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Effective theory for quenched lattice QCD and the Aoki phase
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We discuss the symmetries of quenched QCD with Wilson fermions, starting from its Lagrangian
formulation, taking into account the constraints needed for convergence of the ghost-quark functional
integral. We construct the corresponding chiral effective Lagrangian, including terms linear and quadratic
in the lattice spacing. This allows us to study the phase structure of the quenched theory, and compare it to
that in the unquenched theory. In particular we study whether there may be an Aoki phase (with parity and
flavor spontaneously broken) or a first-order transition line (with no symmetry breaking but meson masses
proportional to the lattice spacing), which are the two possibilities in the unquenched theory. The presence
of such phase structure, and the concomitant long-range correlations, has important implications for
numerical studies using both quenched and dynamical overlap and domain-wall fermions. We argue that
the phase structure is qualitatively the same as in the unquenched theory, with the choice between the two
possibilities depending on the sign of a parameter in the low-energy effective theory.
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1We recognize that the quenched theory is not a thermody-
I. INTRODUCTION

Wilson fermions are one of the oldest and most impor-
tant methods for formulating the quark sector of QCD on a
lattice [1]. Not only have they (or improved versions) been
used directly for many numerical computations, but they
also play an important role in the more recent domain-wall
[2,3] and overlap [4] formulations of lattice QCD.

Wilson fermions do not preserve the chiral symmetry of
continuum QCD, and as a consequence the quark mass has
to be tuned to recover chiral symmetry in the continuum
limit [5]. Flavor and parity are exactly preserved, but, as
observed by Aoki [6], these symmetries may be sponta-
neously broken by a pionic condensate for certain values of
the bare quark mass. This leads to the existence of the so-
called Aoki phase. In the theory with two flavors, a pionic
condensate (which we can choose to point in the 3-
direction in isospin space) breaks the SU�2� of isospin
down to U�1�, giving rise to two Goldstone bosons at
nonzero lattice spacing. Within the Aoki phase, the third
pion has a mass proportional to a, the lattice spacing. In the
continuum limit, the Aoki phase shrinks to zero width, the
pions all become massless, and the pionic condensate can
be rotated (by a nonsinglet axial transformation) into the
usual condensate associated with spontaneous chiral sym-
metry breaking.

The existence of the Aoki phase was investigated by two
of us [7] using the chiral effective Lagrangian for pions in
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two-flavor unquenched lattice QCD (see also Ref. [8]). It
was found that indeed an Aoki phase may occur near the
continuum limit, if a certain low-energy constant in the
effective Lagrangian has a particular sign. For the other
choice of sign, however, there was no spontaneous break-
down of flavor and parity, but rather a first-order transition,
in the vicinity of which the three degenerate pions have
masses proportional to a.

In this paper we attempt to extend the effective
Lagrangian investigation of Ref. [7] to the quenched the-
ory. We have several motivations for doing so. First, the
issue is theoretically interesting, and challenging, because
of the presence of ghost quarks in the Lagrangian formu-
lation of quenched QCD. While the peculiarities and path-
ologies of the quenched theory do show up in perturbative
investigations of the effective theory [9,10], they are more
prominent in the nonperturbative analysis needed to study
the phase structure.1

Second, the issue is of practical importance for domain-
wall and overlap fermions. Both are built upon the
(Hermitian) Wilson-Dirac operator with a large negative
quark mass. This operator is effectively quenched (even in
dynamical domain-wall or overlap simulations) because its
quark mass is not related to that of the physical quarks. As
explained in detail in Ref. [11], the negative quark mass
namic system in the usual sense, as the quarks do not influence
the gluon fields. Nevertheless, the properties of quarks propagat-
ing on quenched gluon fields as a function of the bare quark mass
exhibit the nonanalyticities familiar from thermodynamics, so
we think it appropriate to use the term ‘‘phase structure.’’
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must be chosen so that one does not lie in or near any Aoki
phase. The arguments of Ref. [11] also imply that, if there
is a first order transition like that of the unquenched theory,
one should not simulate near the phase transition line. The
essential point is to avoid regions where the quenched pion
correlators are long ranged. Thus it is clearly important to
understand the phase structure of the quenched theory.

Finally, numerical simulations provide some evidence
for the presence of the Aoki phase in the quenched theory
[12]. Indeed, results from quenched simulations led Aoki
to make his original proposal of a new phase.2

More recent work has shown, however, that the situation
in the quenched theory is different from, and more subtle
than, that in the unquenched theory. In particular, it was
observed (see, for example, Ref. [14]) that there always
appears to be a nonvanishing density of near-zero modes of
the (Hermitian) Wilson-Dirac operator in quenched QCD if
the quark mass is in the supercritical region.3 This implies
a nonvanishing pionic condensate, and thus, through the
Banks-Casher relation [15], would seem to lead to the
conclusion that an Aoki phase fills the whole supercritical
region, in contrast to what is expected in unquenched QCD.
It was shown in Ref. [11] that this is not the case, however,
if one defines the Aoki phase as that region of the phase
diagram where Goldstone bosons associated with the sym-
metry breaking occur. To see this, Ref. [11] considered
quenched QCD with two flavors in the presence of a
twisted quark mass, which explicitly breaks flavor and
parity symmetry. It was argued that (in the limit of vanish-
ing twisted quark mass) regions may exist where the
condensate does not vanish because of the existence of a
density of exponentially localized near-zero modes, with-
out any of the corresponding long-range physics usually
associated with spontaneous symmetry breaking. This phe-
nomenon is an artifact of the quenched approximation, and
was shown to be consistent with the usual Ward-identity
argument for the existence of Goldstone bosons. It turns
out that, in the quenched case only, the Ward identity can
be satisfied without a Goldstone pole even in the presence
of a nonvanishing condensate, if this condensate arises
because of localized near-zero modes [11]. Since the lo-
calization length of these near-zero modes is of order the
lattice spacing, this phenomenon leaves no trace in the
long-distance behavior of the quenched theory.

The implication of the analysis of Ref. [11] is that, in the
quenched theory, there is not a one-to-one relation between
the pionic condensate in an effective field theory (which is
sensitive only to long-distance physics) and that deter-
mined on the lattice. While a prediction of a nonzero pionic
2In the unquenched theory, recent simulations suggest, how-
ever, that, with the Wilson gauge action, the scenario with a first-
order phase transition applies [13].

3Defined as the region where the bare quark mass satisfies
�8r < ma < 0. This is where the Wilson-Dirac operator can, in
principle, have exact zero modes.
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condensate in the effective field theory implies the pres-
ence of a lattice pionic condensate, the converse is not true.
Thus numerical evidence of a condensate is not, by itself,
pertinent to the question of the phase structure. What is
pertinent, however, is the presence of a region in the phase
diagram in which there are long-distance correlation
lengths, i.e. pion masses satisfying m� � �QCD. An ef-
fective low-energy theory can be used in any such region.
A considerable body of numerical evidence indicates that
the quenched pion mass does extrapolate to very small
values. Based on this, we assume that there is a region
where an effective theory can be used, and then study its
properties.

To carry out such a study we need a quenched effective
Lagrangian that is suited to nonperturbative investigations.
A systematic approach to the quenched theory along the
lines of the continuum development of Ref. [16] was given
in Ref. [9]. It turns out, however, that, while this approach
is sufficient for setting up chiral perturbation theory
(ChPT), the effective Lagrangian given in [9] is not suit-
able for the study of the phase structure of the theory.

In the approach of Ref. [9], a ghost quark is introduced
for every valence quark [17]. The ghost quarks couple to
the gluons in the same way as the valence quarks, and have
the same mass, spin, and flavor symmetries. The only
difference is that ghost quarks have bosonic statistics.
Their determinant cancels that from the valence quarks,
thus providing a path-integral definition of quenched QCD.
(For the extension to the case with both valence and sea
quarks, see Ref. [18].) The ghost sector was dealt with only
formally in Ref. [9], without regard to the convergence of
the ghost-quark path integral. Since the ghosts are bosonic,
this is a nontrivial issue. While the formal treatment of
Ref. [9] is sufficient to develop quenched ChPT [19], a
more careful treatment leads to a somewhat different sym-
metry structure of the quenched QCD Lagrangian [20].
This different symmetry structure leads to a different chiral
Lagrangian, which, while equivalent to the one of Ref. [9]
for ChPT, is also suitable for nonperturbative investiga-
tions. The construction of this Lagrangian and its use to
investigate the Aoki phase for the two-flavor theory are the
central subjects of this paper.

We should stress at the outset that our analysis is, in
several respects, incomplete. At various stages we are
forced to make additional assumptions not required in the
corresponding analysis of the unquenched theory. While
we think our assumptions are reasonable, it would clearly
be preferable to avoid them.

