
PHYSICAL REVIEW D 71, 094017 (2005)
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The infrared freezing of observables is known to hold at fixed orders of perturbative QCD if the
Minkowskian quantities are defined through the analytic continuation from the Euclidean region. In a
recent paper [D. M. Howe and C. J. Maxwell, Phys. Rev. D 70, 014002 (2004)] it is claimed that infrared
freezing can be proved also for Borel-resummed all-orders quantities in perturbative QCD. In the present
paper we obtain the Minkowskian quantities by the analytic continuation of the all-orders Euclidean
amplitudes expressed in terms of the inverse Mellin transform of the corresponding Borel functions [I.
Caprini and M. Neubert, J. High Energy Phys. 03 (1999) 007]. Our result shows that if the principle of
analytic continuation is preserved in Borel-type resummations, the Minkowskian quantities exhibit a
divergent increase in the infrared regime, which contradicts the claim made in [D. M. Howe and C. J.
Maxwell, Phys. Rev. D 70, 014002 (2004)]. We discuss the arguments given in this paper and show that
the special redefinition of Borel summation at low energies adopted there does not reproduce the lowest
order result obtained by analytic continuation.
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I. INTRODUCTION

Since the advent of QCD it was realized that the appli-
cation of the renormalization-group improved perturbation
theory is natural in the deep Euclidean region, where the
running coupling is small and the physical hadronic thresh-
olds are absent. The application of perturbative QCD for
physical observables defined as Minkowskian quantities
requires the analytic continuation from the spacelike to
the timelike axis of the complex momentum plane. At high
energies, the analytic continuation of the strong running
coupling a��s� from the Euclidean region s < 0 to the
Minkowskian region s > 0 can be expanded in powers of
1= ln�s=�2�. So, in the asymptotic region the expansion
parameter is the same on the spacelike axis and the time-
like one. At lower energies, however, one must take into
account the finite terms appearing from the analytic con-
tinuation of ln��s=�2� ! ln�s=�2� � i�. The problem
was investigated in the early 1980s by several authors
[1,2], who tried to identify the most natural parameter for
the perturbative QCD expansions of timelike observables.
In [1] the authors compare the expansion parameters a�s�,
ja��s�j and Rea��s� for s > 0 and notice that ja��s�j
seems suitable since it remains finite in the Landau region
s <�2. However, the choice of the modulus ja��s�j as
expansion parameter does not absorb all the �2 factors
which arise from the analytic continuation, as shown by
Radyushkin [2], who derived explicit formulae for the
timelike observables to every finite order of perturbative
series. The analytic continuation was subsequently applied
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in the perturbative calculation of Minkowskian quantities
[3] and in phenomenological analyses of inclusive observ-
ables like the rates of the processes e�e� ! hadrons and
	! hadrons, using either low orders of perturbation the-
ory [4–6] or resummations based on the Borel method [7–
9].

While for a long time the applications of perturbative
QCD in the region 0< s <�2 were not considered reli-
able, the interest in the low energies increased when it was
realized that some Minkowskian quantities, obtained in a
consistent way by analytic continuation, remain finite in
the timelike infrared limit s! 0. This property, called
‘‘infrared freezing,’’ was shown to hold in every finite
order of perturbation theory [10,11], and is actually put
on the basis of the so-called ‘‘analytic perturbation theory.’’
In this approach [10,11], the perturbative expansions of the
Minkowskian observables are defined with a regular effec-
tive coupling, and the Euclidean quantities are obtained
thereof by means of dispersion relations known to be valid
in QCD [12] under plausible assumptions.

One may ask whether the infrared freezing is only a
feature of the finite order QCD expansions or it survives
beyond finite orders. This is a nontrivial question, espe-
cially since the QCD perturbative series is known to be
divergent. In [13], using the Borel summation of the QCD
perturbative series in the leading-
0 approximation, the
authors conclude that the infrared finite limit of the
Minkowskian observables is valid also at all orders in
perturbative QCD. Since the perturbative series of QCD
is ambiguous, it is not impossible, in principle, to imple-
ment a desired property by a suitable summation prescrip-
tion. It is however natural to require that the procedure
respects the principle applied to finite orders, which in the
-1  2005 The American Physical Society



IRINEL CAPRINI AND JAN FISCHER PHYSICAL REVIEW D 71, 094017 (2005)
present case is the analytic continuation. In the arguments
given in [13] this principle is abandoned at some stage. The
reason is that the authors use a Borel representation ex-
pressed as an infinite series of renormalons in the large-
0

approximation, which does not display the dependence on
the momentum in a transparent way. So the question of
what is the infrared limit of the Minkowskian quantities
when defined in a consistent way by analytic continuation
from the deep Euclidean region, as is done in the case of
fixed orders, remains open. In the present paper we address
this question.

