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We systematically investigate general forms of mass matrices for three-generation up and down quarks,
including asymmetrical ones in generation space. Viable zero matrix elements are explored which are
compatible with the current observation of masses and mixing angles, and also with the recent
measurement of CP violation in the B-meson system. The simplest form with the maximal number of
vanishing matrix elements is found to be almost consistent with the experimental data, but has an
unsatisfactory point that one of the mixing angles is slightly large. At the next-to-minimal level, it is found
with help of leptonic generation mixing that only six patterns of mass matrices well describe the
experimental data. These sets of mass textures predict all the properties of quarks, including the CP
violation, as well as the large (charged) lepton mixing, which may be appropriate for the atmospheric
neutrino in the grand unification scheme.
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I. INTRODUCTION

It is certain that one of the most important issues con-
fronting the standard model is the generation structure of
quarks and leptons. Various neutrino oscillation experi-
ments have recently been bringing out the generation
structure of the leptonic sector. The Super-Kamiokande
experiment has established the neutrino oscillation in the
atmospheric neutrinos with nearly maximal mixture [1].
As for the solar neutrino problem, the Mikheyev-Smirnov-
Wolfenstein solution [2] is strongly suggested by the recent
experimental results [3] if there exists the neutrino flavor
mixing between the first and second generations [4]. On the
other hand, the other mixing (the 1-3 mixing) has been
found to be rather small [5] similarly to the quark sector.
While these experimental progresses have been giving us a
new perspective beyond the standard model, it seems that
we are far from a fundamental understanding of the origin
of fermion masses and mixing angles.

A promising approach to the issue of the generations is
to assume that some of the Yukawa matrix elements are
vanishing. An immediate and important consequence of
this approach is to reduce the number of free parameters in
the theory and to lead to relations among the fermion
masses and mixing angles. Moreover, that would provide
a clue to find symmetry principles or dynamical mecha-
nisms behind the Yukawa sectors, which are interpreted as
remnants of fundamental theory in the high-energy regime.
Most of the previous work along this direction, including
the systematic analysis by Ramond, Roberts, and Ross [6],
assumed that the matrices of Yukawa couplings are sym-
metric about the generation indices (Hermitian matrices).1

However, in the context of the standard model and even in
grand unified theory, it is not necessarily required that
studies and classifications of fermion mass ma-
ing have also been performed in other approaches
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Yukawa matrices are symmetric. In fact, the present ex-
perimental data indicate that the (large) leptonic mixing
mentioned above is quite different from the (small) quark
mixing. It is interesting that this asymmetrical observation
is known to be compatible with quark-lepton grand uni-
fication if the fermion mass matrices take asymmetrical
forms in generation space [8]. There are also some classes
of non-Hermitian ansatz for quark mass matrices [9],
which are consistent with the data and cannot be trans-
formed to the solutions obtained in Ref. [6]. It is therefore
worthwhile to do systematical examination and to com-
plete the classification of viable asymmetric forms of
fermion mass matrices.

In this paper, we investigate phenomenologically viable
mass matrices of up and down quarks, assuming that the
Yukawa couplings generally take asymmetric forms in
generation space. In particular, we look for as simple forms
as possible, that is, mass matrices with the maximal num-
ber of vanishing elements. Vanishing matrix elements are
expected to be deeply connected with underlying physics,
such as flavor symmetries, in more fundamental theory to
shed some light on constructing realistic models of quarks
and leptons. Note that our treatment is general and includes
symmetric mass matrices as limited cases.

This paper is organized as follows. In Sec. II, we de-
scribe the Yukawa sectors of up and down quarks in the
standard model and introduce the parametrization needed
in later discussion. Our analysis does not depend on any
details of the Higgs field profile, and therefore can be
straightforwardly applied to other cases such as grand
unified theory and supersymmetric models. Sections III
and IV are devoted to analyzing which forms of matrices
(vanishing matrix elements) are compatible with the cur-
rent experimental data. It is found that the minimal
(Sec. III) and next-to-minimal (Sec. IV) cases contain
only a few types of mass matrices phenomenologically
viable. We summarize our results in Sec. V.
-1  2005 The American Physical Society
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II. FORMULATION

In this section, we briefly review the formulation of the
up- and down-quark Yukawa sectors in the standard model.
The SU�3� � SU�2� �U�1� gauge-invariant Yukawa inter-
actions are given by

�LY � �Qi�Yu�ijuRjH� � �Qi�Yd�ijdRjH � H:c:; (2.1)

where Qi denote the SU�2� doublets of left-handed quarks,
and uR; dR are the right-handed up- and down-type quarks,
respectively. The Yukawa couplings Yu and Yd are 3 � 3
matrices (i; j, the generation indices), and H is the SU�2�
doublet Higgs field. After the electroweak symmetry
breaking, these Yukawa interactions lead to the following
quark mass terms:

�Lm � �uLi�Mu�ijuRj � �dLi�Md�ijdRj � H:c:;

�Mu�ij � �Yu�ijv; �Md�ij � �Yd�ijv;
(2.2)

where v is a vacuum expectation value of the neutral
component of the Higgs field H. If the model is super-
symmetrized, the Yukawa terms are described by super-
potential in terms of quark and Higgs superfields. The only
difference is that in the supersymmetric case two types of
Higgses must be introduced to have gauge-invariant
Yukawa terms. This procedure does not bring any modifi-
cation to the structure of Yukawa couplings Yu;d, and
therefore the following analysis is straightforwardly ex-
tended to supersymmetric models and also to other
scenarios.

The generation mixing is physically described by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix which con-
sists of two unitary matrices,

VCKM � Vy
uLVdL: (2.3)

These unitary matrices diagonalize the mass matrices Mu
and Md:

Mu � VuLM
D
u V

y
uR; Md � VdLM

D
d V

y
dR: (2.4)

The diagonal elements of MD
u and MD

d correspond to the
experimentally observed mass eigenvalues.