The plan of the paper is as follows. In Sect. II we define
quenched QCD with N flavors of Wilson fermions, paying
careful attention to the convergence of the ghost-quark
path integral. In order to do this, we formulate the theory
in Euclidean space, as is done in numerical simulations. In
Sect. III we discuss the symmetries of this theory in detail,
and then use these in Sect. IV to construct the chiral
-2
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effective Lagrangian both in the continuum limit and in-
cluding the leading effects of discretization. In Sect. V we
employ the resulting effective potential, as well as certain
general properties of the quenched theory and the large-Nc
limit (Nc is the number of colors), to analyze the two-flavor
theory. We end with a summary and some concluding
remarks. An appendix briefly reviews illustrative calcula-
tions of quenched small-volume partition functions. A
preliminary account of this work was given in Ref. [21].
II. N-FLAVOR QUENCHED QCD WITH WILSON
FERMIONS

In order to define quenched QCD, we introduce, for
every physical quark field q, a ghost-quark field eq with
the same quantum numbers (spin, flavor, and color) as q
but opposite statistics [17]. If there are N flavors, both q
and eq are N-dimensional vectors in flavor space. In the
continuum, the Euclidean Lagrangian for quenched QCD
may then be defined as

L � qLDqL � qRDqR � qRMqL � qLM� eqyRDeqL
� eqyLDeqR � eqyLMeqL � eqyRMeqR; (1)

where

qL�PLq; qR�PRq; qL�qPR; qR�qPL; (2)

in accordance with standard conventions, while, in the
ghost sector,

eq L�PLeq; eqR�PReq; eqyL� eqyPL; eqyR� eqyPR: (3)

Our convention is PL;R � �1� �5�=2. We take the mass
matrices to satisfy M � My; numerical simulations usu-
ally involve real diagonal mass matrices, with M � My �
M.

In Euclidean space, the Grassmann variables qR;L and
qL;R are all independent, and the integration over them
leads to the quark partition function which is just the
determinant of the fermionic operator,

det�D�MPL �MPR�: (4)

This result holds for arbitrary mass matrices M and M. For
the integral over the bosonic ghost fields to converge,
however, we must restrict M and M to be Hermitian with
all eigenvalues positive. (The Euclidean Dirac operator D
is anti-Hermitian, and thus plays no role in the conver-
gence.) Since we are takingM � My, this means thatM �
M. The Gaussian integral then leads to the ghost-quark
partition function

det�1�D�MPL �MPR� � det�1�D�M�: (5)

This cancels the quark determinant, and we see that indeed
Eq. (1) describes quenched QCD. We stress that eqyR;L must
be the Hermitian conjugates of qR;L for the integral over
ghost fields to converge, while no such connection exists
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between q and q. These facts will have implications for the
symmetries of quenched QCD, to be discussed in the next
section.

We would like to extend this continuum (and thus still
formal) definition to lattice QCD with Wilson fermions. In
the lattice action, D is replaced by the naive (nearest-
neighbor) lattice discretization, which retains the anti-
Hermiticity of the continuum D. The mass term M is
replaced by M�W, where M is a local lattice mass term
and W the Wilson term,

�qRWqL��x� � �
1

2

X
�

qR�x�r�U��x�qL�x���

�Uy
��x���qL�x��� � 2qL�x��: (6)

The corresponding term with L$ R, which we call W,
contains 
r. In general we need to take r and 
r to be flavor
matrices, so that we can treat them as spurion fields. They
will always be related by 
r � ry. In simulations, however,
one usually takes r � 
r to be the identity matrix, and this is
the choice we make for the remainder of this section.

As is well known, in order to approach the chiral limit at
nonzero lattice spacing one must work at negative bare
quark mass. This is necessary because W, being positive
semidefinite, makes a positive contribution to the physical
quark mass. But once the quark mass is negative, so that M
has negative eigenvalues, there are some configurations on
which D�M�W itself can have eigenvalues with a
negative or vanishing real part. (The case of vanishing
real part corresponds to the so-called ‘‘exceptional con-
figurations.’’) It follows that we cannot simply take over
the definition (1), with M ! M�W, to define the
quenched lattice theory, since the ghost-quark integral
would be ill-defined. The same holds true in the continuum
if M has negative eigenvalues.

In these cases we must proceed in a different way. We
begin with the unquenched quark Lagrangian for Wilson
fermions withM � M, and we work in a basis in which the
mass matrix M is diagonal, while adding an infinitesimal
parity-odd mass term:

L quark �
XN
j�1

�q0j�D�Mj �W�q0j � �jq0ji�5q0j
: (7)

Here j is the flavor index, and the infinitesimal parameters
�j can have either sign independently for each flavor. We
use primed fields in Eq. (7) because, in order to avoid the
problem of nonpositive eigenvalues of D�M�W, we
perform a change of variables given by the following axial
transformation:

q0j � exp
�
sgn��j�i

�
4
�5

�
qj;

q0j � qj exp
�
sgn��j�i

�
4
�5

�
:

(8)
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The quark-sector Lagrangian becomes

L quark �
XN
j�1

�qj�D� sgn��j�i�5�Mj �W��qj

� j�jjqjqj
: (9)

The resulting lattice Dirac operator D� i�5�M�W� is
anti-Hermitian,4 and thus is suitable for extension to the
ghost sector. Furthermore, the �j terms (which, after the
axial transformation, look like regular mass terms) ensure
convergence once we extend to the ghost sector. Note that
for this to be true the direction of the axial rotation in
Eq. (8) must be correlated with the sign of the infinitesimal
parity-odd mass term in Eq. (7).

We can now define quenched lattice QCD with Wilson
fermions by adding the ghost sector:

LW �
XN
j�1

�qj�D� sgn��j�i�5�Mj �W��qj

� eqyj �D� sgn��j�i�5�Mj �W��eqj
� j�jj�qjqj � eqyj eqj�
: (10)

Because of the exceptional configurations mentioned
above, quenched correlation functions diverge, in general,
in the limit �j ! 0, since zero modes of D�M�W are
also, after the axial rotation, zero modes of D� i�5�M�
W� [22]. We therefore keep the �j nonzero, but
infinitesimal.

Several comments are in order. First, one may worry that
the transformation of Eq. (8) could be anomalous. This is
not the case. The fermionic measure on the lattice is
rigorously invariant, and no vacuum angle � is generated.
This is in accordance with the fact that in order to produce
a nonzero vacuum angle from Wilson fermions, one has to
introduce a relative phase between the Wilson mass (W)
and the single-site mass (M) [23].5

Second, the fact that the sign of �j may be chosen
independently for each quark flavor has interesting con-
sequences. For example, with two quenched flavors, one
may choose � � �u � ��d > 0 for the up and down fla-
vors. This corresponds to (quenched) twisted-mass lattice
QCD [6,25]. It leads, after the axial transformation, to the
Lagrangian

L2�flavor
W � q�D� i�3�5�M�W��q

� eqy�D� i�3�5�M�W��eq� ��qq� eqyeq�;
(11)

where �3 is the diagonal Pauli matrix acting in flavor space.
We see that, in order to guarantee convergence of the
4This form is unfamiliar, but is, in fact, unitarily equivalent
to i times the well-known Hermitian Wilson-Dirac operator,
HW � �5�D� �M�W�
.

5See Ref. [24] for an alternative method.
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ghost-quark integral, a nontrivial flavor dependence is
introduced into the quark-mass and Wilson terms. If we
choose �u and �d of the same sign, however, no such flavor
dependence appears. We will analyze both cases in this
paper.

For later use, we rewrite the Lagrangian (10) in two
other ways. For the sake of clarity we give the expressions
only for the simplest choice of the �j, namely, that all are
equal and positive: �j � � > 0. It is straightforward to
generalize the expressions to any other choice for the �j
by going back to Eq. (10). We first rewrite LW in terms of
the �5 projected fields of Eqs. (2) and (3):

LW � qLDqL � qRDqR � qR eMqL � qL eMy
qR

� eqyRDeqL � eqyLDeqR � eqyL eMeqL � eqyR eMyeqR; (12)

with eM � i�M�W � i��, and � implicitly multiplied by
the identity matrix in flavor space. Next, we group the
quark and ghost-quark fields into a ‘‘super field’’

�L;R �
qL;ReqL;R

� �
; �R;L � qR;L eqyL;R� �

; (13)

in terms of which

LW � �LD�L ��RD�R ��RM�L ��LM�R;

(14)

with

M � i
M�W � i� 0

0 M�W � i�

� �
; (15)

and M � My.

III. SYMMETRIES OF CONTINUUM
QUENCHED QCD

In this section we consider the symmetries of quenched
QCD in the continuum limit. In that limit, the Wilson term
is irrelevant once the additive renormalization of the quark
mass has been included. Thus we can treat the quantity
M�W as simply a quark-mass matrix. Note that, because
of our use of the axial transformation (8), we can treat the
quenched theory for either sign of the quark masses.

It is instructive to first discuss the quark and ghost
sectors separately. For eM � 0, the quark part of LW is
invariant under

qL;R ! VL;RqL;R; qL;R ! qL;RV
�1
L;R; (16)

with VL and VR both elements of GL�N� (for N flavors).
Thus the chiral symmetry group is GL�N�L �GL�N�R.
(This ignores the anomaly, to which we return below.)
This can be maintained as a symmetry of the full quark

Lagrangian if eM and eMy
are treated as independent spurion

fields. Renaming the latter as eMy
! eM, the required trans-

formations are
-4
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eM ! VR eMV�1
L ; eM ! VL eMV�1

R : (17)

We take the vector subgroup to be that which remains when
M and r are proportional to the identity matrix and all �j
are equal. This requires VL � VR, so that the vector sub-
group is the diagonal subgroup GL�N�.

The symmetry group of the quark sector in the Euclidean
formulation is larger than that of the Hamiltonian formu-
lation, where the group GL�N� is reduced to the unitary
group U�N�. It is straightforward to show that the larger
group (which is just the complexification ofU�N�) does not
lead to any new Ward identities (see for instance Ref. [19]).