To this end, we choose an alternative representation of
the Borel-summed Euclidean quantities, derived in [14],
which is more convenient for the analytic continuation
since it explicitly displays momentum dependence. A re-
markable merit of this approach is that we do not need to
represent the Minkowskian quantity in terms of any ex-
pansion parameter ja�s�j, a�jsj� or Rea�s� (as in [1]),
assuming only that the quantity admits certain integral
representations as discussed below in Sec. III. Note that
the same technique was applied in [15] for the analytic
continuation in the coupling plane, leading to results con-
sistent with those obtained in [16].

As in [13], we choose as Euclidean quantity the Adler
function in massless QCD and as Minkowskian quantity
the spectral function of the polarization function. In the
next section we briefly review the analytic continuation
from the Euclidean to the Minkowskian region of fixed-
order perturbative expansions in QCD, stressing upon the
fact that a consistent analytic continuation is free of ambi-
guities. In Sec. III we perform the similar analytic continu-
ation of the whole Borel-resummed Adler function, written
in a compact form in [14], which displays the energy
dependence in an explicit way. In this section we treat in
detail the one-loop coupling. The situation beyond one-
loop is discussed briefly in Sec. IV, where we show that our
conclusion about the infrared behavior of the Minkowskian
observables remains valid also in this case. We use the
analytic expression of the two-loop coupling derived re-
cently in [17,18], working in the assumption, true in the
real-world QCD, that the Euclidian coupling is not causal.
In Sec. V we review the Borel summation presented in [13]
and show that it does not reproduce correctly the lowest
order result obtained by analytic continuation in the infra-
red limit.
II. ANALYTIC CONTINUATION OF FIXED-ORDER
PERTURBATIVE EXPANSIONS

We consider the Adler function in massless QCD de-
fined as

D �s� � �s
d��s�
ds

� 1; (1)

where ��s� is the correlation function of two vector cur-
rents. The function ��s� can be obtained from D�s� by
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logarithmic integration:

��s� � k� ln��s� �
Z s

d ln��s0�D�s0�; (2)

where k is a constant and the integration is along a contour
in the complex plane which starts at a fixed point and ends
at s, without crossing the singularities of the integrand.
This definition is consistent with asymptotic freedom and
the general properties of the QCD Green functions.
Causality and unitarity imply that ��s� and D�s� are real
analytic functions in the complex s plane [i.e. ��s	� �
�	�s� and D�s	� � D	�s�], cut along the positive real axis
from the threshold for hadron production at s � 4m2

� to
infinity. Along the cut, the Minkowskian quantity of inter-
est is related to the spectral function Im��s� i�� by

R �s� �
1

�
Im��s� i�� � 1: (3)

Following [13], we consider the renormalization group
improved truncated expansion of the Adler function in
perturbative QCD

D �N��s� � a��s� �
XN
n
1

dna
n�1��s�; (4)

with the one-loop coupling defined as

a�s� �
�s�s�
�

�
1


0 ln�s=�
2�
; (5)

where � is the QCD scale parameter and 
0 � �11Nc �
2nf�=12 is the first coefficient of the 
 function (we follow
in general the notations in [13], except for using 
0 � b=2
instead of b). In our analysis we shall assume that 
0 is
positive, which means that infrared freezing does not hold
for the Euclidian quantities like D�s� for s < 0. The first
coefficients in (4), dn, n � 3, were calculated in [3].

Using (2) we obtain the polarization amplitude as:

��N��s� � k� ln��s� �
lnln��s=�2�


0

�
XN
n
1

dn

�
1


0

�
n�1 1

nlnn��s=�2�
: (6)

We recall that the above expressions are derived in the deep
Euclidean region s <��2 or, more generally, for complex
values of s, with jsj>�2. In this region the expressions
are consistent with the general properties derived from
field theory, which require that ��s� and D�s� must be
real for s < 0. The analytic continuations of (4) and (6) to
low values of jsj contain however unphysical singularities
on the spacelike axis, which are absent from the exact
amplitudes: D�N��s� has a Landau pole at s � ��2, and
��N��s� has a Landau cut along the interval ��2 < s < 0.
Here we are interested in the imaginary part of ��N��s� on
the upper edge of the timelike axis s > 0. Using (6), the
-2



On THE INFRARED FREEZING OF PERTURBATIVE . . . PHYSICAL REVIEW D 71, 094017 (2005)
spectral function (3) is obtained, at finite orders, as