With phase degrees of freedom of the six quark fields,
the number of observable parameters in the CKM matrix is
reduced to four (the overall phase rotation is physically
irrelevant). However, it is important to distinguish the
contributions of VuL and VdL from a viewpoint of pursuing
clues to find more fundamental theory of quarks and lep-
tons such as grand unification and flavor symmetry. A
generic 3 � 3 unitary matrix U has 9 free parameters and
can be parametrized as
094024
U � 
O1

0O2O3


00: (2.5)

The matrices Oi (i � 1; 2; 3) represent the rotations in the
index space around the ith axis,

O1 �

1 0 0
0 cos�1 sin�1

0 � sin�1 cos�1

0
@

1
A;

O2 �

cos�2 0 sin�2

0 1 0
� sin�2 0 cos�2

0
@

1
A;

O3 �

cos�3 sin�3 0
� sin�3 cos�3 0

0 0 1

0
@

1
A:

(2.6)

The diagonal phase matrices 
’s are given by 
 �
diag:�ei�; ei’; 1�, 
0 � diag:�1; 1; ei!�, and 
00 �
diag:�eip; eiq; eir�. There generally exist three rotation an-
gles and six complex phases. When applied to the above
quark mixing matrices VuL and VdL, the phase factors in

00 are always unphysical degrees of freedom since they
can be absorbed by field redefinitions of the quark mass
eigenstates. It will also be found that phase matrices 
0’s
do not appear throughout this work (except for only a few
examples discussed at the beginning of Sec. IV) because
we will consider 3 � 3 matrices with nonvanishing deter-
minants and at most five independent elements. In this
case, a matrix M is always expressed such that M �
JMrJ

0 where J and J0 are the diagonal phase matrices
and Mr contains only real parameters. Thus the matrices
MMy and MyM are diagonalized by real orthogonal ma-
trices, up to overall phase rotations corresponding to 
 or

00 in (2.5). On the other hand, the phase factors in 
 of the
up and down sectors generally contribute to the CKM
matrix elements. Thus the CKM mixing matrix is found
to be written as

VCKM � OT
uPOd; P � 
�

u
d; Oi � O1iO2iO3i;

(2.7)

where the subscripts i � u; d label the up- and down-type
quarks, respectively. As mentioned above, two complex
phases in P play an important role for reproducing
CP-violating quantities since their changes generically
affect the CKM matrix elements. The numerical results
of such phase factors will be discussed in later sections.

The experimentally observable quantities in the quark
Yukawa sector are 3 mixing angles with 1 complex phase
in the CKM matrix and 6 mass eigenvalues. The measured
values of the CKM matrix elements are [10]
jVCKMj �

�����������
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0
@

1
A
������������

0:9739–0:9751 0:221–0:227 0:0029–0:0045
0:221–0:227 0:9730–0:9744 0:039–0:044
0:0048–0:014 0:037–0:043 0:9990–0:9992

0
@

1
A: (2.8)
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The various experimental observations of CP-violating
phenomena yield the CP violation in the standard model,
which is translated to [10]

JCP � �2:88 � 0:33� � 10�5; (2.9)

where JCP denotes the reparametrization-invariant mea-
sure of CP violation [11]. This value corresponds to the
Kobayashi-Maskawa (KM) phase in the standard parame-
trization as &KM � 60� � 14�. Moreover the recent results
of studying the decay of the B mesons to charmoniums
indicate [12]

sin2�1=' � 0:726 � 0:037; (2.10)

where �1  ' is one of the angles of the unitary triangle
for the B-meson system, which is defined as �1 � ' 
arg�V�

cdVcb=V�
tdVtb�. This is the angle that is most precisely

known at present and is expected to provide the most
stringent constraint. The current-quark masses at the
Z-boson mass scale are evaluated [13] including various
effects such as the QCD strong coupling factors and we
obtain

mu � 0:000975–0:00260; md � 0:00260–0:00520;

mc � 0:598–0:702; ms � 0:0520–0:0845;

mt � 170–180; mb � 2:83–3:04; (2.11)

in GeV units. The most recent results of the Tevatron CDF
and D0 experiments indicate the top-quark mass which is a
bit larger than that quoted above [14]. However, if taken
into account, the analysis of mass matrix forms presented
in this paper is not significantly changed, since the most
influential ingredients are practically the masses of lighter
generations. In the following analysis, we use these experi-
mental data as input parameters and explore possible forms
of quark mass matrices.
III. THE MINIMAL ASYMMETRIC MATRICES

We would like to systematically search for the mass
matrices of up and down quarks which are consistent
with the current experimental data. Our analysis is based
on possible zero elements in the mass matrices. Namely,
the aim of this paper is to investigate how a small number
of nonvanishing matrix elements can account for the ex-
isting data. Here the number of zeros means independently
vanishing elements in a mass matrix. In particular, for a
symmetric matrix, ‘‘1 zero’’ implies that a diagonal ele-
ment or a pair of off-diagonal elements in symmetric
positions takes a negligibly small value.

Let us first consider the mass matrix of up-type quarks.
In the present work we assume that the up-quark mass
094024
matrix Mu is symmetric. This assumption is motivated by
grand unified theory, where the left- and right-handed up
quarks in one generation often belong to the same multiplet
of unified gauge symmetry, like SU�5� and larger. In this
case one obtains the identical mixing matrix for left- and
right-handed up quarks; VuL � VuR  Vu.

It is first noticed that three independent, nonvanishing
matrix elements are needed to reproduce the observed mass
eigenvalues of the three-generation quarks. Moreover a
determinant of the mass matrix must be nonzero. The
minimal forms of matrices which satisfy these criterions
are found to coexist with at most three zeros, and the
independent matrices are given by the following three
types:
(i) M
-3
u1

Mu �

a
b

c

0
@

1
A; (3.1)
(ii) M
u2

Mu �

a
b

b c

0
@

1
A; (3.2)
(iii) M
u3

Mu �

a
a b

b c

0
@

1
A: (3.3)
The matrix elements a, b, c are nonzero and the blanks
denote vanishing entries. All other forms of matrices con-
sistent with the criterions can be obtained by relabeling the
generation indices. For example, by exchanging the first
and second generations (both for the left- and right-handed
fermions), the matrix Mu2 is converted to the form dis-
cussed in [15],

Mu �

b
a

b c

0
@

1
A:

It should be noted that we do not assume any hierarchical
orders among the nonvanishing elements. Therefore the
analysis of the above three types of matrices (Mu1, Mu2,
and Mu3) includes the whole possibility of a symmetric
matrix with three zeros. The matrix Mu is diagonalized as

Mu � Vu

mu

�mc

mt

0
@

1
AVy

u : (3.4)

The negative sign in front of mc is just a convention
introduced in order that the mass eigenvalues and the
parameter c are real and positive. With a suitable phase
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redefinition of the up-type quarks, we take the nonvanish-
ing matrix elements to be real parameters without loss of
generality. These values can be fixed by the three mass
eigenvalues from the following three equations:

trMu � mu �mc �mt; (3.5)

trM2
u � m2

u �m2
c �m2

t ; (3.6)

detMu � �mumcmt: (3.7)

Thus a unitary matrix Vu which diagonalizes a three-zero
symmetric Mu is described in terms of the up-quark mass
eigenvalues.

