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Quark asymmetries in the proton from a model for parton densities
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Based on quantum fluctuations in momentum and of the proton into meson-baryon pairs, we develop a
physical model for the nonperturbative x shape of parton density functions in the proton. The model
describes the proton structure function and gives a natural explanation of observed quark asymmetries,
such as the difference between the anti-up and anti-down sea quark distributions and between the up and
down valence distributions. An asymmetry in the momentum distribution of strange and antistrange
quarks in the nucleon is found to reduce the NuTeV anomaly to a level which does not give a significant
indication of physics beyond the standard model.
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I. INTRODUCTION

The parton distributions in hadrons play a very impor-
tant role in particle physics. Cross sections for hard pro-
cesses involving incoming hadrons can, based on the
factorization theorems of QCD [1], be calculated as a
convolution of the parton distributions with parton level
cross sections calculated using perturbation theory. The
parton distributions are universal in the sense that each
hadron has a unique parton structure which can be used to
calculate all hard processes involving that hadron. The
normal interpretation of a parton distribution fi�x;Q2� is
as the probability to find a parton i (quark of some flavor or
gluon) with a fraction x of the hadron momentum when
probed by the momentum transfer Q2. The Q2 dependence
is very successfully described in perturbative QCD
(PQCD) by the logQ2 evolution equations [2], which
means that, given the input distributions in x at a scale
Q2
0 large enough for PQCD to be applicable, one can

calculate the distributions at any higher Q2.
However, this starting x shape, which depends on non-

perturbative QCD dynamics of the bound state hadron, has
not yet been successfully derived from first principles.
Instead, they are obtained by fitting parametrizations to
data, in particular, structure function measurements in deep
inelastic lepton-nucleon scattering, e.g. the CTEQ [3] and
MRST [4] parametrizations.

Here we present further developments of our phenome-
nological model [5] used to derive the parton distributions
from simple assumptions regarding the nonperturbative
properties of the hadron. The basic idea is to define the
valence parton momentum distributions in the hadron rest
frame, where we assume that they are described by spheri-
cally symmetric Gaussians. The typical width of these
distributions is a few hundred MeV from the Heisenberg
uncertainty relation applied to the hadron size. Sea partons
are described through quantum fluctuations of the nucleon
into baryon-meson pairs, having the same quantum num-
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bers as the original nucleon, and the sea parton is identified
with a valence parton in the fluctuation meson. Through
this mechanism, asymmetries in the nonperturbative sea
parton distributions naturally arise, such as the difference
between the �u and �d distributions and an asymmetry in the
momentum distribution of s compared to �s.

The explanation of asymmetries in the nucleon sea by
fluctuations of the nucleon into baryon-meson pairs also
occurs in ‘‘meson cloud’’ models as reviewed in Ref. [6].
Although the meson cloud models have an elaborate theo-
retical formalism (see e.g. [7]), one is forced to introduce
phenomenological parts in order to obtain numerical re-
sults that can describe data. This concerns the choice of
form factor in the nucleon to baryon-meson (N ! BM)
splitting function and the parton distributions in both me-
sons and baryons. Our model invokes similar hadronic
fluctuations as a basic quantum phenomenon but differs
from meson cloud models in important aspects. We use
Gaussian momentum distributions both for hadrons in the
fluctuations and for the partons in the hadrons, and the
hadronic fluctuations are considered only at the low start-
ing scale Q2

0, where the starting parton densities are defined
and then evolved using standard perturbative QCD evolu-
tion. Thus, we have physically motivated parton momen-
tum distributions in the nucleon as well as in the fluctuation
hadrons, while meson cloud models usually use parame-
trizations. Our model results in a complete set of parton
density functions, which we compare with different experi-
mental data sets giving insights into different aspects of the
nonperturbative nucleon structure.

In Sec. II we develop the details of the model and in
Sec. III we compare to the relevant experimental data as
well as to conventional parametrizations of parton den-
sities. Finally, Sec. IV gives a concluding discussion.