R �N��s� � A1�s� �
XN
n
1

dnAn�1�s�; (7)

where [2,10,13],

A1�s� �
1

�
0
�arctan��
0a�s�� � ����2 � s�

An�s� �
1

�
0

an�1�s�
n� 1

Im��1� i�
0a�s��
1�n; n > 1;

(8)

with a�s� defined in (5). We note that in the first Eq. (8)
arctan denotes the standard function defined in the interval
���=2;��=2�, with arctan�0� � 0, and the term ���2 �
s� accounts for the fact that the real part of ln�s=�2�
becomes negative when s <�2. Indeed, writing

ln��s=�2� � ln�s=�2� � i� �
���������������������������������
ln2�s=�2� � �2

q
exp�i�

(9)

for s positive and above the cut, one can see that the phase
� is continuous at s � �2, where it passes to the second
quadrant [as shown in [11], the first Eq. (8) may be written
also as A1�s� � 1=�
0 arccos�L=

������������������
L2 � �2

p
, where L �

lns=�2 � 1=�
0a�s��].
We mention that in some papers the Minkowskian quan-

tity R�s� for s >�2 is defined in terms of the Adler
function through an integral along an open contour which
ends at s� i�. Usually, this contour is chosen as the circle
of radius jsj centered at the origin, since in this case the
integrals of the finite order expansions can be done analyti-
cally [2,9]. While this procedure is suited for smuch larger
than �2, for points close to �2 the result is sensitive to
small deformations of the integration contour, which may
or may not include the Landau pole. In [13] this ambiguity
is solved by an ad-hoc choice of the branch of the arctan
function which appears after integration, so as to lead to
infrared freezing for finite order expansions. We stress that
the procedure of calculating the discontinuity of the polar-
ization function applied in the above Eqs. (3)–(6) is free of
such ambiguities.

As was mentioned in the introduction, in applications at
large energies one expands the functions An�s� in powers of
the small coupling a�s� defined in (5). This gives for R�s�
[3]

R �s� � a�s� � d1a2�s� �
�
d3 � d1

�2
2
0

3

�
a3�s� . . . :

(10)

The approximate expansion of R thus obtained can in no
way be used at low energies, since a�s� becomes infinite at
s � �2. On the other hand, as Eqs. (7) and (8) imply, the
R�N��s� are regular for all s, including s � �2, and have a
finite, universal infrared limit
094017
R �N��0� �
1


0
; (11)

for N any positive integer.
III. ANALYTIC CONTINUATION OF THE BOREL-
SUMMED AMPLITUDE

The perturbation expansion (4) of D�s� in powers of the
renormalized coupling a��s� is known to be neither con-
vergent nor Borel summable. We consider the Borel trans-
form BD�u� defined in the standard way in terms of the
perturbative coefficients dn of D:

BD�u� �
X1
n�0

dn
n!

�
u

0

�
n
; d0 � 1: (12)

From the n! large order growth of dn it is known that BD�u�
has singularities (ultraviolet and infrared renormalons) on
the real axis of the u-plane [19]. For the Adler function, the
ultraviolet renormalons are placed along the range u � u1,
u1 � �1 and the infrared renormalons along u 
 u2, u2 �
2. Because of the infrared renormalons, the usual Borel-
Laplace integral is not well-defined and requires an inte-
gration prescription. Defining

D ����s� �
1


0

Z
C�

e�u=�
0a��s��BD�u�du

�
1


0
lim
�!0

Z 1�i�

0�i�
e�u=�
0a��s��BD�u�du; (13)

one can adopt as prescription, for each value of a��s� with
Rea��s�> 0, either D����s� or D����s�, or a linear com-
bination of them, with coefficients � and 1� � such as
correctly to reproduce the known perturbative (asymptotic)
expansion (4) of D�s� (obtained by truncating the Taylor
expansion (12) at a finite order N). Note that all these (and
many other) integration prescriptions have, according to a
theorem by Watson [20], the same asymptotic series in
powers of a��s� and therefore possess the same, original
perturbative expansion.

