part of the distributions is not shown.
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on the spatial extension of the lattice, Ls. Thus the action of
the spatially-projected monopole current shows the scaling
similarly to the action of the unprojected monopoles
[8,16].

IV. LENGTH DISTRIBUTION

The length distribution of the spatially–projected mono-
pole clusters is shown in Fig. 2. In the confinement phase,
T < Tc, only the infrared part of the distribution is shown.
One can see that the length (in physical units) of the
monopole trajectory belonging to the percolating cluster
becomes shorter as the temperature increases. This fact is
expected because the monopole condensate is ‘‘evaporat-
ing’’ as temperature increases towards the transition point,
and, therefore, the infrared part of the monopole currents
should be more and more diluted.

At T > Tc the percolating cluster of the spatially-
projected currents disappears, and, consequently, the con-
finement of quarks is lost. The behavior of the elementary
and blocked currents is qualitatively the same. According
to Ref. [13] the length of the 4D IR monopole currents in
the finite-volume V is distributed with the Gaussian law,
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rrents at various temperatures. For the low temperatures, T < Tc,
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FIG. 3 (color online). The same as in Fig. 1 but for the coefficient 0 of the distribution (12).

1A detailed description of the corresponding bootstrap method
is given in Ref. [13].

2Note, however, that the effect (if exists) is within the errors of
the data points. Therefore we cannot make a definite conclusion
about the size of the monopole core from our data.
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which is in the finite-temperature case can be formulated as
follows:

DIR�L� / expf�/�b; V�L2 � 0�b; T�Lg: (12)

The length distribution function, D�L�, is proportional to
the weight with which the particular trajectory of the length
L contributes to the partition function. In Eq. (12) we
neglect a power-law prefactor, 1=L1 with 1� 3, which is
essential for the distribution of the ultraviolet clusters [12]
and not essential for the distribution of the infrared clusters
[13].

The Gaussian form of the distribution (12) means that
the clusters have the typical length

Lmax � 0�b; T�=2/�b; V�; (13)

where V is the three-dimensional volume. The coefficient
/ plays a role of the infrared cut-off which emerges due to
the finite volume. In other words, the length of the mono-
pole trajectory in an infrared cluster is restricted by the
lattice boundary. However, since the cluster is infrared the
length of the monopole trajectory in this cluster must be
proportional to the total volume, Lmax / V. The linear part
of the distribution (12) gets a contribution from the mono-
pole action and the monopole entropy (we discuss this
issue below). Therefore the coefficient 0 should not de-
pend on the volume in the thermodynamic limit. Thus, we
expect

/�b; V� � A�b�=V; (14)

where A�b� is a certain function of the scale parameter b.
One may suggest that the parameter A should not signifi-
cantly depend on the temperature T since the factor is more
kinematical than dynamical. The temperature influences
the dynamical characteristics of the monopoles such as the
effective three-dimensional action. The effective monopole
action contributes to the coefficient 0 and, as a conse-
quence, the temperature influences the projected monopole
density via the 0-coefficient.

Using Eqs. (13) and (14) one can obtain that the mono-
pole density in the infrared cluster is finite in the thermo-
094506
dynamic limit and is given by the formula

�IR �
Lmax

V
�
0�b; T�
2A�b�

: (15)

We fit the numerically obtained distributions of the 3D
projected currents by the function (12) and then use a
bootstrap method1 to estimate the statistical errors of the
fitting parameters. In Fig. 3 we show the coupling constant
0�b; T� as a function of the scale parameter, b, at tempera-
tures T � 0:8Tc and T � 0:96Tc. As in the cases of the
monopole action and the parameter f0 in Fig. 1, the data
show good b-scaling and are independent of the volume. In
a small b-region we find that 0 / b2 with 2� 3 for low
temperatures, T � 0:5Tc, whereas 2� 2 for T ! Tc.

The numerical values of the parameter A are shown in
Fig. 4. The parameter A is independent of the lattice
volume, indicating that in the thermodynamic limit the
coefficient / in the Gaussian distribution (12) vanishes.

Using Eq. (15) we calculate the monopole density cor-
responding to the infrared cluster. The density is shown in
Fig. 5. The density diminishes as the scale factor b in-
creases, while at small b the density shows a plateau. As
the temperature increases the density (at a fixed value of b)
becomes smaller.

The confining objects in the Abelian gauge are the
Abelian monopoles. The size of the monopole core is
[17] rmon � 0:05 fm. The monopoles are detected using
the Gauss theorem applied to the magnetic field coming
outside the cube of the size b3. If b < rmon then the
monopole cube is too small to detect the charge of much
larger monopole and the monopole density—measured
using the Gauss law— is vanishingly small. Indeed, one
can see2 that the monopole density in Fig. 5 has a tendency
to diminish at smaller b

����
�

p
& 0:1.
-4



(a) (b)

FIG. 5 (color online). The same as in Fig. 1 but for the monopole density � corresponding to the infrared cluster, Eq. (15).

(a) (b)

FIG. 4 (color online). The same as in Fig. 1 but for the ratio A�b�, Eq. (14).
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FIG. 6 (color online). The coefficient 0 vs. temperature T for various temporal extensions of the lattice and for various blacking
factors n.
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TABLE I. The ‘‘critical exponents’’ %-obtained with the help
of the fit (16)—for various lattices L3

s 	 Lt and extensions n.