For the down sector, the mass matrix is not necessarily
symmetric. The minimal criterion for a realistic mass
matrix is the same as for symmetric matrices; three inde-
pendent, nonvanishing matrix elements, and a nonvanish-
ing determinant. To satisfy these requirements, we have at
most six zero elements. A matrix with six zeros has only
three parameters which correspond to three mass eigenval-
ues. Such a matrix gives no mixing angle or exchanging
generation indices. However since any type of up-quark
mass matrices with three zeros cannot be diagonalized with
the observed CKM matrix, a matrix with asymmetric six
zeros is not suitable for the down sector. We thus find that
the most economical candidates for a realistic mass matrix
of down-type quarks have five zeros. They can generically
describe three eigenvalues and one mixing angle. It is
found that there are 36 types of mass matrices with five
zeros and nonvanishing determinants. At this stage, since
we are not requiring any hierarchy among matrix elements
as in the case of up-quark mass matrices, these 36 ( �
6 � 6) patterns are related to each other through the per-
mutations of three rows and/or three columns. Namely, one
can obtain all the patterns by exchanging the generation
labels from a single matrix, e.g.,

Md �

d
e
g f

0
@

1
A: (3.8)

The matrix elements d; . . . ; g are made real-valued by
phase redefinitions of quark fields. In our convention, a
permutation of columns corresponds to a rotation of gen-
eration indices of the right-handed quarks, and does not
change the mass spectrum and the CKM matrix elements.
On the other hand, the exchanges of rows, i.e. relabeling
three left-handed down quarks, do affect the observable
mixing angles. This is because we have already used the
label exchange degrees of freedom to reduce the number of
matrix patterns for the up-type quarks. Therefore all pos-
sible permutations of rows must be taken into account in
the down sector to explore the whole combinations of up-
and down-quark mass matrices. We thus consider the
094024
following 6 types of mass matrices as the minimal candi-
dates with five zeros:
(i) M
-4
d1

Md �

d
e
g f

0
@

1
A; (3.9)
(ii) M
d2

Md �

d
e g

f

0
@

1
A; (3.10)
(iii) M
d3

Md �

d
g e

f

0
@

1
A; (3.11)
(iv) M
d4

Md �

d g
e

f

0
@

1
A; (3.12)
(v) M
d5

Md �

d
e

g f

0
@

1
A; (3.13)
(vi) M
d6

Md �

d g
e

f

0
@

1
A: (3.14)
As expected, these 6 patterns are transformed into each
other by changing the generation indices of the left-handed
quarks, up to permutations of the right-handed ones.

Given the possible forms of mass matrices, Mu1–Mu3
and Md1–Md6, we analyze which combinations of mass
matrices explain the observed masses and mixing angles. It
is easily found that the matrices Mu1 and Mu2 cannot fit
the data. This is because they have zero or one finite mixing
in the up sector and all the candidates of Md can induce
only one-generation mixing, that necessarily results in the
CKM matrix with more than one vanishing entry. The only
remaining possibility is the matrix Mu3 for the up sector.
The matrix which diagonalizes Mu3 is approximately
written by the mass eigenvalues
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jOuj �

1
�����
mu
mc

q
mc
mt

�����
mu
mt

q
�����
mu
mc

q
1

�����
mc
mt

q
�����
mu
mt

q �����
mc
mt

q
1

0
BBBB@

1
CCCCA: (3.15)

This shows that the 1-2 mixing angle from the up sector is
roughly given by

���������������
mu=mc

p
� 0:037–0:066. Therefore in

order to generate the observed Cabibbo angle, a 1-2 mixing
angle from the down sector is required to be of order
O�10�1�, which selects out Md3 or Md4 for an appropriate
matrix for the down quarks. The matrices Md3 and Md4
are diagonalized by rotations of the first and second gen-
erations and do not affect the third column of VCKM.
Consequently the combinations (Mu3, Md3) and (Mu3,
Md4) predict the CKM angles involving the third genera-
tion,

jVubj ’

�������
mu

mt

s
� 0:00233–0:00391; (3.16)

jVtdj ’

�
jVusj �

�������
mu

mc

s  ������
mc

mt

s
� 0:00894–0:0122; (3.17)

jVcbj ’ jVtsj ’

������
mc

mt

s
� 0:0576–0:0643: (3.18)

It is found that the first two predictions well agree with the
experimental values (2.8) but the mixing between the
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second and third generations is slightly larger than the
observation.

We have found in this section that the simplest and
realistic forms of quark mass matrices can accommodate
symmetric three zeros and asymmetric five zeros in the up
and down sectors, respectively. Their explicit forms are
highly constrained by the experimental values of mass
eigenvalues and mixing angles, and there exists only two
possibilities which are given by

Mu �

a
a b

b c

0
@

1
A; Md �

d g
e

f

0
@

1
A; (3.19)

and

Mu �

a
a b

b c

0
@

1
A; Md �

d
g e

f

0
@

1
A: (3.20)

It is clear that a simultaneous exchange of the identical
generation indices for uL, uR, and dL completely preserves
the physical consequences. Moreover, as noted in the
classification, any permutation of the right-handed down
quarks (i.e. of the columns of Md) is also allowed phenom-
enologically. Noticing this fact, one can see, for instance,
that the matrix Md in (3.20) reconciles the Georgi-Jarlskog
ansatz [16], up to unphysical field rotations, and could
easily be extended to include the charged-lepton mass
matrix. A numerical evaluation for the combination
(3.19) presents us an example,
Mu �
0 0:000221�,5:56� 0

0:000221�,5:56� 0 0:0578�,1:88�

0 0:0578�,1:88� 0:997�,0:00�

0
B@

1
CAmt; (3.21)

Md �
0:00156�,4:27� 0:00518�,3:48� 0

0 �0:0285�,2:35� 0
0 0 1:00�,0:00�

0
B@

1
CAmb; (3.22)
where the couplings are chosen so that we can fit as
many observables as possible to the experimental data. A
nontrivial phase factor is also required, e.g. P �
diag:�e�0:7-i; 1; 1�, in order to reproduce the observed
value of CP violation (2.9). In this case, however, we
find that alternative indication of CP violation (2.10) can-
not be reproduced. The unitary triangle for the B-meson
system is distorted due to a large value of jVcbj, while
the area of the triangle is correct. A similar result is
obtained for the combination (3.20) since physical conse-
quences are now determined modulo right-handed
mixing of down quarks. In the above example, we have
alternatively written down in the parentheses the exponents
of a small parameter , ( � 0:22) for nonvanishing ele-
ments in Mu and Md. Such expressions in terms of an
expansion parameter would be suitable to gain an insight
into the fermion masses problem in view of flavor
symmetries.