Once a prescription is adopted, one has a well-defined
function, different prescriptions yielding different func-
tions with different properties. In the present work we
use, as in [13], the principal value (PV) prescription

D �s� �
1

2
�D����s� �D����s�: (14)

As shown in [14], this prescription gives real values along
the spacelike axis outside the Landau region, which is
consistent with the general analyticity requirements im-
posed by causality and unitarity. Moreover, we work in the
V-scheme, where all the exponential dependence in the
Laplace integrals (13) is absorbed in the running coupling,
and denote by �2

V the corresponding QCD scale parameter.
Our purpose is to obtain the Minkowskian qauantity R

by analytically continuing the Euclidean Borel-summed
-3
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Adler function (14). To this end it is convenient to use a
representation of the Borel function BD in terms of its
inverse Mellin transform ŵD defined as [21]

ŵ D�	� �
1

2�i

Z u0�i1

u0�i1
duBD�u�	u�1: (15)

The inverse relation

BD�u� �
Z 1

0
d	ŵD�	�	

�u; (16)

defines the function BD�u� in a strip parallel to the imagi-
nary axis with u1 < Reu < u2. The relations (15) and (16)
are valid if the following L2 condition holds [22]:

1

2�i

Z u0�i1

u0�i1
dujBD�u�j2 <1; (17)

where u0 2 �u1; u2. The function ŵD�	� was calculated in
[21] in the large-
0 approximation [23,24], where it has
different analytic expressions, which we denote by ŵ�<�

D

and ŵ�>�
D , depending on whether 	 is less or greater than 1,

respectively:

ŵ D�	� � ŵ�<�
D �	�; 0< 	< 1

ŵD�	� � ŵ�>�
D �	�; 	 > 1:

(18)

As discussed in [14], one expects the inverse Mellin trans-
form ŵD to have different expressions for 	 < 1 and 	 > 1
in general, also beyond the leading 
0-approximation.
Indeed, ŵ�<�

D is given by a sum over the residua of the
infrared renormalons, while ŵ�>�

D is calculated in terms of
the residua of the ultraviolet renormalons, and there are no
reasons to expect these two contributions to be equal. In the
large-
0 approximation, the expressions of the functions
ŵ�<�
D and ŵ�>�

D are [21]:

ŵ�<�
D �	� �

8

3

�
	
�
7

4
� ln	

�
� �1� 	��L2��	�

� ln	 ln�1� 	�
�
; (19)

ŵ �>�
D �	� �

8

3

�
1� ln	�

�
3

4
�

1

2
ln	

�
1

	
� �1� 	�

� �L2��	�1� � ln	 ln�1� 	�1�

�
;

where L2�x� � �
R
x
0
dt
t ln�1� t� is the Euler dilogarithm.

As noticed in [21], the function ŵD�	� defined in (18) is
continuous together with its first three derivatives, and
satisfies the normalization condition:

Z 1

0
ŵD�	�d	 � 1: (20)

On the other hand, Eqs. (19) define two independent func-
tions, ŵ�<�

D and ŵ�>�
D , which are analytic in the whole 	
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complex plane except for logarithmic branch-points. These
functions are not bounded everywhere: the function
ŵ�<�
D �	� is unbounded for 	 > 1 (growing at infinity like

	ln2	), while ŵ�>�
D �	� grows like ln	=	 for 	! 0. This

behavior is seen in Fig. 1, where we represent the function
ŵD�	� defined by (18), together with ŵ�<�

D �	� for 	 > 1 and
ŵ�>�
D �	� for 	 < 1. The same figure shows also the real parts

of the functions ŵ�<�
D �	� and ŵ�>�

D �	� for 	 < 0, where they
become complex. As we will see below, the growth of
Reŵ�<�

D �	� for 	! �1 will have important consequences
for the problem investigated in the present work.

Following the technique described in detail in [14], we
shall express the function D�s� for complex values of s,
with Rea��s�> 0, in terms of the inverse Mellin trans-
form ŵD. Using Eqs. (13) and (14) as starting points, we
rotate the integration contours C� in the complex u-plane
up to a line parallel to the imaginary axis where the
representation (16) of BD holds and can be inserted into
the Borel integral. If the integrals are convergent, we can
reverse the order of integration upon u and 	, and perform
first the integral upon the variable u, which can be done
exactly. As explained in [14], when s is in the upper half of
the complex plane, the contour C� can be rotated towards
the positive imaginary axis in the u-plane since the inte-
grals remain convergent, while for the integral along the
contour C� it is necessary to first cross the real positive
axis of the u-plane, picking up contribution of the residua
of the corresponding singularities, i.e. the infrared renor-
malons. When s is in the lower half of the complex plane,
convergence is achieved if the contours are rotated towards
the negative imaginary axis in the u-plane, and the roles of
the contours C� and C� are reversed. This gives different
expressions for D�s� in the upper/lower semiplanes of the
s plane:

D�s��
1


0

Z 1

0
d	

ŵD�	�

ln��	s=�2
V�
�
i�

0

�

�
�
�2
V

s

�
ŵ�<�
D ���2

V=s�; Ims>0

D�s��
1


0

Z 1

0
d	

ŵD�	�

ln��	s=�2
V�
�
i�

0

�

�
�
�2
V

s

�
ŵ�<�
D ���2

V=s�; Ims<0; (21)

where the first terms are given by the integration with
respect to u, and the last terms are produced by the residua
of the infrared renormalons picked up by crossing of the
positive axis. We recall that the expressions (21) were
obtained by using the Principal Value prescription (14).