In the ghost sector, the symmetry transformations of eqL
and eqR are coupled, and, setting eM � 0 in Eq. (12), the
ghost Lagrangian is invariant under [20]

eq L ! VeqL; eqR ! Vy�1eqR; (18)

with V 2 GL�N�. In other words, if eqL;R ! VL;ReqL;R, the
form of the ghost Lagrangian leads to the requirement that

VL � Vy�1
R � V: (19)

The transformations of the spurion fields eM and eM are

eM ! Vy�1 eMV�1; eM ! V eMVy: (20)

The vector subgroup, which we define as the subgroup
which leaves eqyLeqL and eqyReqR invariant, has VyV � 1, i.e.
V 2 U�N�. If we parametrize V 2 GL�N� as

V � exp�"0 �
X
i

"iTi�; (21)

with Ti the Hermitian generators of SU�N� and "0;i com-
plex, then the vector subgroup has "0;i imaginary. ‘‘Axial’’
transformations are those with " and "i real, so that V �
Vy.

Next, we discuss the symmetries of the full Lagrangian,
considering also transformations of quarks into ghost
quarks and vice versa. For this, it is useful to start from
the form of the Lagrangian given in Eq. (14). If � and �
were independent, then LW would be invariant under

�L;R ! V L;R�L;R; �L;R ! �L;RV
�1
L;R; (22)

with V L;R 2 GL�NjN�, as long as we treat M and M as
independent spurion fields transforming as

M ! V RMV�1
L ; M ! V LMV�1

R : (23)

This would imply that the (massless) quenched theory
possesses the graded chiral symmetry group GL�NjN�L �
GL�NjN�R. This does not take into account, however, that
�L;R, when restricted to the ghost sector, is not indepen-
dent of �L;R, but rather, that

� L;Rjghost;body � �y
R;Ljghost;body: (24)

What this equation means is the following. After a graded
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transformation, the ghost field eq picks up terms containing
Grassmann numbers. In general, eq can be split into its
‘‘body’’ and a ‘‘soul,’’ where the body is the usual complex
field, and the soul is even in Grassmann fields or parame-
ters. As discussed in more detail in Ref. [19], it is sufficient
for the convergence of the ghost integral that Eq. (24) apply
only to the body of the ghost fields, as already indicated in
that equation. It can then be shown that the restriction of
Eq. (19) generalizes to [19]

V Lggjbody � V y�1
Rgg jbody; (25)

where, in N � N block form (for N flavors),

V L �
V Lqq V Lqg

V Lgq V Lgg

 !
; (26)

and similar for V R. The label q refers to the quark sector,
and the label g to the ghost sector. Note that the resulting
set of transformations,

G0 � f�V L;V R� 2 GL�NjN�L �GL�NjN�Rj

�V Lggjbody � V y�1
Rgg jbodyg; (27)

still forms a group.
To complete the discussion of continuous symmetries

we review the impact of the anomaly [9]. In the continuum
limit, transformations in G for which sdet�V L� �

sdet�V R� are anomalous, and should be excluded. This
can be accomplished by restricting V L;R to lie in SL�NjN�
rather than GL�NjN�. There is one subtlety, however. The
nonanomalous vector U�1� transformations do not com-
mute with general elements of SL�NjN� and so the com-
plete symmetry group is a semidirect product [26]:

G � f�V L;V R� 2 �SL�NjN�L � SL�NjN�R
 32 U�1�V j

�V Lggjbody � V y�1
Rgg jbodyg: (28)

The vector subgroup (the subgroup which leaves ��
invariant) is not affected by the anomaly and is given by

H � f�V � V L � V R� 2 GL�NjN�j

�V ggjbody � V y�1
gg jbodyg: (29)

For further discussion of the symmetry group, see
Ref. [19].

Finally, we consider the properties of LW under parity.
Unquenched QCD with Wilson fermions in the standard
form is invariant under parity, but this is not obviously true
for our definition of quenched QCD. In terms of the new
quark variables of Eq. (8), a parity transformation acts on
the spinor indices as

q�t; ~x� ! i�4�5q�t;� ~x�; q�t; ~x� ! q�t;� ~x�i�5�4;

(30)

and the quark sector of LW is invariant under this trans-
formation (if the gauge field is transformed accordingly).
-5
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The ghost sector is not, however, invariant under this
symmetry. If we try to define parity on the ghost field as

eq�t; ~x� ! i�4�5eq�t;� ~x� ) eqy�t; ~x� ! �eqy�t;� ~x�i�5�4;

(31)

the ghost part of LW transforms into minus itself.
However, as long as we consider correlation functions

involving only physical quark fields parity is not broken.
Parity breaking can then only come from ghost loops, but
these are always exactly cancelled by physical quark loops.
A more formal version of the argument follows when we
couple only the physical quarks to external sources. After
integrating over the quark and ghost fields, the determi-
nants cancel, and only the physical quark propagator cou-
ples to the sources. We conclude that parity is not broken in
quenched QCD, with the proviso that we only consider
correlation functions made out of physical quark fields.

It will be useful to consider also ‘‘naive’’ parity:

q�t; ~x� ! �4q�t;� ~x�; q�t; ~x� ! q�t;� ~x��4;eq�t; ~x� ! �4eq�t;� ~x�; eq�t; ~x�y ! eq�t;� ~x�y�4:
(32)

Under this transformation, the kinetic terms of both the
quark and ghost sectors are invariant, but not the mass
terms, which transform into minus themselves because of
the �5 they contain. The Lagrangian (14) is, however,
invariant if we transform the spurion fields M and M
under naive parity as

M ! M; M ! M: (33)

IV. QUENCHED CHIRAL EFFECTIVE
LAGRANGIAN

In this section, we discuss the construction of the effec-
tive theory for the Goldstone particles of quenched QCD,
assuming that the chiral symmetry is spontaneously broken
and that Goldstone-like excitations occur. These assump-
tions are based mainly on the results from numerical
simulations. The order parameter for symmetry breaking
is the quark condensate, which, for positive degenerate
quark masses, is aligned so that the vector symmetry is
unbroken.

We will need to address several issues that arise in the
quenched theory that are not present when constructing the
effective theory for unquenched QCD. The first is the fact
that, in the quenched theory, a nonvanishing condensate
does not necessarily lead to Goldstone-like excitations
[11]. The Ward identity can be saturated by localized
near-zero modes of the lattice Dirac operator. According
to the conjecture of Ref. [11], such near-zero modes are
present throughout the supercritical region, except where
there are extended near-zero modes. In the latter case, the
Ward identity is saturated by the usual Goldstone particles.
The net effect of these observations is that the condensate
in the chiral Lagrangian cannot be identified with that at
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the quark level, but rather with a ‘‘long-distance’’ conden-
sate defined by removing the contributions of short-
distance near-zero modes. Since the �j ! 0 divergences
in quenched correlation functions are due to localized near-
zero modes [11], we conjecture that the limit �j ! 0 can be
taken after the removal of these short-distance near-zero
modes.6

The second issue concerns the presence of infrared
divergences in the chiral limit which make this limit sin-
gular [9,10]. To avoid these, we assume that there is a
region with small enough (but nonzero) quark masses for
which the correlation lengths of Goldstone correlation
functions are much larger than those of other excitations
in the theory, so that it makes sense to use the effective
Lagrangian approach.

The third issue is the need to keep the ‘‘singlet’’
Goldstone field, #0 (defined precisely below), despite the
fact that the corresponding symmetry is anomalous. This
point is explained in Refs. [9,10,19]: #0 must be kept in the
effective theory because its correlators have long-distance
contributions, even though some of these contributions are
not those of a standard single-particle pole.

The remaining issues will be discussed as they arise in
the rest of this section. In the first subsection we discuss the
effective theory for quenched QCD in the continuum limit.
In the second subsection we extend this to include terms of
order a and a2, where a is the lattice spacing.

A. Continuum Effective Lagrangian

Here we construct the effective Lagrangian for quenched
QCD in the continuum limit, starting from the formulation
of quenched QCD developed in Sect. II. This was done
before in Ref. [9], but there it was naively assumed that the
full chiral symmetry group is the graded groupU�NjN�L �
U�NjN�R, an assumption which we have seen above not to
be entirely correct. It turns out that the effective
Lagrangian is equivalent to that of Ref. [9] if the aim is
only to develop chiral perturbation theory for quenched
QCD, but not if one wants to do nonperturbative calcula-
tions, such as needed to explore the Aoki phase.

Following the standard development, we expect the
Goldstone excitations to be described by a nonlinear field
$ which transforms as �L�R and spans the coset G=H :

$ � exp�#�; $ ! V L$V
�1
R : (34)

Here V L;R are elements of the symmetry group G,
Eq. (28), and H is the unbroken subgroup of Eq. (29). If
h$i is proportional to the identity matrix, then # is a linear
combination of the broken generators. To construct a
Lagrangian invariant under G, we also need $�1 !

V R$
�1V�1

L , transforming as �R�L. As already noted
above, however, we must enlarge $ to include the
-6
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‘‘super-'0’’ field #0 � �i str log$ � �i logsdet$ (str is
the supertrace, sdet the superdeterminant). This can be
done by allowing V L;R to be elements of the larger,
anomalous, group G0, Eq. (27), while still only requiring
the Lagrangian to be invariant under G. Since #0 is invari-
ant under G, this leads to the usual presence of an arbitrary
set of functions of this singlet field in the effective
Lagrangian [9,16].

With these ingredients, and treating the masses as spu-
rions as described above, the O�p2� effective Lagrangian
becomes

Leff �
1

8
f2V1�#0�str�@�$@�$�1�

� vV2�#0�str�M$� $�1M�

�
1

2
c0#

2
0V0�#0� �

1

2
"�@�#0�

2V5�#0�; (35)

with Vi�#0� � 1�O�#2
0�, i � 0, 1, 2, 5. We have used a

field redefinition to remove possible terms linear in #0

[9,16]. The constant c0 is of O��2� (� � �QCD being the
nonperturbative scale of QCD) and, because of its relation
to the '0 mass and topological susceptibility, is expected to
be positive [9,10]. The mass matrix M, Eq. (15), becomes
(taking all �j positive and equal for simplicity) M �

i�m� i�� with m � M�mc�r� the subtracted mass ma-
trix,7 and M � My. The plus sign in the mass term
follows from the fact that under naive parity $ ! $�1

and M $ M, cf. Eq. (33). Note that, while this looks like
the standard mass term in ChPT, there are factors of �i
hidden in M and M, related to the original singlet axial
field redefinition of Eq. (8).