Though there is one unsatisfied point for the above
two combinations of mass matrices, i.e. a slightly large
value of the 2-3 CKM mixing angle (jVcbj ’

��������������
mc=mt

p
), one

can easily find some remedies. The discrepancy may be
removed with radiative corrections, for instance, the
renormalization-group effects between the electroweak
and high-energy scales. A probable source of such effects
is a flexibility of the top-quark Yukawa coupling in the
high-energy regime due to its fixed-point behavior in the
infrared. To see how the renormalization-group evolution
makes the situation better, let us first define the following
ratio:
-5
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� 

��������������
mc=mt

p
jVcbj

: (3.23)

The problem with the mass matrices (3.19) and (3.20) is
that their prediction �pre ’ 1 is not consistent with the
experimental results �exp > 1:31 at the electroweak scale.
Within a good approximation that the third-generation
Yukawa couplings are dominant, the evolution of the
mass ratio mc=mt and the mixing angle Vcb is governed
by the equations

d ln�mc
mt
�

dt
�

�1

16-2 �/�Yu33�
2 � 0�Yd33�

2�; (3.24)

d lnjVcbj

dt
�

�0

16-2 ��Yu33�
2 � �Yd33�

2�; (3.25)

where t � ln1 denotes the renormalization scale. The
direct contribution from gauge couplings is generally ir-
relevant to the running of mass ratios and mixing angles.
The coefficients / and 0 are model-dependent constants,
for example, / � 3=2 and 0 � �3=2 in the standard
model, and / � 3 and 0 � 1 in supersymmetric standard
models (though the Yd33 effect is negligible in the standard
model). Thus we obtain

d ln�

dt
�

1

32-2 ��20� /��Yu33�
2 � 0�Yd33�

2�: (3.26)

It is noted that the coefficient in front of �Yu33�
2 is negative

in usual Higgs doublet models. This negative sign suggests
that the ratio � in the high-energy regime is reduced from
the value observed at the electroweak scale. Therefore the
renormalization-group evolution in fact ameliorates the
problem with the mass textures (3.19) and (3.20). It is
also noticed that, since the second term on the right-handed
side of (3.26) is positive for supersymmetric cases, a
smaller value of Yd33 is preferred to cure the mismatch
between �pre and �exp. In the case that only the top
Yukawa coupling is dominant, we obtain by integrating
(3.26) over the range between 1 � 1 TeV and the unifi-
cation scale #,

��#�

��1�
�

�
Yu33�#�

Yu33�1�


��1�=12

�
g1�#�

g1�1�


��13�=1188

�
g2�#�

g2�1�


��1�=4

�

�
g3�#�

g3�1�


4=27

’ 0:91
�
Yu33�#�

Yu33�1�


��1�=12

(3.27)

for the minimal supersymmetric standard model. In the
second equation, we have roughly assumed that the three
gauge couplings of the standard gauge groups g1;2;3 are
unified at # in the one-loop order estimation. The situation
is more improved for the standard model because of a
larger negative value of the coefficient 20� / and the
negligible positive contribution from the bottom Yukawa
coupling, and one typically obtains
094024
��#�

��1�
� 0:59

�
Yu33�#�

Yu33�1�


��1�=2

(3.28)

at a high-energy scale # � 1014 GeV. It is clearly seen that
jVcbj and

��������������
mc=mt

p
at the high-energy regime become

closer than around the electroweak scale, and the texture
ansatz (3.19) and (3.20) would work better in high-energy
theory such as grand unified models.

On the other hand, a more direct resolution to the prob-
lem �pre � �exp is to incorporate additional nonvanishing
elements into the Yukawa matrices. This is the option we
will explore in the next section.

IV. THE NEXT-TO-MINIMAL ASYMMETRIC
MATRICES

The previous analysis has shown that, at classical level,
any combination of symmetric three-zeros Mu and asym-
metric five-zeros Md are too simplified to be totally con-
sistent with the observed data. In this section we
investigate a possibility to relax the constraints on matrix
forms and to introduce one more nonvanishing matrix
element.

The first case to consider is to work with symmetric two
zeros in the mass matrices of up quarks. An interesting
observation is that, when the 2-2 element in Mu is turned
on, the five-zeros matrices Md in (3.19) and (3.20) may
completely explain the data. This is because the mixing
angle Vcb could be controlled by a free parameter in Mu,
irrespectively of the charm quark mass, which resolves the
difficulty discussed in the previous section. The zero struc-
tures of such mass matrices are ruled out at the 32 level by
the current experimental data if nonvanishing elements are
symmetric and hierarchical valued [17]. Such a special
case is obtained from our general form by exchanging
the first two indices of right-handed down quarks in
(3.20) and identifying the 1-2 and 2-1 matrix elements.
Up to relabeling generation indices, there are 4 types of
mass textures with symmetric two zeros. Exploring all
possible patterns for Mu (with symmetric two zeros) and
Md (with asymmetric five zeros), we find that the following
mass matrices are successful to explain the experimental
data:
Mu
-6
Md
a
a d b

b c

0
@

1
A
 e h

f
g

0
@

1
A

e
0 1
a
b d

a d c

0
@

1
A
 h f

g

@ A

All 4 � 2 � 2 combinations of Mu and Md well describe the
present experimental data. It should be noted that there are
additional solutions with relabeling the generation indices,
while physical implications are unchanged. First, any permu-
tation of dR (i.e. of the columns of Md) is phenomenologi-
cally allowed. In addition, simultaneously exchanges of the
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identical generation indices for uL, uR, and dL completely
preserve the physical consequences and also become the
solutions. The above sets of mass matrices are consistent
with all the properties of quarks, including the recent mea-
surements of CP violation in the B-meson system (2.10).