The corresponding expression for the polarization func-
tion ��s� can be obtained by inserting the above result into
the definition (2). This gives
-4
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Re ŵ
D
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ŵ
D
(<)(τ) for τ >1

Re ŵ
D
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D
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FIG. 1. The function ŵD�	� defined by (18) in the large 
0

approximation [i.e., with ŵ�<�
D �	� and ŵ�>�

D �	� given by (19)] is
represented by a solid line. We separately display also the
function ŵ�<�

D �	� for 	 > 1 (dash-dot-dotted line) and for 	 < 0
(dashed line), and the function ŵ�>�

D �	� for 	 < 1 (dash-dotted
line and dotted line). For negative values of 	 the curves
represent the real parts of the corresponding functions. The
dashed line is unbounded for 	 tending to �1, while the
dash-dot-dotted line grows unboundedly for 	 increasing. The
dotted and dash-dotted lines are unbounded for 	 approaching
zero from either side.
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��s� � k� ln
�
�s

�2
V

�
�

1


0

Z 1

0
d	ŵD�	� lnln

�
�
	s

�2
V

�

�
i�

0

Z s
d ln��s�

�
�

�2
V

s

�
ŵ�<�
D ���2

V=s�; (22)

with the contour in the last integral specified below Eq. (2)
and the �=� sign corresponding to Ims > 0=Ims < 0,
respectively. The Borel-summed expression (22), obtained
for jsj>�2

V , can be analytically continued into the whole
complex plane. We note that ��s� is holomorphic for
complex values of s and satisfies the reality condition
��s	� � �	�s�. On the real axis, this function can have
singularities manifested as discontinuities of the imaginary
part. The unphysical singularities in the spacelike region
��2

V < s < 0 were discussed in detail in [14]. Here we are
interested in the spectral function for s > 0. A straightfor-
ward calculation gives:

Im��s� i�� � ��
1


0

Z 1

0
d	ŵD�	� arctan

�
�

ln�	s=�2
V�

�

�
�

0

Z �2
V=s

0
d	ŵD�	�

�
�

0

Re
Z 0

��2
V=s

d	ŵ�<�
D �	�: (23)

We note that the term in the second line was obtained by
means of the relation

Im


lnln

�
�
	s

�2
V

��
� arctan

�
�

ln�	s=�2
V�

�
�����2

V�	s�;

(24)

already applied (for 	 � 1) in deriving the first relation (8),
and the last term in (23) is produced to the last term in (22).
Using (3) we write also R as

R �s� �
1

�
0

Z 1

0
d	ŵD�	� arctan

�
�

ln�	s=�2
V�

�
�

1


0

�
Z �2

V=s

0
d	ŵD�	� �

1


0
Re

Z 0

��2
V=s

d	ŵ�<�
D �	�:

(25)

It is easy to check that this expression is continuous for all
s > 0, including the point s � �2

V . We consider now the
limit of this expression for s! 0, i.e. �2

V=s! 1. Since
the first integral tends to zero (recall the comment below
Eq. (8) about arctan) and ŵD�	� satisfies the normalization
relation (20), we obtain:

R �0� �
1


0
� lim

s!0
Re

Z 0

��2
V=s

d	ŵ�<�
D �	�: (26)

The first term coincides with the result (11), but we have
now an additional term which involves the values of
ŵ�<�
D �	� for negative 	. Moreover, for small values of s,

the integral involves arguments 	!�1, where Reŵ�<�
D �	�
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is unbounded (see Fig. 1). Using (19) (which is valid in the
large 
0 limit) it is easy to check that the last integral in
(26) diverges like ln2s=s2 for s! 0. This result disproves
the statement made in [13]: the infrared limit of the Borel-
summed Minkowskian observable R�s� obtained by ana-
lytic continuation from the Euclidian region does not re-
produce the infrared freezing observed in the finite orders,
and moreover displays an unphysical divergence. This
behavior is crucially determined by the summation of an
infinity of terms of the series.