We now consider how to parametrize the field #. Were it
not for the restrictions on the ghost-ghost part of the trans-
formations, # would generate GL�NjN� and thus be a
general complex graded matrix. The restriction (19) im-
plies, however, that the ghost-ghost part of # must have a
Hermitian body, and so we parametrize it as

# �
i-1 �-2 .

. -̂

� �
; (36)

with -1;2 Hermitian N � N matrices of c-numbers, . and
. N � N matrices of independent Grassmann variables,
and -̂ a Hermitian c-number N � N matrix. Note that, in
addition, -1;2 as well as -̂ can have arbitrary souls.
7mc�r� is the critical quark mass. As one approaches the
continuum limit, this can be defined as the value for which the
pions become massless. This definition does not work away from
the continuum limit, however, since the subsequent analysis
shows that the pions may have a minimal mass of O�a�, or there
may be a region of quark masses for which there are massless
pions. For our purposes, however, it is sufficient to have a
definition which determines mc to within an accuracy of
O�a�2�, and one such definition is that the pion mass should
be of size a�2.
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There are a number of unusual features of the parame-
trization (36). First and foremost, the presence of both -1

and -2 in Eq. (36) implies a redundancy in the number of
fields describing the physical pions. This redundancy is
not, however, special to the quenched theory—it occurs
also in unquenched QCD. The standard prescription is to
set -2 � 0, so that $ is unitary in the quark sector,
reflecting the fact that only the unitary subgroup are sym-
metries of the Hamiltonian. We will follow this prescrip-
tion here, and briefly review the arguments supporting this
choice for the quenched theory.8

First, we note that the effective Lagrangian depends only
on the field - � -1 � i-2, and not on -1 � i-2. If one is
only interested in developing chiral perturbation theory
one may just expand in - (as well as -̂, ., and .). This
leads to the standard Feynman rules in the physical meson
sector.9 However, if one wishes to consider nonperturbative
issues such as the phase diagram of the theory, or the exact
finite-volume partition function, the contour of integration
of - needs to be specified.

We note in passing that the absence of a factor of i
multiplying -̂ in (36) means that the propagator for
ghost-ghost mesons has the sign of a physical meson
propagator (due to the minus sign from the supertrace).
This differs, superficially, from the standard Feynman rules
of quenched chiral perturbation theory in which the ghost-
ghost mesons have wrong sign propagators [9]. There are
also, however, additional factors of i in vertices, and it is
straightforward to see that these factors can be shuffled
from vertices to propagators in such a way as to reproduce
the standard rules. This is why the use of the correct
symmetry group is unnecessary when only developing
perturbation theory. Of course, in order to see the relation
to standard quenched chiral perturbation theory one must
also ‘‘undo’’ axial rotations of Eq. (8).

A stronger argument for setting -2 � 0 is that, if we
choose to integrate the field - along the contour -2 � 0,
the quenched small-volume partition function is indepen-
dent of the quark mass, as it should be [28,29].10 A differ-
ent contour would not lead to the same result. In the
Appendix we give a demonstration of this in the one-flavor
theory in the sector with zero topological charge, using a
parametrization which makes the calculation particularly
simple.

Another feature of the parametrization (36) is the pres-
ence of the ‘‘souls’’ (nilpotent parts) of the fields -1, -2,
and -̂. In particular, the soul of -̂ need not be Hermitian,
although the body must be. As discussed in Ref. [19],
8For a parallel discussion in the partially quenched case see
Ref. [19].

9In fact, we are assuming implicitly in this discussion that we
should use the Lagrangian (37) as is, rather than taking its real
part. We are also assuming that the parameters f, v, etc. are real.

10Here ‘‘small-volume’’ refers to the regime m�L� 1 �
�QCDL, with L the linear size of the volume.
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however, the souls do not contribute to integrals, as long as
the integrals are convergent. Thus, in effect, we can treat
-1, -2, and -̂ as standard Hermitian matrices, with the
prescription discussed above setting -2 � 0.

One might be concerned that if we restrict the degrees of
freedom in $ by setting -2 � 0, and thus reduce the set of
allowed transformations of $, we might have to allow
additional terms to appear in the effective Lagrangian.
We suspect that, in fact, the correct approach is to use
the full symmetries to determine the effective Lagrangian,
and then restrict the manifold of $. If so, this would
remove the concern. But, in any case, the remaining trans-
formations are sufficient to forbid additional terms. These
transformations are unitary in the quark-quark block,
Hermitian in the ghost-ghost block, and arbitrary in the
quark-ghost blocks.

B. Order a Effects

In this section, we consider how the flavor-symmetry
structure of quenched QCD with Wilson fermions is modi-
fied at nonvanishing lattice spacing. From now on, we will
always choose all physical and ghost-quark masses equal
to m. In the unquenched case, it was argued in Ref. [7] that
the relevant continuum quark Lagrangian including terms
of order a (the lattice spacing) is given by

L quark;eff � Lgluons � q�D� i�5m�q

� aqb1i�5i0�1F�1q�O�a2�; (37)

with b1 a coefficient which depends on the QCD coupling
constant. The term linear in a is the Pauli term. The matrix
i�5 appears in both the mass and Pauli terms because of the
field redefinition Eq. (8). The Pauli term breaks chiral
symmetry in the same way as the mass term, and this
symmetry breaking may thus be represented by a spurion
field A which transforms just as eM in Eq. (17).

In the quenched case, analogous arguments lead to the
quark effective Lagrangian

L quenched
quark;eff � Lgluons ���D� i�5m��

� a�b1i�5i0�1F�1�� ����O�a2�;

(38)

where b1 can take a different value in the quenched case.
We have included the convergence term, taking �j � � > 0
for all flavors. Note that the effective Dirac operator D�

i�5m� b1a�50�1F�1 is anti-Hermitian, as is the corre-
sponding operator in the underlying lattice theory.

The extra i�5 appears in the mass and Pauli terms
because of the unusual form (30) that parity takes in our
formulation of quenched QCD. In fact, the situation is
somewhat subtle. Parity is broken in the ghost sector (cf.
Sect. III), and indeed, the ghost part of the Pauli term as
well as that of the mass term in Eq. (38) breaks parity: like
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the rest of the ghost Lagrangian, it changes sign under (31).
However, as already observed at the end of Sect. III, if we
restrict ourselves to consider only correlation functions
involving physical quark fields, parity is not broken by
the underlying lattice theory, and correspondingly also not
by Lquenched

quark;eff . A term of the form �0�1F�1� cannot
appear, because it would break parity in the physical sector.
Under naive parity (cf. Eq. (32)) the Pauli terms also switch
sign, just like the mass terms.

It follows that, as in the unquenched theory, the Pauli
term breaks chiral symmetry in the same way as the mass
term. We may introduce spurion fields A � ib1, A �

�ib1 � Ay transforming just like M and M in Eq. (23)
to keep track of this symmetry breaking at the level of the
Goldstone-meson effective Lagrangian.

With this new spurion field, we can extend the effective
Lagrangian of Eq. (35) to include O�a� effects. The rule is
simply that every appearance of M could be replaced by
A. We are interested in vacuum structure and so will
consider only the potential. We keep all terms of size m2,
ma, and a2—O�p4� in the usual chiral counting. Recalling
that all masses are degenerate, we find

V�$� � �ic1str�$� $�1� � � str�$� $�1� �
1

2
c0#2

0

� c2��str$�2 � �str$�1�2� � c3�str$��str$�1�

� c4�str�$2� � str�$�2��; (39)

with

c1 � "1m�
3 � "2a�

5;

c2 � 41m
2�2 � 42ma�

4 � 43a
2�6;

c3 � �1m2�2 � �2ma�4 � �3a2�6;

c4 � 51m
2�2 � 52ma�

4 � 53a
2�6;

(40)

Here"i,4i, �i, and 5i are dimensionless constants of order
one, and the factors of � are as required by dimensional
analysis. The ci terms in (39) can also be multiplied by #0

dependent potentials, but we do not make this explicit
since we will argue in the next section that we can set #0 �
0 in the vacuum.