The other case we will pursue in the following is to
extend the down-type mass matrix Md to contain (asym-
metric) four zeros. It is found that there are 81 types of
matrices with nonzero determinants, which are related
through the permutations of rows and/or columns. All
possible forms can be generated from the following four
representatives of mass matrices:

d h
e g

f

0
@

1
A; d

e
h g f

0
@

1
A; e

d h
g f

0
@

1
A;

d h
e

g f

0
@

1
A:

(4.1)

It is first noticed that the last matrix generates only one
mixing angle and does not cure the problem in the previous
section, where one of the CKM mixing angles is not
entirely consistent with the experimental data. Therefore
we can safely drop this matrix (and the other 8 generated
by changing the labels) in the analysis below. For the
former two mass matrices in (4.1), a permutation of the
first two columns produces the same modification as that
obtained by permuting the first two rows, since any hier-
archical order among the matrix elements is not supposed
at this stage. This fact reduces by half the number of
independent forms of matrices generated by exchanging
the generation labels from the first two representatives in
(4.1). The total number of independent mass matrices we
will consider is 72 ( � 18 � 18 � 36).

As in the analysis of Sec. III, if one does not add up the
rotations of the right-handed down-type quarks (the col-
umns of matrices), only the following 12 types of matrices
should be taken into account:

d h
e g

f

0
@

1
A; d h

e
g f

0
@

1
A; d

h e
g f

0
@

1
A;

d

e

h g f

0
BB@

1
CCA;

d

g e h

f

0
BB@

1
CCA;

d h g

e

f

0
BB@

1
CCA;

e

d h

g f

0
BB@

1
CCA;

d h

e

g f

0
BB@

1
CCA;

d

h e

g f

0
BB@

1
CCA;

d h

g e

f

0
BB@

1
CCA;

d h

e g

f

0
BB@

1
CCA;

d h

e

g f

0
BB@

1
CCA:

(4.2)
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Since we now drop the degrees of freedom of the right-
handed down rotations, physical consequences can be read
from the symmetric matrix MdM

y
d , which has 6 indepen-

dent elements. For the above 12 types, a Hermitian matrix
MdM

y
d contains 5 free parameters and necessarily leads to

one vanishing element or one relation among nonvanishing
elements. Thus an asymmetric four-zeros matrix gives
similar results to that of a symmetric one-zero matrix, as
far as mass eigenvalues and left-handed down mixing are
concerned. It is noticed that there is a difference between
MdM

y
d and symmetric mass matrices discussed in [6] that

none of the diagonal elements of MdM
y
d can be zero for

matrices with nonvanishing determinants. It was found in
the analysis of Ref. [6] that symmetric two-zeros mass
matrices for the down sector are consistent with the ex-
perimental data. Given these facts, the above asymmetric
four-zeros mass matrices are expected to account for the
proper mass eigenvalues and mixing, because they corre-
spond to symmetric one-zero matrices which have one
more free parameter. The number of combinations which
can explain the data is hence rather large, and the explo-
ration along this line unfortunately does not seem to pro-
vide a new perspective for the origin of fermion masses and
mixing angles.

Let us proceed by taking into account the roles played by
the mixing of right-handed down quarks. In the standard
model, the mixing of right-handed [SU�2�-singlet] fermi-
ons is irrelevant to the CKM mixing and unphysical (un-
observable) degrees of freedom. This is not necessarily true
in various extensions of the standard model. For example,
in supersymmetric extensions of the standard model, the
right-handed mixing of fermions which diagonalizes a
Yukawa matrix is transferred to that of corresponding
scalars via supersymmetry-breaking scalar masses. Thus
the masses of scalar superpartners generally have genera-
tion dependences and cause observable effects, such as
flavor-changing decays of heavy fermions. A more inter-
esting situation arises in the frameworks of grand unifica-
tion. In this case, quarks and leptons are unified into some
multiplets of a unified gauge group and the mass matrices
of quarks are often closely related to those of leptons. This
fact may give rise to an apparent difficulty in simulta-
neously realizing the small CKM mixing and the observed
large lepton mixing, which is described by the Maki-
Nakagawa-Sakata (MNS) matrix VMNS [18]. The parallel-
ism between quarks and leptons, which is a sign of grand
unification, does not seem to work in the Yukawa sector.
There is however an interesting observation that the mixing
angles of left-handed charged leptons are correlated to
those of right-handed down quarks and therefore the
CKM mixing does not necessarily connect with the MNS
mixing. This idea is easily achieved in SU�5� grand uni-
fication and larger unified theories [8], where a key ingre-
dient is that an anti 5-plet of SU�5� contains a one-
generation right-handed down quark and left-handed lep-
-7



2The mixture (4.5) would be excluded by the neutrino oscil-
lation experiments as it would generate too large a value of the 1-
3 lepton mixing angle, if the atmospheric neutrino angle comes
from the neutrino sector. While included in the analysis, as we
will show, the mixing pattern (4.5) is already disfavored by the
quark data alone.
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ton doublet, and also there are some multiplicities of anti 5-
plets, which are naturally incorporated in SO�10� or E6

unified models. This mechanism automatically makes Md
asymmetric since it changes the property of anti 5-plets
only, while keeping that of 10-plets.

In this way the mixing of right-handed fermions is not
necessarily an unobservable quantity. In the following
analysis, motivated by the grand unification view men-
tioned above, we investigate possible connections between
VdR and the leptonic mixing matrix which diagonalizes the
mass matrix of three-generation charged leptons. In par-
ticular, we examine which combinations of mass matrices
for the up and down sectors suggest large leptonic mixing,
recently observed in various neutrino experiments. Since
the flavor rotation of right-handed down quarks is now
supposed to change physical consequences, it is not used
to reduce the number of candidates for four-zeros matrices
as done in the above. We will therefore exhaust all of the
most generic 72 candidates for realistic down-quark mass
matrices with four vanishing entries.

Assuming that the neutrino oscillations account for the
solar and atmospheric neutrino data, the recent experimen-
tal results indicate rather large angles for the 1-2 and 2-3
generation mixing in the MNS matrix, but a small one for
the 1-3 mixing angle �VMNS�13 < 0:14–0:22 [5]. As for the
two large mixing angles, the best fit value for the atmos-
pheric neutrino data is the maximal mixing (� ’ -=4), and
on the other hand, the solar neutrino deficit needs a large
but nonmaximal value of the 1-2 mixing angle [4]. In the
following analysis, we first consider, just as a first approxi-
mation, the maximal angles both for the 1-2 and 2-3
mixing, and then examine possible deviations from these
maximal angles. The lepton mixing matrix is defined as

VMNS � Vy
eLV6; (4.3)

where VeL rotates the three-generation charged leptons
such that the mass matrix of charged leptons is diagonal-
ized, and V6 denotes some mixing matrix in the neutrino
sector. Its form crucially depends on the neutrino property
and we leave it, together with detailed analysis of neutrino
mass texture zeros, to another future task [19]. It should be
noted that this does not mean that we take V6 � 1 in the
following analysis. In fact, our result will show that con-
siderable contribution to lepton mixing needs to come from
neutrino mass matrices, which could be realized in a huge
variety of neutrino models.