In order to understand the transition from the fixed
orders to the resummed quantity, it is useful to apply the
above formalism to the truncated perturbative expansion,
when the Borel transform BD�u� defined in (12) reduces to
a polynomial B�N�

D �u�:

B�N�
D �u� � 1� d1

u

0

�
d2
2!

u2


2
0

� . . .�
dN
N!

uN


N0
: (27)

In this case the Laplace-Borel transform is well defined on
the cuts. A straightforward calculation gives

1


0

Z 1

0
e�u=�
0a��s��B�N�

D �u�du�
XN
n�0

dna
n�1��s�; d0�1;

(28)

i.e. the finite order expansion (4). We want to check
-5
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whether this expansion, along with the expansion (7) of R,
are reproduced in the inverse Mellin formalism.

Clearly, when BD is a polynomial the condition (17) is
not satisfied, so we expect the function ŵD to be a gener-
alized function (a distribution). In order to calculate it, we
consider the alternative distribution function ŴD�	�, intro-
duced in [8]:

Ŵ D�	� �
1

2�i

Z u0�i1

u0�i1
du
BD�u�
sin�u

	u�1: (29)

When BD�u� is a polynomial, the ratio BD�u�= sin�u sat-
isfies the condition (17), which ensures the existence of the
function ŴD�	�. For instance, for BD�u� � 1 a straightfor-
ward calculation gives

Ŵ D�	� �
1

��1� 	�
: (30)

On the other hand, as shown in [8,25] (see also Eq. (A.10)
of [14]), the connection between the Mellin transforms
ŴD�	� and ŵD�	� is

Ŵ D�	� �
1

�

Z 1

0
dx
ŵD�x�
x� 	

; (31)

where 	 can take arbitrary values, except for real negatives.
By comparing (30) and (31) it follows that, for B�0�

D �u� � 1,

ŵ �0�
D �x� � %�1� x�: (32)

A straightforward calculation shows that at each finite
order the function ŵD�x� is represented in terms of the
distribution %�1� x� and its derivatives. For instance, the
inverse Mellin transform of B�N�

D defined (27), forN � 3, is

ŵ�3�
D �x��%�1�x��

d1

0
%0�1�x�

�
d2
2!
2

0

�%00�1�x��%0�1�x�

�
d3
3!
3

0

�%000�1�x��3%00�1�x��%0�1�x�:

(33)

Such a representation is not unique: except for the first two
terms which remain the same, the higher terms can be
written equivalently as the product of the nth derivative
of %�1� x� with a polynomial of degree n� 1. For in-
stance, ŵ�3�

D �x� in (33) can be expressed in the form

ŵ�3�
D �x��%�1�x��

d1

0
%0�1�x�

�
d2
2!
2

0

��x�1�=2%00�1�x�

�
d3
3!
3

0

��x2�4x�1�=6%000�1�x�: (34)
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It is easy to check that the different expressions (33) and
(34) give the same result for the quantities of interest D
and R. An immediate consequence of these expressions is
that, for finite orders, ŵ�N�<

D �	� � 0. Inserting ŵ�3�
D into the

relation (21), which expresses the Adler function in terms
of the inverse Mellin transform, we obtain by a straightfor-
ward calculation

D�3��s� �
1


0

1

ln��s=�2
V�

� d1

�
1


0

1

ln��s=�2
V�

�
2

� d2

�
1


0

1

ln��s=�2
V�

�
3
� d3

�
1


0

1

ln��s=�2
V�

�
4
;

(35)

which coincides with the first terms in the expansion (4).
Let us insert also (33) into the resummed expression (25)

of R. It is easy to see that the first term ŵ�0�
D �	� � %�1� 	�

contributes both to the first and the second integrals in (25),
giving the result

R�0��s��
1

�
0


Z 1

0
%�1�x�arctan��=�lnx� ln�s=�2���dx

��
Z �2=s

0
%�1�x�dx

�

�
1

�
0
�arctan��
0a�s�������2�s�; (36)

which coincides with the function A1�s� defined in (8) and
satisfies the property of infrared freezing. The higher terms
in (33) contribute only to the first integral in (25), repro-
ducing the terms in expression (25). For instance, inserting
the second term of (33) in (25) one has

�
d1
�
2

0


Z 1

0
%0�1� x� arctan��=�lnx� ln�s=�2���dx

�

� d1
a2

1� a2
2
0�

2 � d1A2�s�; (37)

with A2�s� defined in (8). So the formalism of inverse
Mellin transform reproduces the finite order expansions
which are consistent with the property of infrared freezing
(11). But the summation of the whole series leads to a
different result. The discussion in this section reveals the
difference between the finite orders and the summed ex-
pression: it resides in the function ŵ<