There is an apparent inconsistency in our analysis. We
have kept O�a2� terms in the effective Lagrangian, but not
in the underlying quark Lagrangian, Lquenched

quark;eff . The missing
terms (e.g. four-fermion operators) do not, however, break
any further symmetries and so do not lead to additional
terms in V�$�. The only exception is a three derivative
term ����D

3
��, which breaks the rotation group down

to its hypercubic subgroup, but this maps into a term with
four derivatives in the effective chiral Lagrangian, and is
thus absent from V�$�.
-8
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Finally, we address the issue of the relative size of the
coefficient c1 and the coefficients c2;3;4. Following Ref. [7],
we distinguish three regimes:
(1) T
11In t
Leutwy
expect
Numer
he quark mass is physical while a! 0. This
means m=� is a (small) constant, so that, for a!
0, c2;3;4 �

m
� c1 are small compared to c1. Both lat-

tice artifacts and the contributions of O�m2� terms
can be ignored. In this case c1 / m, a result we use
several times below. In fact, the proportionality
constant ("1�

2) is very likely to be positive,11 and
we phrase subsequent discussions as though this is
true, although our final conclusions would not
change if "1 were negative.
(2) T
he quark mass is O�a� itself, i.e. am� �a��2. In
this case, c2;3;4 are still small compared to c1, but the
O�a� term in c1 cannot be ignored. The critical value
of m is shifted by an amount �a�2, and one may
define m0 as a subtracted quark mass such that the
pion mass vanishes at m0 � 0. The two terms in c1
are both of the same order.
(3) T
he subtracted quark mass is of order am0 � �a��3.
In this case, we have that c1 �m0�3 and c2;3;4 �
a2�6 � c1. In other words, for this case the higher-
order terms in V�$� compete with the lower-order
term, and we need to consider both to determine the
vacuum structure of the theory. As already observed
in Ref. [7], this leads to the prediction that the width
of a potential Aoki phase is of order a3 (for small a).
In this regime, higher-order terms beyond those
shown in Eq. (39) are of higher order in a, and
therefore need not be included in the analysis [7].
In summary, the quenched approximation has intro-
duced several new features to the potential: traces have
become supertraces; there are three O�p4� terms in the
potential rather than one, due to the different group struc-
ture; there are extra terms involving #0; and, finally, the
requirement to do an axial rotation has led to the leading
masslike term having the form $� $�1 rather than $�
$�1. We now turn to the question of how these changes
influence the phase diagram.
V. PHASE DIAGRAM

We now address the central question of this paper,
whether there can be an Aoki phase in the quenched theory,
analogous to that predicted for the unquenched two-flavor
theory. This might seem to be just a matter of minimizing
the potential we have constructed, but there are a number
of subtleties in the ghost sector that complicate the analy-
sis. In fact, we will need certain additional properties of the
he unquenched theory "1 (which is related to the Gasser-
ler parameter B0) is known to be positive, and we do not
quenching to change the sign of this parameter.

ical evidence supports this expectation.
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quenched theory, which we collect before proceeding to
the full analysis.

A. Additional Properties of the Quenched Theory

To study the spontaneous breaking of parity and the
flavor-symmetry group H of Eq. (29), we will only allow
source terms which respect the graded symmetry between a
quark and its corresponding ghost quark. The reason is, of
course, that ghost quarks are not present in numerical
simulations, but instead the quark determinant is simply
omitted. The ghost-quark is just a field-theoretical trick to
describe this procedure in terms of a path integral, and our
choice of sources should be restricted accordingly.
Furthermore, it is sufficient to use source terms which
are diagonal in flavor. This is because we can choose any
flavor-breaking condensate to point in the �3 direction. The
fact that the source terms are flavor-diagonal then implies
that quarks of different flavors are not coupled (either by
the action or the sources). This in turn means that quenched
correlation functions involving only one flavor of quark
depend only on the mass of that quark, and not on those of
other quarks, or even their presence or absence. It also
follows that correlation functions involving ghost quarks
are identical, up to a possible overall sign, to those for the
corresponding quark, since they are composed of the same
propagators. These results hold for any lattice spacing and
thus also in the continuum limit.

A consequence of these observations is that the
quenched condensate for each flavor is independent of
the number of flavors, and that any ghost condensate is
equal to that of the corresponding quark. This holds not
only for the bare lattice condensates, but also for the
physical condensates. The latter are obtained by subtract-
ing divergent contributions from the bare condensate, and
then multiplying by a matching factor. These steps maybe
difficult to implement in practice, but what matters to us
here is that they can be done in principle, and that the
subtractions and matching factors do not depend on the
number or properties of flavors other than that in the
condensate itself. It follows, in particular, that any sponta-
neous symmetry breaking pattern does not break symme-
tries in H such that any ghost-quark condensate would be
different from the corresponding quark condensate.

Our next observation concerns the quenched condensate
in the continuum limit. In this limit, one can ignore the b1
term in Eq. (38), and the quark condensate is an odd
function of the quark mass, configuration by configuration:

tr �1=�D� i�5m�
 � tr��2
5=�D� i�5m�


� �tr�1=�D� i�5m�
: (41)

If the condensate has a nonvanishing nonperturbative con-
tribution, as we are assuming, then this too must be odd in
m. The same holds for the corresponding ghost-quark
condensate. Such a behavior is indeed seen in numerical
-9
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results for the quenched condensate with staggered and
overlap fermions, which is odd under m! �m. At the
level of the effective chiral Lagrangian, working in the
continuum limit means that c1 / m and c2;3;4 / m2 in
Eq. (39), and the result (41) implies that $qq (the compo-
nent of the condensate for quark q), and the corresponding
ghost condensate $gg, should, in the continuum limit, both
change sign when c1 does. This result also follows from
symmetries in the following somewhat indirect way. First,
for the condensate in the physical sector, $qq, this can be
derived using the appropriate axial symmetry in order to
flip the sign of m. Then, because of the arguments given
above, the corresponding ghost condensate, $gg, has to
follow suit. We note that there is no ‘‘direct’’ way of
changing the sign of m in the ghost sector, as follows
from Eq. (20). We note also that this result does not hold
in the unquenched theory because the measure depends on
the quark mass.

In light of the previous discussion, one might wonder
why we need to consider more than one flavor in the
quenched theory. The reason we need two flavors is to
allow the calculation of flavor nonsinglet pion propagators.
These have only quark-connected contributions and are the
quantities usually calculated in simulations. It is the masses
of these pions which are observed to extrapolate to zero at
nonzero lattice spacing—the phenomenon which the Aoki
phase was introduced to explain. With one flavor alone one
can only consider flavor-singlet pions, which have quark-
disconnected contributions as well.

We also need to recall some properties of the quenched
theory in the limit that Nc, the number of colors, becomes
large.12 In the continuum effective Lagrangian, Eq. (35),
standard arguments show that the constants f2 and v are
proportional to Nc, while c0 and " are O�1�. The latter two
are suppressed because they multiply terms corresponding
to disconnected diagrams at the quark level. Similarly, in
the potential for nonzero lattice spacing, Eq. (39), the
coefficients of the single-supertrace terms, c1 (which is
proportional to vm), and c4, are O�Nc�, while the coeffi-
cients of terms with two supertraces, c0, c2, and c3, are
O�1�. Thus in the large-Nc limit we can set c0, c2, and c3 to
zero.

The advantage of this limit is, of course, that the quark
sector becomes physical, since the quark determinant is
suppressed by 1=Nc. In other words, there is no distinction
between quenched and unquenched theories in this limit.
Thus the results of our analysis of the quenched theory
must, in the quark sector, coincide with those of the un-
quenched two-flavor theory in this limit. The analysis of
the Aoki phase in the unquenched theory in the large-Nc
12One subtlety of this limit is that we must take Nc ! 1 before
m! 0, so that the quenched artifacts proportional to ln�m�=Nc
vanish. Since we are implicitly working at small but nonvanish-
ing quark masses, so as to avoid these artifacts, we are able to
take the large-Nc limit without problems.
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limit is a simple generalization of that at finite Nc [7]. In
particular, the competition between two contributions
which leads to the nontrivial phase structure remains in
the large-Nc limit (since these are the c1 and c4 terms). The
only significant change is that the flavor group SU�2� is
enlarged to U�2�. This larger symmetry group may then be
broken down to U�1� �U�1� (as opposed to a single U�1�)
in the Aoki phase, so there are still two exact Goldstone
bosons. Further details will be discussed below.

The particular utility of the large-Nc limit is that it
allows us to check our method of analysis of the ghost
sector. We have argued above that, with sources appropri-
ately chosen, the quark and ghost condensates must be the
same. Since the analysis in the quark sector becomes
unquenched as Nc ! 1, this means that we know the
result which we must obtain in the ghost sector in this limit.

B. Phase Diagram as Nc ! 1

We start from the effective potential V�$� of Eq. (39) for
two flavors, u and d, and substitute the form for #,
Eq. (36). In fact, we can simplify this form as follows:
first, by setting . � . � 0, since these are the solutions of
the classical equations of motion for these fields; second,
by setting -2 � 0, as discussed in the previous section;
and, third, by keeping only flavor-diagonal components of
the fields since we force any flavor-breaking to lie in the �3
direction. Thus we can investigate the vacuum structure
using an expectation value

h$i � $ � diag�ei-u ; ei-d ; e-̂u ; e-̂d�; (42)

where ��<-u;d � � are real phases, while -̂u;d are real
variables to be integrated along the entire real axis.

In this subsection we consider the large-Nc limit, and
thus set c0 � c2 � c3 � 0. The potential is then

V � 2
X
j�u;d

�sgn��j�c1 sin�-j� � j�jj cos�-j�

� c4 cos�2-j� � i sgn��j�c1 sinh�-̂j�

� j�jj cosh�-̂j� � c4 cosh�2-̂j�
: (43)

Here we have reintroduced the dependence on the �j,
which follows from the fact that the lattice mass and
Wilson terms in Eq. (10) are proportional to sgn��j�. The
c4 term does not depend on the sign of �j since it is
quadratic in symmetry breaking. The factorization into
four parts, dependent, respectively, on -u, -d, -̂u, and
-̂d, is the result of taking Nc ! 1. This is how, in this
context, the quark and ghost sectors decouple.