II. THE MODEL

A. Valence distributions

This work is an extension of the previously presented
physical model [5], giving the momentum distributions of
partons in the nucleon, as illustrated in Fig. 1. The model
-1  2005 The American Physical Society



FIG. 1. Probing a valence parton in the proton and a sea parton
in a hadronic fluctuation (letters are four-momenta).
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gives the x shape of the parton distributions of a hadron of
mass M at a momentum transfer scale Q0 � 1 GeV, i.e.
xq�x;Q2

0� and xg�x;Q2
0�, which provide an effective de-

scription of the nonperturbative dynamics of the bound
state nucleon. Our approach is not intended to provide
the full wave function for the hadron but gives the four-
momentum k of a single probed parton, whereas all other
partons are treated collectively as a single remnant with
four-momentum r (see Fig. 1). In the nucleon rest frame,
there is no preferred direction, and, hence, the parton
momentum distribution is spherically symmetric. The
shape of the momentum distribution for a parton of type
i and mass mi is then taken as a Gaussian

fi�k� � N��i;mi� exp
�
�

�k0 �mi�
2 � k2x � k2y � k2z
2�2i

�
; (1)

where N is the normalization. The Gaussian form is not
only a reasonable first guess but can be motivated as the
collective result of the many small momentum transfers
affecting the parton through the nonperturbative bound
state interactions which cannot be calculated properly.
The width �i of the distribution should be of order hundred
MeV from the Heisenberg uncertainty relation applied to
the nucleon size, i.e. �i � 1=dN. This Fermi motion inside
the nucleon provides the ‘‘primordial transverse momen-
tum,’’ which has been extracted from deep inelastic scat-
tering data and found to be well described by a Gaussian
distribution of a few hundred MeV width [8] giving phe-
nomenological support for this description.

The energy component does not have the same simple
connection to the Heisenberg uncertainty relation. To keep
the model simple and reduce the number of parameters, we
assume a Gaussian distribution around the parton mass
with the same width as the momentum fluctuations, such
that partons can be off-shell at a soft scale of the binding
interactions. This means a parton fluctuation lifetime cor-
responding to the nucleon radius.

The momentum fraction x of the parton is then defined
as the light-cone fraction x � k�=p�. Here, four-momenta
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are expressed as p � �p�; p�; ~p?� where the ‘‘plus’’ and
‘‘minus’’ components are p	 � E	 pz and the z axis
defined by the probe. The fraction x is then invariant under
boosts along the z axis and equivalent to the conventional
momentum fraction x � kz=pz in a frame where pz is large
(‘‘infinite momentum’’ frame).

In order to obtain a kinematically allowed final state, one
must impose the following constraints. The scattered par-
ton must be on-shell or have a timelike virtuality (causing
final state QCD radiation) and an invariant mass less than
the invariant mass of the hadronic system. Furthermore, the
hadron remnant r is obtained from energy-momentum
conservation and must be timelike in order to project it
on a final hadronic state through hadronization. Referring
to Fig. 1(a) for the definitions of the momenta, one thus
obtains:

m2
i 
 j2 � �k� q�2 <W2 � �p� q�2; (2a)

r2 � �p� k�2 > 0: (2b)

An important consequence of these constraints is to ensure
that 0< x< 1 and f�x� ! 0 as x ! 1.

The parton distributions are obtained by integrating
Eq. (1) with these conditions. Using a Monte Carlo
method, this can be achieved numerically without approx-
imations. For the simple case of the valence distributions, it
is possible to derive an analytical expression as well; see
Sec. II B below. The normalization of the valence distribu-
tions is provided by the sum rules

Z 1

0
dxuv�x� � 2 and

Z 1

0
dxdv�x� � 1 (3)

to get the correct quantum numbers of the proton (and
similarly for other hadrons). The normalization of the
gluon distribution is chosen so as to saturate the momen-
tum sum rule

X
i

Z 1

0
dxxfi�x� � 1; (4)

where the sum is over the valence quarks and gluons.