D�	�, which is zero at
each finite order but is nonvanishing when an infinity of
terms are summed and the infrared renormalons show up.
IV. BEYOND THE ONE-LOOP COUPLING

Up to now we restricted the discussion to the one-loop
coupling (5). We show now that the same conclusion is
valid beyond this approximation. If the one-loop coupling
is not inserted into (13), it is easy to see that the two
integrals in (22) write in general
-6
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��s���
1


0

Z s
dln��s�

Z 1

0
d	

ŵD�	�

ln	� 1

0a��s�

�
i�

0

�
Z s

dln��s�e�1=�
0a��s��ŵ�<�
D �e�1=�
0a��s���: (38)

As shown recently [17,18], the solution of the two-loop

-function equation can be written analytically in closed
form as

a�s� � �
1

c�1�W�z�s��
; z�s� � �

1

e

�
s

�2

�
�
0=c

;

(39)

where c � �153� 19nf�=24
0 is the second universal
beta-function coefficient and W�z� is the Lambert function
defined implicitly by W�z�eW�z� � z [26]. We work in the
condition c > 0, valid in real-world QCD. Then, as shown
in [17], the physical branch of the Lambert function in (39)
is W�1, and the coupling does not freeze in the spacelike
region.

Denoting W�z� � W�1�z��s�� we obtain from (39):�
s

�2

�
�
0=c

� �W�z�eW�z��1

ln
�
s

�2

�
� �

c

0

�ln��1� � lnz�s� � 1� (40)

and

d ln��s� � �
c

0

d lnz��s� � �
c

0

�d lnW � dW�

� �
c

0

1�W
W

dW: (41)

We now insert the two-loop coupling (39) into (38), and
notice that the first integral can be performed by making
the change of variable (41). Using the relation W0�z� �
W�z�=z�1�W�z�� (to be obtained from WeW � z by dif-
ferentiating the logarithm) we write after a straightforward
calculation the first integral in (38) as

���
1


0

Z 1

0
d	ŵD�	�



ln
�
1�W�z� �


0

c
ln	

�

�
1

1� 
0

c ln	
ln

W�z�

1�W�z� � 
0

c ln	

�
: (42)

In order to evaluate the limit s! 0, we use the asymptotic
expansion [26]

W�z� � lnz� lnlnz (43)

valid for both z! 0 and z! 1. Then we obtain from the
first logarithm in (42) the limit

lim
s!0

��s� � �
1


0

Z 1

0
d	ŵD�	� lnln

�
�s	

�2

�
; (44)

while the second term in (42) vanishes. The expression
(44) coincides with the first integral in (22), whose imagi-
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nary part, as discussed in Eqs. (23)–(26), has the infrared
limit 1=
0. This result is consistent with the finite order
calculations with the two-loop coupling in [13,27].

We turn now to the second integral in (38). It is easy to
see that the leading term in the asymptotic behavior (43)
gives, for s! 0, an expression identical to the second term
in (26). The next to leading term in (43) introduces loga-
rithmic corrections which do not change the singular be-
havior of the integrand for s! 0, i.e. 	! �1. Thus,
although the two-loop coupling leads to a different behav-
ior of the spectral function at nonvanishing s, the singu-
larity in the infrared limit is dominated by the one-loop
coupling.

V. COMMENTS ON THE PROOF OF INFRARED
FREEZING IN [13]

In Ref. [13] the authors discuss the infrared freezing
beyond fixed-order expansions by using a representation of
the Minkowskian quantity R in terms of the Borel trans-
form BD of the Adler function. This representation is
derived by inserting the Borel representation of the Adler
function into the expression (6) of the polarization func-
tion, which is then used in (3) to compute the quantity R.
Adopting the Principal Value prescription (14), a straight-
forward calculation gives [7,13]:

R �s� �
1


0
PV

Z 1

0
e�u=�
0a�s��

sin�u
�u

BD�u�du; (45)

with the one-loop coupling a�s� defined in (5).
The integrals in (45) converge only for s >�2, when

a�s�> 0. For small s, of interest for the infrared behavior,
a�s� is negative and the standard Laplace-Borel integral,
along the positive real axis of the u-plane, diverges. In [13]
the authors notice that for a�s�< 0 a convergent integral is
obtained by choosing as integration line the negative axis
in the u-plane, instead of the positive one. Therefore, they
define the Borel-summed R�s� for s <�2 as:

R �s� �
1


0
PV

Z �1

0
e�u=�
0a�s��

sin�u
�u

BD�u�du: (46)

The Principal Value prescription now regulates the ultra-
violet renormalons along the negative real axis, while in
the standard definition (45) the prescription regularizes the
infrared renormalons. The authors of [13] claim that by this
redefinition of the Minkowskian quantity for s <�2, one
recovers infrared freezing (11) also beyond fixed-order
perturbation expansions.