%

n 483 	 6 483 	 8 723 	 8
1 0.64(15) 0.76(2) –
2 0.62(8) 0.70(16) 0.48(3)
3 0.34(6) 0.55(7) 0.30(2)
4 0.22(2) 0.36(6) 0.18(3)
6 0.11(2) 0.20(2) –
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At the critical temperature, T � Tc, the 4D IR monopole
cluster disappears and we expect a similar behavior for the
3D projected IR cluster. This implies, that the parameter
0�b; T� must become a (nonlocal) order parameter: it must
vanish at the critical point. One can reach this conclusion
by noticing that the parameter 0�b; T� is proportional to the
monopole density (15) (which vanishes at T � Tc), and
that the factor A is unlikely to be divergent at the critical
temperature (what can also be deduced from Figs. 4).

We show that the quantity 0 is indeed an order parame-
ter in Fig. 6(a) which depicts 0 for elementary (n � 1)
monopoles as a function of temperature for various tem-
poral extensions of the lattice. The behavior of the
0-parameter in the vicinity of the phase transition point
depends on the value of the temporal extension Lt.
However, the value of the 0-parameter at the critical
temperature, 0�T ! Tc� ! 0, is universal with respect to
Lt. Moreover, one can observe in Figs. 6(b)–6(d)—which
correspond to the extensions n � 2; 3; 4, respectively—
that the 0-coefficient for the extended monopoles also
tends to vanish at T � Tc.

To characterize the critical behavior of the parameter 0
in the vicinity of the phase transition we have fitted this
parameter by the function

0fit�b; T� � C0 �
�
1�

T
Tc

�
%
; T < Tc; (16)

where % and C0 are the fitting parameters. We performed
the fits for various lattices L3

s 	 Lt and extensions n. The
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FIG. 7 (color online). Examples of the fits of the
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results for the ‘‘critical exponent’’ % are shown in Table I.
From this table one notices that the quantity % is not
universal: it depends not only on the extension of the
monopole blocking but also it also depends on the lattice
volume. Moreover, the larger the extension n, the steeper
the gradient of 0 in the vicinity of the phase transition.

One should add a word of caution here. The fit results
shown in Table I are crucially dependent of the T=Tc �
0:98; 0:99 points (as one can see from Figs. 7(a) and 7(b)),
which are very close to the phase transition. Since the
transition is of the second order then the finite-volume
effects must be strong and the results of fits may quantita-
tively be incorrect (although the results presented in
Figs. 7(a) and 7(b) must qualitatively be correct).
V. MONOPOLE ENTROPY

Apart from the finite-volume effect, the distribution (12)
has contributions from the energy and the entropy. As seen
above, the action contribution is proportional to e�f0L. The
entropy contribution is proportional to�L (with�> 0) for
sufficiently large monopole lengths, L. Thus, the entropy
factor, �, is

� � expff0 � 0g: (17)

We determine the entropy using Eq. (17). The numerical
results for the entropy factor��b; T� are shown in Fig. 8 for
various temperatures, lattice volumes and blocking factors.
One can see that the entropy factor � scales as a function
of b only, as expected.

In order to understand the meaning of the data shown in
Fig. 8 we note that if the monopoles are randomly walking
on a 3D cubic lattice then we should get a definite value for
the entropy factor,� � 5. This is because at each site there
exist five choices for the monopole current to go further.
One can see that far from the phase transition, T & 0:96Tc
the entropy factor � indeed tends to the � � 5 plateau at
moderately small values of b� 0:4 . . . 1. At yet smaller b
the entropy gets bigger than random walk value �> 5
because in this region the inverse Monte-Carlo method
with the truncated quadratic monopole action does not
0.96 0.98 1.00
0.0

0.2

0.4

483x8  n=1
 n=2
 n=4

T/Tc

γγγγ

(b)

0 parameter as the function of the temperature.
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FIG. 8 (color online). Entropy factor of the spatially-projected monopole currents as the function of the scale b at various
temperatures.
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work well [16]. Thus, the value of the constant f0—de-
fined in Eq. (11)—can not be obtained correctly.

At large b the entropy factor drops down with increase in
the factor b. This feature is independent of the temperature.
In the zero temperature case [13] the entropy factor �
approaches unity in the b! 1 limit. This feature is diffi-
cult to observe from our data since the information about
the entropy at large values of the blocking size b is not
available.

VI. CONCLUSION

The distributions of the spatially–projected infrared
monopole currents of various blocking sizes, n were
studied on the lattices with different spacings, a, and
094506
volumes, L3
s 	 Lt. We find that the distributions can be

described by a Gaussian ansatz with a good accuracy. The
ansatz contains two important terms: (i) the linear term,
which contains information about the energy and entropy
of the monopole currents; and (ii) the quadratic term,
which appears due to finite-volume and which suppresses
large infrared clusters. The linear term is independent of
the lattice volume while the quadratic term is inversely
proportional to the volume. Moreover, the linear term is a
(nonlocal) order parameter for the deconfinement phase
transition.

To get the entropy of the spatially-projected currents we
studied the action of the monopoles belonging to the
infrared monopole clusters of the spatially-projected cur-
rents using an inverse Monte-Carlo method. We show that
-7
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the entropy factor has a plateau at sufficiently small values
of b and at T & 0:96Tc. A reason for the temperature
restriction of our result is that our analysis may not be
valid close to the second order phase transition point
because of the increase of correlation lengths at (and,
consequently, because of strong finite-volume effects) T �
Tc. At b * 1 the entropy is a decreasing function of b �
na, indicating that the effective degrees of freedom of the
projected and blocked monopoles are getting smaller as the
blocking scale b increases. This effect is very similar to the
zero temperature case, in which the monopole motion
corresponds to the classical picture: the monopole with
the large blocking size b becomes a macroscopic object
and the motion of such a monopole gets close to a straight
line.
094506
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