B. Analytical expressions

By integrating f�k� in Eq. (1) over k2? and k� of the
parton between the limits given by (2), we arrive at the
following analytical expression for the bare hadron valence
distributions:

fi�x� � N�~�i; xi�
��
1� erf

�
1� xi
2~�i

��
exp

�
�
�x� xi�

2

4 ~�2i

�

�

�
1� erf

�
x� xi
2 ~�i

��
exp

�
�

�1� xi�
2

4 ~�2i

��
; (5)

where ~�i � �i=M, xi � mi=M, and erf�x� � �2=
				
�

p
�R

x
0 dte

�t2 (the error function). The normalization
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N�~�i; xi� is given by (3). This analytical expression can be
simplified when �i and mi are sufficiently small (e.g.
�i;mi & M=4) to

fi�x� � N�~�i; xi�
�
1� exp

�
�1� xi��1� x�

2~�2i

��

 exp
�
�
�x� xi�

2

4 ~�2i

�
: (6)

The ‘‘bare’’ proton valence u-quark momentum distri-
bution xu0v�x� given by Eq. (5) is shown by the solid curve
in Fig. 2. The approximation in Eq. (6) gives an indistin-
guishable result and is therefore not shown explicitly.
Figure 2 also demonstrates a very close agreement with
the Monte Carlo simulation result of the model
(histogram).

This behavior of the valence distributions is modified by
the contributions from the baryons in the hadronic fluctua-
tions described below. At x * 0:7 the shape of the valence
distributions are still given exclusively by the original
hadron, i.e. by Eq. (5), but at lower x the valence distribu-
tions are significantly modified. The shift of the distribu-
tion to lower x is clearly seen in Fig. 2 as the difference
between the bare xu0v�x� distribution and the ‘‘full’’ xuv�x�
valence u-quark momentum distributions. A similar end
result can also be obtained without including this baryon
0
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0.5

0.75

1

0 0.2 0.4 0.6 0.8 1
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FIG. 2 (color online). Valence u-quark distribution of the
proton obtained from the model: the bare proton distribution
xuv0�x� from Monte Carlo simulation compared to the analytical
form Eq. (5), as well as the full uv distribution including
simulation of partons in baryons in hadronic fluctuations jpi !
jBMi as described in Sec. II C below. The dotted line is the
valence distribution of Ref. [5], having a lower width �u �
180 MeV but no effect of baryons in fluctuations. [All curves
show the momentum density, whereas the normalization is in the
number density according to Eq. (3).]
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fluctuation effect, as in [5], by a lower Gaussian width
when fitting the model to F2 data (discussed below in
Sec. III A).

One can note that the asymptotic behavior for very large
x * 0:9 is �1� x�1 according to Eq. (5). For 0:3 & x &

0:9, however, the u quark distribution is well described by a
form u�x� � 8�1� x�2:8, in good agreement with the
�1� x�3 dependence predicted by spectator counting rules
[9].

C. Hadronic fluctuations and sea distributions

Sea partons arise from the nonperturbative dynamics of
the bound state hadron, for which it should be appropriate
to use a hadronic quantum mechanical basis. Therefore, we
consider hadronic fluctuations of the proton

jpi � "0jp0i � "p�jp�0i � "n�jn��i � . . .

� "�Kj�K
�i � . . . ; (7)

where the different states are assumed to be orthonormal
and the normalization constants are real and fulfill "20 �P

BM"
2
BM � 1.