In the quark sectors the analysis is essentially a reca-
pitulation of that of Ref. [7] for the unquenched two-flavor
theory, except that here it is done for each flavor separately.
The notation is also different: our c4 was called �c2=4 in
-10
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Ref. [7], and here we have done an axial transformation
which complicates the interpretation of the condensate.
What remains unchanged is the region of parameters of
interest: c1 is proportional to the O�a� shifted quark mass
m0 while c4 � a2 is a constant. A useful ratio is ' �
c1=4c4. We want to determine what happens to the con-
densate as ' ranges from values smaller than �1 to larger
than 1, in the limit �! 0. We note that the term propor-
tional to j�jj can be dropped for most of the analysis, since
we take �j ! 0 at the end, except where it is needed to
distinguish between otherwise degenerate minima.

It is useful, first, to consider the continuum theory in
which c4 � 0, so that the potential in each quark sector is
Vq � 2sgn��q�c1 sin�-q�, where we now use an index q
instead of j to indicate that we are considering the quark
sector of a given flavor q. For positive c1 (corresponding to
positive quark mass in the original basis) the minimum is at
-q � �sgn��q��=2, so that $qq � ei-q � �sgn��q�i. For
negative c1, the minimum switches to -q � sgn��q��=2,
so that $qq � sgn��q�i. In short, the minimum occurs at
$qq � �sgn��qc1�i. This reproduces the standard discon-
tinuous dependence of the direction of the condensate as a
function of the direction of the mass and source terms.

The unusual factor of �i in the condensate is a reflection
of the axial transformation Eq. (8) needed to define the
quenched theory. If we rotate back to the usual continuum
basis, then the condensate becomes $qq � sgn�c1�. In
other words the nonstandard values of -q undo the axial
transformation. To see this explicitly, we can write the
potential in terms of shifted fields -q �

�sgn��qc1��=2�-0:

Vq � �2jc1j cos-
0 � 2c4 cos2-

0

� �2�jc1j � c4� � �jc1j � 4c4�-02 �O�-04�; (44)

where we have restored the c4 term in anticipation of the
discussion below. This is the potential we would have
obtained directly if we had not had to use the trick with
the axial transformation of Eq. (8), and instead expanded
about $qq � �1.

Now we consider nonvanishing c4. If c4 > 0, the analy-
sis with c4 � 0 goes through unchanged: the c4 cos�2-q�

term has equal minima at -q � ��=2, so it is the sign of
�qc1 which determines the direction of the condensate.
There is thus a first-order transition when c1 changes sign.

If c4 < 0, however, it contributes negative curvature to
Vq, which can destabilize the minima. Looking at the
quadratic terms in Eq. (44), we see that this happens
when 4c4 <�jc1j, i.e. j'j< 1. The minimum of the po-
tential shifts to -q � sgn��q� arcsin�'�, signaling that we
are in an Aoki phase. There are two choices of branch for
the inverse sine, one interpolating between ��=2 and
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��=2, the other between ��=2 and �3�=2. In both cases
the condensate ‘‘swings’’ from �i to �i around the unit
circle in the complex plane, when �qc1 changes from
positive to negative values. The choice of branch decides
which way the condensate swings, i.e. whether it passes
through �1 or �1 when ' � c1 � 0. Which choice is
appropriate is determined by the j�jj term in Eq. (43).
This term is negative if ��=2<-q < �=2 and positive
if �3�=2<-q <��=2, and thus selects the branch in
which $qq swings through �1. This is true irrespective of
the sign of �j.

The symmetry that is broken by the condensate depends
on the details of the theory. If we were considering one
flavor alone, then, undoing the axial transformation (8), we

would find that hqi�5qi / sgn��q�
���������������
1� '2

p
� 0 for j'j<

1. Thus parity is broken in the Aoki phase. The sign of the
condensate is determined by the sign of �q � �j in Eq. (7).
There are no exact Goldstone bosons in this phase as no
continuous lattice symmetry is broken.

Next, we consider the two-flavor theory, with degenerate
masses. The pattern of symmetry breaking depends on the
signs we choose for �u and �d in Eq. (7). If we choose �u
and �d both of the same sign, so that Eq. (7) represents a
flavor-singlet source proportional to

P
q q i�5q, then the

condensates will satisfy h 
ui�5ui � h 
di�5di � 0, and par-
ity, but not flavor, will be broken (so again there are no
Goldstone bosons). We checked explicitly, from Eq. (39)
with c0 � c2 � c3 � 0, that in this case indeed there are
no Goldstone bosons (all pions have a mass of order a). If,
on the other hand, we use a flavor-breaking source term
proportional to 
ui�5u� 
di�5d (i.e. �d � ��u), the mass
term in the lattice quark Lagrangian will be proportional to
�3 (cf. Eq. (11)), which translates into the c1 terms in
Eq. (43) for the up and down sectors having opposite signs.
The condensates will then satisfy h 
ui�5ui � �h 
di�5di �

0, and flavor and parity will be broken. This is the most
familiar example of the Aoki phase, which has two
Goldstone bosons ��, and which carries over to finite Nc
in the unquenched theory (see Sect. V C below). In this
case, the calculation of the meson spectrum from the chiral
Lagrangian is virtually identical to that in Ref. [7], and
confirms the existence of two massless Goldstone bosons.
We stress, however, that, as far as the condensate is con-
cerned, these theories at infinite Nc differ only kinemati-
cally—the underlying phenomenon is identical in all
cases.

We now turn to the ghost sector, in which the potential is

Vg � 2�ic01 sinh�-̂� � j�j cosh�-̂� � c4 cosh�2-̂�
: (45)

We have dropped the index j because, in the remainder of
this section, we are only interested in demonstrating that,
for each flavor, the ghost sector follows the quark sector.
-11
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We have introduced the useful variable13 c01 � sgn��j�c1.
As in the quark sector, we can ignore the j�j term except
when it breaks degeneracies.

The potential (45) is complex, and the usual approach of
minimizing it to find the vacuum structure breaks down.
However, what one is really doing if one minimizes the
potential in the context of Euclidean field theory is to
calculate the leading term in a saddle-point expansion of
the path integral. Stating the problem this way, it is clear
that this can also be done when the integrand is complex
instead of real. The prescription is to treat -̂ as complex,
and deform the contour of integration so as to pass through
a saddle-point. The vacuum expectation value of the field
is, at leading order, the value at the position of the saddle. If
there are multiple saddles, the appropriate one to use is
determined by the boundary conditions on the contours,
and other considerations, as will be discussed below.

Another issue we must face is the convergence of inte-
grals as -̂! �1. For instance, if c4 > 0, the last term in
Vg is unbounded from below in these limits. In fact, we
only know the form of the potential for small fields, j-̂j &

1. The ratio of successive terms in the chiral expansion
grows exponentially when j-̂j exceeds unity (as can be
seen from the relative magnitude of the c4 and c1 terms)
rapidly overcoming any suppression in their coefficients.
Thus, once j-̂j � 1 the chiral expansion breaks down, and
we do not know its behavior at large fields. In light of this,
we simply assume that we can treat the integral over -̂ as
convergent at infinity along the real axis, and search for
saddles in the region j-̂j & 1 through which the contour
can be deformed in such a way that it can be evaluated
using steepest descent. Note that the same issues do not
arise in the -q integrals, because there is no relative
exponential growth in the terms, and because the integral
runs over only a short segment (of length 2�) of the real
axis.

As for the quark sector, we warm up by considering the
phase structure for c4 � 0, so that Vg � 2ic01 sinh�-̂�. The
saddle-point equation is

cosh�-̂� � cosh�x� cos�y� � i sinh�x� sin�y� � 0; (46)

where we have written -̂ � x� iy, with x and y real. The
solutions to this equation are a periodically repeating se-
quence along the imaginary axis, with the two nearest to
the origin being at -̂A � �i�=2 and -̂B � �i�=2. These
correspond to the condensate taking the values $gg �

exp�-̂A;B� � �i, i.e. the same values as arose in the quark
sector. The other solutions lead to the same two values of
the condensate and are thus not physically distinct.
13We could have performed the analysis in the quark sector in
terms of c01 as well; however, there we wanted to emphasize the
explicit flavor dependence of the condensate in the Aoki phase
through the signs of the �q.
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Expanding about the saddles, we find

Vg�-̂ � �i
�
2
� -̂0� � �2c01 cosh�-̂

0�

� �2c01

�
1�

-̂02

2

�
: (47)
The criteria we use to choose the saddle are based on the
direction in which <Vg rises most steeply (which is the
direction the contour should follow to have the steepest
descent of j exp��Vg�j away from the saddle), as well as
the value of the potential at the saddle. The contour should
pass through the saddle and then be able to join the real
axis for large fields, without passing near other saddles. If
there is more than one saddle point with an appropriate
contour, we want to maximize the value of <Vg, so that the
contribution to the saddle-point integral is minimized, and
thus a better approximation to the (absolute) value of the
full integral is obtained.14 All criteria agree in this case: if
c01 > 0 then Vg is larger at -̂A, and has steepest descent in
the direction of -̂0 real, so that the contour can be easily
deformed so as to end up on the real axis for large -̂0. The
other saddle has its direction of steepest descent along the
imaginary axis, with the contour heading directly for
saddle -̂A and its periodic reflection. If c01 < 0, the role
of the two saddles is reversed, and we must choose -̂B.

In this way, the ghost condensate is predicted to flip from
�i to �i as c01 passes from positive to negative values. This
is exactly the same dependence as for the quark conden-
sate, $qq, and is in agreement with the general arguments
given in Sect. VA. That this check works out gives us
confidence in our method. We note for future reference
that the total potential, Vq � Vg, vanishes at the saddles
that have been chosen.