In principle, a redefinition of the Borel integral as in (46)
is not illegitimate: since we deal with functions which are
not Borel summable, the choice of the prescription for the
Borel integral is to a large extent arbitrary; as mentioned in
Sec. III, there are many different functions that have the
same perturbative, divergent asymptotic expansion in
powers of the coupling constant. Such a redefinition should
however be motivated physically, not just by the fact that
-7
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the original definition has lost mathematical sense in a
region.

Furthermore, when introducing a redefinition of the
Borel integral, we must ensure that the fixed-order expan-
sions are reproduced when the Borel transform is expanded
in a Taylor series. In [13] the authors claim this require-
ment to be fulfilled if one expands in powers of u not the
whole integrand in (45), but only the Borel transform
BD�u�. However, it is easy to see that the prescription
(48) fails to reproduce correctly the infrared freezing (11)
for finite order expansions.

Indeed, let us insert in (46) the truncated expansion (27)
of BD�u� in powers of u. Then the Borel integral is regular,
no prescription is required and we obtain from (46), for s <
�2:

R�N��s��
1


0

Z �1

0
e�u=�
0a�s��

sin�u
�u

B�N�
D �u�du

��
1


0

Z 1

0
e�u=�
0��a�s��

sin�u
�u

B�N�
D ��u�du; (47)

where a change of variable was performed in the last step.
In the last integral the quantity �a�s� is positive for s <�2

(recall the definition (5) of the coupling), and we can easily
perform the integration for each term of B�N�

D ��u� from
(27). A straightforward calculation shows that, for all the
terms except the first one, the infrared limit of the integral
(47) is zero, in agreement with the behavior of the func-
tions An�s� of (8), with n > 1. For the first term BD�u� � 1
(which was responsible for the infrared freezing of the
truncated expansion in Section II) we apply the identity
(41) of [13] which gives

R �0��s� � �
1


0

Z 1

0
e�u=�
0��a�s���

sin�u
�u

du

� �
1

�
0
arctan��
0��a�s�: (48)

In the infrared limit s! 0, Eq. (5) implies � a�s� ! 0
through positive values, and from (48) we obtain
R�0��0� � 0, which is not consistent with the infrared limit
of the function A1�s� defined in (8), and with the relation
(11). Therefore, the prescription adopted in [13] for the
Minkowskian quantity at s <�2 fails to reproduce cor-
rectly the infrared freezing (11) of the truncated expansion.
VI. CONCLUSIONS

In a recent paper [13] it is claimed that by using analytic
continuation in the energy plane it is possible to prove the
infrared freezing of Minkowskian quantities beyond finite
094017
orders in perturbative QCD. In the present work, we ap-
plied the technique of the inverse Mellin transform of the
Borel function, developed in [14], which gives compact
expressions of the QCD amplitudes in the complex plane.
By using the analytic continuation of these expressions into
the Landau region, we calculated explicitly the spectral
functions, as in the fixed-order expansion. As in [13] we
adopted the Principal Value prescription, and considered as
Euclidean quantity the Adler function in massless QCD.
Our result, expressed in Eq. (26), contradicts the conclu-
sion reached in [13]: the summation of higher orders in
QCD leads to a divergent increase of the Minkowskian
quantities in the infrared limit, if these are calculated by
analytic continuation from the Euclidean region. The di-
vergent infrared behavior arises explicitly from the sum-
mation of the infinite terms and is related to the infrared
renormalons. Of course, one expects that in full QCD this
divergent behavior will be compensated by a similar
growth of remaining terms in the OPE, calculated with
the same prescription.

The difference between our results and those in [13] is
explained by the fact that the authors of [13] do not apply
consistently the principle of analytic continuation, applied
at finite orders. Lacking a compact expression of the Adler
function, as the one provided by the inverse Mellin trans-
form used by us, the authors make the analytic continu-
ation of the Borel representation itself, which is valid only
outside the Landau region. Therefore, the Borel represen-
tation (45) of the Minkowskian quantity considered in [13]
converges only for s >�2, and is useless in the infrared
limit. To reach this point the authors change the definition
of the Borel integral. However, as we showed in Sec. V, this
new prescription for the Borel summation of Minkowskian
quantities below the Landau point fails to reproduce the
infrared freezing of the truncated expansion.
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