As we mentioned, if embedding the theory into the grand
unification scheme, the mixing of charged leptons VeL may
be related to that of right-handed down quarks as VeL ’
VdR, up to corrections due to the breaking of unified gauge
symmetry. To precisely reproduce the mass eigenvalues of
charged leptons, it is in fact needed to take in some break-
ing effects which split the properties of quarks and leptons.
Typical examples of such splitting are provided by the
Georgi-Jarlskog factor [16] and higher-dimensional opera-
094024
tors involving Higgs fields that break quark-lepton sym-
metry. We assume, just for simplicity, that such breaking
effects are small enough not to significantly change the
analysis below. We are thus interested in the following
typical forms of mixing matrices for the down sector,
which are associated with large generation mixing of
left-handed charged leptons2:

VdR �

1 0 0
0 1=

���
2

p
�1=

���
2

p

0 1=
���
2

p
1=

���
2

p

0
@

1
A; (4.4)

VdR �
1=

���
2

p
�1=

���
2

p
0

1=
���
2

p
1=

���
2

p
0

0 0 1

0
B@

1
CA; (4.5)

VdR �
1=

���
2

p
�1=2 1=2

1=
���
2

p
1=2 �1=2

0 1=
���
2

p
1=

���
2

p

0
B@

1
CA: (4.6)

A general procedure for examining viable forms of VdR
is as follows. At first, evaluate the matrix

My
dMd � VdR

m2
d

m2
s

m2
b

0
B@

1
CAVy

dR; (4.7)

where the matrix VdR is parametrized as given in Sec. II.
We consider in this section the matrices Md with asym-
metric four zeros. Namely, they contain five free parame-
ters, and a matrix of the form MyM has six independent
elements. Equation (4.7) therefore imposes one constraint
which can be used to eliminate a mixing angle of the right-
handed down quarks. As noted above, one or two addi-
tional constraints are obtained to reduce the number of
independent (mixing) parameters, when one explores the
solutions of VdR with large mixing. For example, we can fix
�VdR�32 � 1=

���
2

p
in the case of (4.4). Once the matrix

elements in Md are solved with respect to the remaining
independent parameters, the mixing matrix for left-handed
down quarks is expressed as

VdL � MdVdR

m�1
d

m�1
s

m�1
b

0
B@

1
CA: (4.8)

Such left-handed down mixing is used to examine which
forms of mass matrices produce the observed values of the
CKM matrix elements.
-8
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Numerically exhausting all the possible forms of mass
matrices, we find that the down-quark mass matrices with
asymmetric four zeros are unfavorable to a sizable value of
mixing angle between the first and second generations of
right-handed down quarks. This fact is easily understood in
the case that there is large mixing only between the first
two generations. Such a mixing matrix is given by

VdR �

cos� � sin� 0
sin� cos� 0

0 0 1

0
@

1
A (4.9)

at the leading order of other small mixing angles. The case
where �� -=4 corresponds to Eq. (4.5) and could provide
a solution to the solar neutrino problem in grand unification
schemes. To explain the quark mixing angles for the up-
quark matrices Mu1, Mu2, and Mu3, the left-handed mix-
ing in the down sector needs to satisfy

VdL ’
1 O�7� O�73�

O�7� 1 O�72�

O�73� O�72� 1

0
B@

1
CA; (4.10)

where 7 is a small parameter of order 10�1. It is found from
the analysis in the previous section that the marginal
requirements are sizable contributions from the down sec-
tor to Vus and Vcb (and not necessarily to Vub). This is
translated to lower bounds on the left-handed mixing of
down quarks, for example, j�VdL�12j> 0:16 and
j�VdL�23j> 0:012. When there is a solution for the
above-described procedure, the corresponding down-quark
mass matrix is given by

Md ’

1 O�7� O�73�

O�7� 1 O�72�

O�73� O�72� 1

0
BB@

1
CCA

md

ms

mb

0
BB@

1
CCA

�

cos� sin� 0

� sin� cos� 0

0 0 1

0
BB@

1
CCA: (4.11)

It is clearly seen that four zeros in Md cannot be realized
since the matrix elements in the second and third rows are
always nonvanishing for any precise values of VdL (4.10)
satisfying the lower bounds mentioned in the above. The
situation might be improved by turning on fluctuations
around the exact form of VdR (4.9). In this case, one is in
fact able to take either �Md�31 or �Md�32 as zero, if addi-
tional O�74� mixing in VdR is introduced. However not all
of the elements in the first row become zero; in particular,
either �Md�11 or �Md�12 can be set to zero. We thus find that
the down-quark mass matrices with asymmetric four zeros
generically conflict with large 1-2 mixing in the right-
handed down sector.

It turns out that solutions with two large mixings like
(4.6) are also absent. In the limit of bi-maximal mixing of
dR, the down-quark mass matrix becomes
094024
Md ’

1 O�7� O�73�

O�7� 1 O�72�
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0
BBBB@

1
CCCCA: (4.12)

The situation is rather different from the case of (4.11); for
instance, it is now possible to have vanishing matrix ele-
ments in the second row in (4.12) due to the presence of the
third-generation large mixing. Note that the third-row ele-
ments are necessarily nonvanishing, even if one introduces
sizable deviations from the maximal or zero mixing angles
in VdR, i.e. �dR1;3 � -=4 and/or �dR2 � 0. Accordingly it is
enough to consider physical consequences of the matrices
Md with four zeros placed in the first and second rows (and
the other components are nonzero) [20]. If one adopts the
up-quark mass matrices Mu1–Mu3, the mixing angles
from the down sector have some lower bounds; in particu-
lar, j�VdL�12j> 0:16 is needed. It is numerically evaluated
that the condition j�VdL�12j> 0:16 constrains the other
mixing angles as j�VdR�21j< 0:40 (0.44) for j�VdR�32j �
0:7 (0.61). This value is translated, in the limit of negligible
1-3 mixing, to the upper bound of the 1-2 mixing angle
�3 < 26:1�, which is excluded at more than a 32 level by
the recent results of neutrino experiments, if generation
mixing in the neutrino sector is found to be small. We thus
find that any four-zero mass matrix in the down sector is
not compatible with bi-large generation mixing of right-
handed down quarks.