Now we add back in a nonzero c4, in which case the
saddle-point equation becomes

ic01 cosh�-̂� � 2c4 sinh�2-̂� � 0: (48)
The solutions are -̂A;B, defined above, and an additional
saddle or saddles satisfying

-̂ C : sinh�-̂C� � ic01=�4c4� � i'0: (49)
The solutions of this equation (apart from periodic repeti-
tions in the imaginary direction) are
14For a lucid description of the saddle-point method, see e.g.
Ref. [30].
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'0 <�1 : -̂C� � �i�=2� arcosh��'0�

� -̂A � arcosh��'0�;

�1 � '0 � �1 : -̂C � i arcsin'0;

'0 > 1 : -̂C� � i�=2� arcosh'0

� -̂B � arcosh'0: (50)

Expanding Vg around these saddles we find

Vg�-̂A�-̂
0��2�c01�c4��4c4�'0 �1�-̂02�O�-̂03�;

Vg�-̂B�-̂
0��2��c01�c4��4c4��'0 �1�-̂02�O�-̂03�;

Vg�-̂C�-̂
0���2c4�1�2'02��4c4�'02�1�-̂02�O�-̂03�:

(51)

As above, our approach will be to find the saddle for which
Vg increases for real displacements (which we will refer to
as ‘‘positive curvature’’), since the original integral over -̂
is along the real axis, and which has the largest value of the
potential at the saddle. We run through the choices of
parameters in turn.

We begin by considering c4 > 0.
c01 > 4c4 > 0, or '0 > 1: Saddles A and C� (arrayed

either side of B) have positive curvature, while B has
negative curvature. There are two choices of contour:
that passing through A alone, and that running through
-̂C�, -̂B, and then -̂C�. We choose the former as the
potential is higher at A than at C� . Furthermore, saddles
C� are outside the range of applicability of our truncated
effective potential except for '0 � 1. Thus we find the
same saddle as for c4 � 0.

4c4 > c01 > 0, or 0<'0 < 1: Both saddles A and B have
positive curvature, while C lies on the imaginary axis
between A and B and has negative curvature. Thus a
contour passing through either A or B is possible. We
choose that through A since it has the higher potential.

4c4 > 0> c01 >�j4c4j, or �1<'0 < 0: The saddles
are similar to the previous case, except that saddle B now
has the highest potential, and so we pick the contour
passing through B rather than A. In other words, when c01
passes through zero the saddle switches from A to B, just as
in the case c4 � 0.

4c4 > 0>�4c4 > c01, or '0 <�1: The situation is the
reflection in the real axis of that for c01 > 4c4 > 0. Saddles
B and C� have positive curvature, and we choose the
former since it has the higher potential.

Summary for c4 > 0: The ghost condensate is un-
changed from the analysis when c4 � 0, and satisfies -̂ �
i- for all c01. Thus $qq � $gg, as expected. In both quark
and ghost sectors there is a first-order phase transition as c01
passes through zero, just as in the continuum limit. There is
no Aoki phase in either sector. The spectrum of fluctua-
tions about both quark and ghost vacua is the same for all
c01.
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We now turn to the case c4 < 0.
c01 > 4jc4j> 0> 4c4, or '0 <�1: Changing the sign of

c4 changes the sign of the curvature about all saddles.
Thus, in this parameter range, only saddle A has positive
curvature. The contour must pass through A, and then
move back to the real axis. It can do so by passing through
C� and then moving off in an imaginary direction,
although this is not necessary. In all cases the integral is
dominated by the value at saddle A.
4jc4j> jc01j; 0> c4, or j'0j< 1: The contour must pass

through saddle C, since this is the only saddle with positive
curvature. This gives an expectation value -̂ �

i arcsin'0 � i sgn��j� arcsin', which is consistent with
the equality -̂ � i-, since we found above that -q �

sgn��j� arcsin'. As for the quark sector, however, there is
a choice of branch of the inverse sine function. The appro-
priate choice is determined by the 2j�jj cosh-̂j term in Vg:
one should pick the branch which maximizes this term. It is
easy to see that the resulting branch is that which satisfies
the equality -̂ � i- for either sign of �j, i.e. that the ghost
condensate is always equal to the quark condensate.
0> 4c4 > c01, or '0 > 1: The contour passes through B,

which is the only saddle with positive curvature.
Summary for c4 < 0: As for c4 > 0, these results are

consistent with those from the quark sector and give $gg �

$qq. In particular, we find an Aoki phase in both quark and
ghost sectors.

In summary, we see how the saddle-point analysis ef-
fectively restores the quark-ghost symmetry which had
been broken by the need for convergence of the ghost
integral.

C. Phase Diagram for Finite Nc

We now extend our analysis of the quenched phase
diagram to finite Nc. Finite-Nc corrections will change
the values of c1 and c4, but, more importantly, turn on
c0, c2, and c3. The latter terms couple the quark and ghost
sectors, as well as the different flavors. To make progress
here we will need to use the assumption, discussed in
Sect. VA, that the condensates in the quark and ghost
sectors have to be equal, as well as other general
considerations.

We note first that it is straightforward to show that the
solutions we found in Sect. V B are still solutions of the full
saddle-point equations which follow from Eqs. (39) and
(42). The full saddle-point equations in the finite-Nc case
are transcendental equations, due to the c0 term in the
effective potential V�$�, and we do not know whether
any solutions to these equations other than those discussed
in the previous section exist. However, in the previous
section we found that the ghost and quark condensates
were always equal in the Nc ! 1 limit, and, in accordance
with the argument at the quark level in Sect. VA, we will
insist that this continues to hold for finite Nc. This means
-13
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that we require -̂q � i-q for each flavor q. Remarkably,
upon imposing this constraint we find that the terms pro-
portional to c0, c2, and c3 drop out of the saddle-point
equations, and the solutions are those found in Sect. V B.
Note that a similar argument applies to the terms of order
#2

0 and beyond15 in the potentials V0;2�#0� in Eq. (35).
We conclude that reducing Nc from infinity does not

change the saddles we need to consider. This is the good
news. The bad news is that, since we are now considering
the coupled -q, -̂q system, we must use the full potential
when distinguishing between the saddles, and, as noted
above, this potential vanishes for all of them.

To make progress, we consider in general the role of the
c0#

2
0 term in the quenched chiral potential (39). A signa-

ture result of quenched chiral perturbation theory is that, at
tree level, this term does not shift the position of the pole in
the flavor-singlet propagator but rather gives rise to a
double-pole contribution at the same position. This
double-pole term represents the presence of quark-
disconnected contributions (the so-called ‘‘double hair-
pins’’) in this channel [9,10].16 Furthermore, the c0 term
does not affect the value of the condensate at tree level, but
rather only at one-loop through long-distance effects. This
is very different from the effect of such a term in the
unquenched theory. There it shifts the position of the '0

pole, and changes the value of the condensate at leading
order (since '0 loop effects are short distance they lead to
an O�1� correction to the condensate proportional to v�

M2
'0=�4�f��

2).
We conjecture that these perturbative results hold also

nonperturbatively, and that the c0 term does not influence
the value of the condensate. A similar discussion applies to
c2 and c3 terms in the potential, which both have two
supertraces, and at leading order in a field expansion are
proportional to #2

0. Given this conjecture, the analysis for
finite Nc collapses to that for infinite Nc, and we conclude
that the possible phase structures in the quenched theory at
finite Nc are the same as those in the unquenched theory at
infinite Nc.

We illustrate the argument for the irrelevance of c0, c2,
and c3 by studying the small fluctuations around one of the
saddles. For simplicity, assume that c01 > 0 and that c01 �
4c4 > 0 as well, so that we are in the phase with i-q �

-̂q � �i�=2 (this is saddle point A in the ghost sector).
Expanding the effective potential around this saddle to
quadratic order gives

V�$��
1

2
-q; -̂q

� �
�2�c01�4c4�I��c0�4c2�2c3�X


�
-q

-̂q

 !
; (52)
15These terms all vanish in the large-Nc limit.
16We expect this to be true inside the Aoki phase as well.
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in which I is the unit matrix and X is a matrix filled with
1’s in the quark sector (upper left-hand block), i’s in the
mixed quark-ghost sector, and �1’s in the ghost sector
(lower right-hand block). Note that the coefficient of I
reproduces the coefficients of the quadratic terms in the
first line of Eq. (51), as well as Eq. (44) for the case at hand.

First, ignoring X, we see that the potential is stable
around our solution if c01 � 4c4 > 0, with an instability
developing when c01 � 4c4 < 0, signaling spontaneous
symmetry breaking. This confirms what we found in
Sect. V B. As long as c01 � 4c4 > 0, -q and -̂q mesons
propagate with masses proportional to c01 � 4c4.

Now if we include X, the (zero-momentum) propagator
can be determined from the inverse of the matrix in
Eq. (52). Because X2 � 0, this inverse is equal to

1

2�c01 � 4c4�
I�

c0 � 4c2 � 2c3
4�c01 � 4c4�

2 X: (55)

This shows that the parameters c0;2;3 do not affect the
meson masses, but instead determine the residue of the
quenched double pole, which originates in the so-called
‘‘double-hairpin’’ diagram. While this double pole exhibits
a sickness of the quenched theory, it does not affect the
meson masses. Spontaneous symmetry breaking only oc-
curs when the squares of these masses turn negative.

This brings us to our final point of this section, which is
the effect of the flavor-singlet pseudoscalar in the un-
quenched theory. For simplicity we discuss only the two-
flavor theory. In the unquenched theory, the flavor-singlet
mass term is �1=2�c0#2

0 � �1=2�c0�-u �-d�
2. In the limit

of vanishing �u;d this term raises the energy of the solution
for which -u � -d. Thus, in the unquenched theory, one
finds that h 
ui�5ui � �h 
di�5di � 0 inside the Aoki phase,
and flavor is always broken along with parity. As we have
seen, this mechanism for picking the vacuum is not present
in the quenched theory. In the quenched theory, for both
infinite and finite Nc, the pattern of symmetry breaking
depends on the relative sign of �u and �d.
VI. CONCLUSION

The aim of this paper is to see whether the method of
Ref. [7], based on the effective theory describing the
Goldstone-boson physics of full QCD with two flavors of
Wilson fermions, can be extended to the quenched theory.
Our conclusion is that it can, although to push through the
analysis we have had to make a number of assumptions not
needed in the unquenched theory. We find the same two
possibilities for the phase structure as in the unquenched
case: depending on the sign of a parameter of the effective
theory (c4), there is either an Aoki phase or a first-order
phase transition.

The nature of the quenched Aoki phase, if there is one,
can however differ from that in the unquenched theory. In
particular, the form of the condensate in the two-flavor
-14
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quenched theory depends on the source employed to probe
spontaneous symmetry breaking. One can have a phase in
which both parity and flavor symmetry are broken, as in
Aoki’s original scenario, but one can also have only break-
ing of parity, with no breaking of flavor, and thus no
Goldstone bosons. Since in the quenched theory quark
correlators are only probing the theory, while not being
part of the dynamics (there are no sea quarks), this is a
kinematical effect. For more detail, we refer to Sect. V B.
Unquenched QCD at Nc � 1 shares this property, but
there the degeneracy between the two possibilities is lifted
at finite Nc, in accordance with Ref. [7].

The extension of the method of Ref. [7] to the quenched
theory turned out to be nontrivial. The formal definition of
quenched QCD of Ref. [9] does not lead to a convergent
path integral in the ghost sector. While expanding the
Lagrangian of Ref. [9] around $ � 1 leads to the correct
version of quenched ChPT, it breaks down nonperturba-
tively. We gave a nonperturbatively valid path-integral
definition of quenched QCD, and analyzed its symmetries.
This has been discussed before in the continuum in
Ref. [20], but here we extended this to lattice QCD with
Wilson fermions, thus providing a fully-regulated, conver-
gent path-integral definition of quenched QCD. We then
used it to construct an effective potential to next-to-leading
order, including terms up to order a2. Employing this
effective action, we argued that the analysis of the phase
structure of unquenched QCD with two Wilson fermions of
Ref. [7] carries over to the quenched case. As a by-product
we saw how standard quenched chiral perturbation theory
is recovered.

As discussed in some more detail in Sect. V B, for
certain values of the coefficients, the effective potential
can be unbounded from below for large values of the fields.
While the vacuum structure we found satisfies local stabil-
ity, this would seem to cast a doubt on our conclusions. We
believe that this problem is spurious. As we argued, the
effective theory is only valid below the typical hadronic
scale, and should thus not be trusted for large values of the
fields. In fact, we expect that it is possible to construct a
different effective potential with the same vacuum struc-
ture and the same perturbative expansion, but which is
bounded for large values of the fields [31].

Finally, we remark that the entire analysis was carried
out in Euclidean space. This is the relevant setting: quench-
ing is only employed in the Euclidean version of lattice
QCD. It is interesting to note that, while the Euclidean
ghost action is invariant under SO�4� rotations, the
Minkowski version would not be invariant under Lorentz
transformations, because in the ghost sector the option of
identifying q with qy�0 does not exist. Like with parity,
this would not affect quenched correlation functions with
only physical (and no ghost) quark fields on the external
legs. However, we doubt that it will be possible even in
principle to continue the quenched theory to Minkowski
space.
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APPENDIX

First, we calculate the small-volume partition function
for the one-flavor quenched theory in the sector with
topological charge zero. The latter condition implies that
the constant c0 � 0. We include this appendix only for
pedagogical reasons; for other cases as well as references,
see, for example, Refs. [28,29]. In a small volume (often
referred to as the ‘‘�-regime’’), the dominant contribution
comes from the constant modes. The partition function we
wish to calculate is

Z�m;J��
Z
R
!exp

�
�vV str

� m�J 0

0 m

 !
�$�$�1�

��
;

$�
A C

D B

 !
)$�1�

1
A�

CD
A2B

� C
AB

� D
AB

1
B�

CD
AB2

0@ 1A; (A1)

where V is the four-dimensional volume, and the fields are
constant. A and B represent c-number degrees of freedom,
while C and D represent Grassmann degrees of freedom.
The integration measure 2�i! � �dAdBdCdD is ob-
tained starting from the Haar measure on GL�1j1�, and
thus, following our arguments in Sect. IVA, we restrict the
bosonic part of the integration region to R � S1 � R�

[28]. In other words, A lies on the unit circle S1 and B
lies on the positive real axis R�. We took the masses in the
physical and ghost sectors m� J and m different; the
quenched theory is obtained by setting J � 0.

A convenient parametrization for the nonlinear field $
equivalent to that used in the text is given by choosing

A � ei-
0
; B � e-̂

0

: (A2)

The relation between this parametrization and that of
Eq. (36) can be worked out order by order by an expansion
in the fields. (This expansion is finite, because of the
Grassmann nature of the fields ., ., C, and D.) The
advantage of our new parametrization is that the Jacobian
which appears when we actually calculate the integral is
simpler.

The Jacobian for the transition from A, B to -0, -̂0 is
equal to iAB � iei-

0�-̂0

. Expanding in C and D and defin-
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ing r � 2vVm, s � 2vVJ, we find that
Z�m;J���
1

2�i

Z �

��
d-0

Z 1

�1
d-̂0

Z
dCdD�iAB�exp

�
1

2
�r�s��A�1=A��

1

2
r�B�1=B�

��
1�

CD
2AB

�
r�s
A

�
r
B

��
�

1

4�

Z �

��
d-0

Z 1

�1
d-̂0f�r�s�cos-0 �rcosh-̂0gexpf�r�s�cos-0 �rcosh-̂0g

� �r�s�I1�r�s�K0�r��rI0�r�s�K1�r�: (A3)
To obtain the quenched result we set s � 0 and find that
Z�m; 0� � 1, irrespective of the value of m.17 This would
not have been true if we had chosen A to lie on R�, which
corresponds to choosing -1 � 0 instead of -2 � 0 in
Eq. (36).

In the case with more than one flavor, there is more than
one way to define the vectorlike subgroup H of Eq. (29).
For instance, for the two-flavor case, if we have a mass
matrix proportional to �3, it is natural to define the vector-
like subgroup in the ghost sector by requiring that V is
�3-Hermitian:

Vy�3V � �3; (A4)

and likewise, that VL � �3VR�3 in the quark sector. The
relevant group integral for the standard quenched two-
flavor case, analogous to the one-flavor case reviewed
above, was done in Ref. [32], and here we discuss only
how things change if one chooses vectorlike transforma-
tions in the ghost sector to be �3-Hermitian.

First, let us consider the parametrization of the bosonic
ghost block of $, i.e. B of Eq. (A2) above for the two-flavor
case. In Ref. [32], the following parametrization was
chosen (showing only bosonic parameters, i.e. setting
Grassmann parameters equal to zero)18:

B � es1�s2
cosh#es1�s2 i sinh#ei0

i sinh#e�i0 cosh#e��s1�s2�

� �
: (A5)

This can be written as

B � e�-̂0��3-̂3�=2e�1-̂1��2-̂2e�-̂0��3-̂3�=2; (A6)

with

s1 � s2 � -̂0; s1 � s2 � -̂3; # �

�������������������
-̂2

1 � -̂2
2

q
;

sin0 � �
-̂1

#
; cos0 � �

-̂2

#
: (A7)

This parametrizes the coset GL�2�=U�2� for the standard
choice of H . For our new definition of H , the relevant
coset is instead parametrized by
17Note that the point r � s � 0 is singular.
18We denote the parameter - of Ref. [32] by # here in order to

avoid confusion.
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B�3 � e�-̂0��3-̂3�=2ei�1-̂1�i�2-̂2e�-̂0��3-̂3�=2; (A8)

where now the matrix in the middle is unitary instead of
Hermitian. Correspondingly, we change the parametriza-
tion of the bosonic valence block, A of Eq. (A2), from

A � e�i-0�i�3-3�=2ei�1-1�i�2-2e�i-0�i�3-3�=2

� ei 1�i 2
cos�ei 1�i 2 sin�eiA

� sin�e�iA cos�e��i 1�i 2�

� �
; (A9)

in which in terms of the variables of Ref. [32]

 1 �  2 � -0;  1 �  2 � -3; � �
�������������������
-2

1 �-2
2

q
;

sinA �
-1

�
; cosA �

-2

�
; (A10)

to

A�3 � e�i-0�i�3-3�=2e�1-1��2-2e�i-0�i�3-3�=2: (A11)

In other words, for those generators in which we change
the fields from noncompact to compact in the ghost sector
(-̂1;2), we change the fields from compact to noncompact
in the quark sector (to be compared with the standard
choice -2 � 0 in Eq. (36)).

In this parametrization the measures for the matrices
w1;2 (parametrized by -0;3 and -̂0;3) and the matrices w
and w (parametrized by -1;2 and -̂1;2) of Ref. [32] factor-
ize. Following section (3.1.2) of Ref. [32], our change in
parametrization corresponds to an interchange of the var-
iables # and �, which leaves the measure (cf. Eq. (3.51) of
Ref. [32]) invariant. We thus conclude that if the partition
function for the two-flavor case is independent of the quark
mass (as we showed it to be for the one-flavor case above),
it is also independent of the quark mass for our new
parametrization, if we follow the prescription given above.
-16
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