Finally let us consider the case that the right-handed
down mixing between the second and third generations is
large and the others are suppressed [Eq. (4.4)]. This im-
plies, if adopting the grand unification, the amount of
mixture of the atmospheric neutrinos. Following the gen-
eral procedure described before, we have exhausted the
possible patterns and found that, at classical level, the
following mass matrices satisfy the criterion for (charged)
lepton mixing, while the quark masses and the CKM
matrix elements (including the KM phase) are properly
reproduced:
Mu
-9
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All 6 � 2 � 3 combinations of Mu and Md are consistent
with the present experimental data. Note that one type of
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mass texture for Md [the second one in (4.2)] almost describes
the data we have listed in Sec. II. It is however found that the
whole parameter space of that texture is excluded by the
measured value of CP violation in the K-meson system (the
7K constraint). All the other combinations of mass textures
are not compatible with the experimentally allowed parame-
ter region for the atmospheric neutrino problem at more than
a 62 level, unless there is sizable contribution to mixing
angles from the neutrino sector. The examples of numerical
fits for these matrix elements are shown in the Appendix. It
should be noted that there are additional solutions with
relabeling the generation indices, while physical implications
are unchanged. The combinations obtained by exchanging the
second and third columns of Md are viable. This is simply
because we now consider the situation that the second and
third generations of dR are largely mixed. In addition, simul-
taneous exchanges of the identical generation indices for uL
(and uR for symmetric textures) and dL completely preserve
the physical consequences and also become the solutions. No
other exchanging symmetry exists. The above sets of mass
matrices are consistent with all the properties of quarks,
including the recent measurements of CP violation in the
B-meson system, as well as large lepton mixing for the
atmospheric neutrino problem. More conservatively, they
provide sizable contribution to leptonic 2-3 mixing, while
satisfying the experimental results of quark masses and the
CKM matrix elements. It is interesting to see that, in the down
sector, the numerical exploration of parameter space shows
that a correlation f ’ g should hold for all the above solu-
tions. The above list of textures contains the Fritzsch ansatz
[21], but Mu is symmetric while Md is not [22], leading to
large generation mixing in VdR. As mentioned in the begin-
ning of this section, such an asymmetric form of mass matrix
often plays a key role for neutrino physics in grand unified
theory [8]. We have shown that the above three forms of Md

are the minimal extensions of the ansatz f� g to include the
first generation. The obtained matrices are successful to
explain the observed quark masses and mixing angles and
have the maximal number of vanishing elements.
V. SUMMARY AND DISCUSSIONS

The study of the origin of fermion masses and mixing
angles is one of the most important unresolved issues in
particle physics. As a plausible approach to this issue,
possible zero elements in mass matrices have been exten-
sively examined and the obtained results have suggested
useful guides for realistic model construction. In this paper
we have systematically investigated what types of quark
mass matrices with nonsymmetrical forms can be consis-
tent with the experimentally obtained CKM matrix and
mass eigenvalues. Our first principle is that a mass matrix
has as simple form as possible, namely, to search for the
minimal number of free parameters in the mass matrices.
This leads us to consider some of the mass matrix elements
to be vanishing. The existence and structures of zero matrix
094024
elements are expected to be deeply connected with under-
lying physics, such as flavor symmetries, in more funda-
mental theory of quarks and leptons. We have first
examined experimentally viable mass matrices in the
case where the up-quark sector has symmetric three zeros
and the down-quark sector asymmetric five zeros. This is
the simplest possibility that apparently does not conflict
with the experimental data, and can almost explain the
observed quark masses and mixing angles. The situation
is rather different from the case where the down-quark
mass matrix contains at most four vanishing elements.
We then find that there exist various forms of mass matri-
ces consistent with the existing experimental data, and it
seems difficult to find some clues to understanding the
generation structure. Additional information comes from
the recent observation of neutrino generation mixing. If
working with the grand unification hypothesis, the mixing
of SU�2�-doublet leptons is correlated to that of
SU�2�-singlet down-type quarks. To investigate the impli-
cations of large mixing angles in the lepton sector, we have
searched viable solutions which induce large right-handed
mixing in the down sector, and found that there only exist
six patterns of mass matrices with a large mixture between
the second and third generation of right-handed down
quarks. Furthermore it turns out in our framework that
the large angle solution for the solar neutrino problem
cannot be realized from the charged-lepton sector with
asymmetric four-zeros Md (Me).

The observed large amount of mixing angle of solar
neutrinos then should come from the neutrino sector. If
the minimality principle is applied to neutrino mass matri-
ces, the simplest matrix forms (i.e. with the maximal
number of zero matrix elements) could be found out.
However the neutrinos have rich phenomenology and their
property has not been fixed experimentally. In particular,
there still exist wide possibilities for the neutrino mass
spectrum, a fact which generally makes the thorough
analysis of neutrino mass textures laborious. We here
briefly discuss several results for possible forms of neutrino
mass matrices which lead to the large lepton mixing be-
tween the first and second generations and have the
maximal number of allowed zero matrix elements. First,
consider the effective neutrino mass operator 9ij

�LiLjH�H
where Li denote the three-family lepton doublets. The
coefficient matrix 9ij is symmetric in the generation space.
This higher-dimensional operator induces the Majorana
neutrino mass matrix ML � 9hH�Hi after the electroweak
gauge symmetry breaking. We find two types of the sim-
plest forms of ML which have symmetric four zeros and are
given by

ML �

l
l n

0
@

1
A or

n l
l

0
@

1
A: (5.1)

It is interesting to note that this form of neutrino mass
-10
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matrix predicts the spectrum with the inverted mass hier-
archy and an exactly massless neutrino for the third gen-
eration. Moreover, taking into account the observed
neutrino mass differences, such ML leads to an almost
maximal mixing angle between the first two generations.
As a result, it can be matched with only four of six
combinations of quark mass matrices found in the previous
section. If the minimality analysis is extended to the next-
to-minimal level, i.e. ML with symmetric three zeros, we
find 13 patterns are allowed, each of which predicts a
characteristic mass spectrum of light Majorana neutrinos.
Another well-known scheme for light neutrinos is to con-
sider a (3 � 3) Dirac neutrino mass matrix M6 and a right-
handed Majorana one, MR. Also in this case, the analysis is
quite different from the quark sector, mainly because one
neutrino can be massless. We find from the exhaustive
exploration that the maximal number of vanishing matrix
elements is ten which consists of asymmetric seven (six)
zeros in M6 and symmetric three (four) zeros in MR. There
are four patterns of the seven-zeros M6 cases, which con-
tain as an example

M6 �

s
t

0
@

1
A; MR �

u
u v

v w

0
@

1
A; (5.2)

and six patterns for the six-zeros M6 cases, for example,

M6 �

s
t u

0
@

1
A; MR �

v
v

w

0
@

1
A: (5.3)

All ten patterns of M6 and MR generate light neutrino mass
matrix ML in the form of (5.1) after the seesaw operation.
Therefore the resultant mass spectrum and possible part-
ners for quark mass matrices are the same as the cases
(5.1). Some different phenomenology may appear through
lepton flavor-violating processes induced by lepton
Yukawa couplings [23]. The detailed analysis of minimal
lepton mass matrices and their phenomenological implica-
tions will be presented in a separate paper [19].

In the analysis of this paper, except for the discussion at
the end of Sec. III, we have not taken into account the
dependence of matrix forms on the renormalization scale,
but we have considered generic features of 3 � 3 quark
Yukawa couplings including asymmetrical matrices. For
more precise treatment, the renormalization-group evolu-
tion of Yukawa couplings needs to be evaluated, because
zeros of matrix elements should be implemented at some
high-energy scale such as a grand unification scale. The
observable quantities at the electroweak scale deviate to
some extent from the values estimated in a high-energy
regime. However one of the most important points is that
the fermion mass ratios of the first to second generations is
almost insensitive to radiative corrections due to the fact
that the dominant contribution to flavor-changing evolu-
tion comes from the Yukawa couplings of the third gen-
094024
eration. In our analysis, the selection of viable forms of
mass matrices has mainly depended on whether the down-
quark matrices satisfy the experimental value of the 1-2
CKM mixing in conspiracy with the up sector. It is there-
fore expected that the renormalization-group analysis does
not destabilize the results of our analysis of possible zero
elements, while there certainly exist some scale depen-
dences of nonvanishing matrix elements in the presence
of significant contributions from the gauge and top-quark
Yukawa couplings. This latter fact is supposed to only
change ‘‘initial‘‘ values of nonvanishing Yukawa couplings
at a high-energy scale. The results presented in this paper
are also useful for explaining the flavor structures of quarks
and leptons in grand unification schemes.

Finally, we would like to comment on some phenome-
nology related to the solutions obtained in Sec. IV. These
solutions predict similar sizes of off-diagonal elements to
the 3-3 elements, and radiative corrections from Yukawa
couplings are important for flavor physics. For example, if
the theory is supersymmetrized, flavor violation in the
Yukawa sectors is translated to off-diagonal components
of supersymmetry-breaking scalar masses through the ra-
diative corrections. That could induce sizable rates of
flavor-changing neutral currents for quarks and charged
leptons [23] in supergravity models. Further searches of
flavor-violating processes will provide us a new perspec-
tive of flavor structures in a high-energy regime.

In the viewpoint of distinguishing possible solutions, it
is important to examine observable signals of underlying
theory. In addition to signals of underlying symmetries or
dynamics, the improved measurements of low-energy ob-
servable quantities allow us to discriminate discrete ambi-
guities of possible matrices. As for the solutions 1–6
presented in the Appendix, it can be seen from the numeri-
cal analysis that the solutions 3 and 4 have sizable con-
tributions to �VdR�31 components. This means that they
predict �VMNS�13 �O�10�1� if there appears no fine tuning
of parameters in VdR and V6. Since the planned improve-
ments in the sensitivity to �VMNS�13 are expected to reach
0.05 [24], these solutions would be supported or disfavored
when a precise value of �VMNS�13 is measured. For other
generation mixing, the solutions 3–6 are found to have
relatively larger values of �VdR�21 (of the order of the
Cabibbo angle) than the other solutions. This fact also
distinguishes possible textures, for example, if the theory
is extended to incorporate supersymmetry (breaking) or
grand unification. Together with these issues stated above
and others, it is hoped to find what underlying theory
governs the masses and mixing angles of quarks and
leptons.
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TABLE I. The typical orders of matrix elements for six pos-
sible mass textures. We have not explicitly included O�1� co-
efficients, which would be needed to precisely reproduce the
experimental data. Note that there are also additional solutions
obtained (i) by exchanging the second and third generations of
dR (columns in Md) and/or (ii) by identically relabeling genera-
tion indices for uL, uR, and dL.
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TABLE II. Numerical examples for the predictions of the
texture combinations given in Table I. The mass eigenvalues
are denoted in GeV units.

1 2 3 4 5 6

mu 0.00179 0.00104 0.00179 0.00223 0.00179 0.000983
md 0.00387 0.00470 0.00283 0.00321 0.00511 0.00271
ms 0.0562 0.0683 0.0637 0.0805 0.0566 0.0542
mc 0.613 0.611 0.652 0.633 0.601 0.621
mb 2.90 3.01 2.94 2.99 2.91 2.87
mt 178 177 175 176 179 171
jVusj 0.225 0.225 0.223 0.223 0.224 0.223
jVcbj 0.0433 0.0430 0.0433 0.0433 0.0428 0.0434
jVubj 0.00403 0.00414 0.00426 0.00429 0.00377 0.00437
JCP=10�5 2.90 2.60 3.16 2.79 2.91 2.83
sin2�1=' 0.709 0.692 0.762 0.735 0.694 0.742
j�VdR�21j 0.0116 0.00990 0.144 0.167 0.285 0.135
j�VdR�32j 0.681 0.682 0.643 0.642 0.656 0.707
j�VdR�31j 0.0108 0.00922 0.125 0.147 0.0136 0.00918
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APPENDIX: THE ORDER ESTIMATION AND
NUMERICAL EVALUATIONS OF THE QUARK

MASS MATRICES

In this appendix, we would like to present the order
estimation of quark mass matrix elements and typical
examples of numerical fitting for the solutions obtained
094024
in Sec. IV, where the up-quark matrices have symmetric
three zeros and the down-quark ones asymmetric four
zeros. Since the observed values of masses and mixing
angles are hierarchical, one could parametrize matrix ele-
ments by integer exponents of a small parameter , ( �
0:22) times O�1� coefficients, which originate from the
ambiguities of Yukawa coupling constants. Such expres-
sions with integer exponents might be useful for getting
ideas of constructing fermion mass matrix models with
flavor symmetries. We have found in Sec. IV that there
are 6 � 2 � 3 combinations of up- and down-quark mass
textures that well describe the current experimental data.
The order estimation of these mass matrix elements are
presented in Table I, where we have not explicitly written
down O�1� coefficients mentioned above.

Suitably choosing the O�1� coefficients (i.e. Yukawa
couplings) in the textures listed in Table I, we obtain
numerical examples for these six solutions (Table II).
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