Probing a parton i in a hadron H of such a fluctuation
[Fig. 1(b)] gives a sea parton with light-cone fraction x �

xHxp of the target proton; i.e. the sea distributions are
obtained from a convolution of the momentum K of the
hadron and the momentum k of the parton in that hadron.
We assume that the momentum ~K of the probed hadron is
given by a similar Gaussian as in Eq. (1), with a separate
width parameter �H (for simplicity and definiteness, we
make this parameter common for all fluctuations). The
momentum ~K0 of the other hadron in the fluctuation is
then fixed by momentum conservation in the rest frame
of the original nucleon. We let both hadrons be on-shell,
which fixes their energies. This implies that energy is not
conserved at this intermediate stage but is, of course,
restored for the observable final state. With the hadron
four-vectors specified, one obtains the light-cone fraction
xH � K�=�K � K0��. A few possible modifications of the
details of the model are discussed in the next section, and
the possible use of an effective meson mass instead of the
physical pion mass is discussed in Sec. III C.

The above model for valence distributions is then ap-
plied to the fluctuation hadron H to get the parton momen-
tum and light-cone fraction xp � k�=K� in H. The flavor
sum rules in Eq. (3) must, of course, be modified to apply
for H. The kinematical constraints of Eq. (2) are in this
case modified to

m2
i 
 j2 <W2

H � �K � q�2; (8a)

r2 > 0 and �r� R�2 � �p� k�2 > 0; (8b)

such that the scattered parton and the remnants [cf.
Fig. 1(b)] are on-shell or have positive virtualities within
-3
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physically allowed limits and, hence, can give a proper
final hadronic state.

A Monte Carlo method is used to simulate this two-step
process by choosing K and k, impose the constraints, and
obtain the momentum fraction x. By iterating the proce-
dure, the additional quark and gluon distributions due to
the fluctuations are generated. Note that the flavor number
density

R
1
0 dxfi�x� is not affected by the convolution with

the fluctuation momentum. This means that the normaliza-
tion criteria (3) (modified for the hadron in question)
automatically ensure flavor conservation, since the meson
and the baryon in the fluctuation are multiplied by the same
normalization constant "2BM.

Since the x distribution of the fluctuation hadrons is
given by xH � K�=�K � K0�� � MH=�MB �MM�, the
low-x sea is mainly given by scattering off the meson in
the baryon-meson fluctuation. The scattering off of the
baryon in the baryon-meson fluctuation gives a contribu-
tion resembling the valence distribution but at lower x than
the bare hadron distribution. This means that the analytical
valence distribution of the bare hadron derived above is
modified for x & 0:7 with the inclusion of hadronic fluc-
tuations, as shown in Fig. 2.

The normalization of the sea distributions is given by the
amplitude coefficients "2BM. These partly depend on
Clebsch-Gordan coefficients and should also include a
suppression for larger masses. However, the full depen-
dence is due to nonperturbative dynamics that cannot be
calculated from first principles in QCD, including the
possibility of mixing of different mesons/baryons with
the same quark content. We therefore take the normal-
izations "2BM as free parameters.

1. Alternatives in the definitions of fluctuation momenta

In the details of the model described above, we have
made some choices which could be done differently:
(1) I
n the definition of the fluctuation momentum, the
fluctuation hadrons were made on-shell. Another
possibility would be to let the energy of the probed
hadron fluctuate around the hadron mass as in
Eq. (1), allowing the fluctuation hadrons to be off-
shell on a soft scale. The differences in the resulting
sea distributions are, however, small and can be
mimicked by changing parameter values.
(2) W
FIG. 3. Schematic view of the photon fluctuating to a vector
meson before interacting with the proton.
e defined the upper bound on the scattered parton
virtuality as j2 <W2

H � �K � q�2. This choice
keeps the parton distributions in the fluctuation had-
rons close to unaltered with respect to the distribu-
tions in the corresponding free hadrons. However,
this choice allows the struck parton to have essen-
tially all the proton momentum, which might seem
unnatural. An alternative approach would be to put
the upper bound on j2 to �xHP� q�2 ’ xHW2, such
that it is restricted by the longitudinal momentum
fraction taken by the fluctuation hadron. This results
094015-4
in a softer meson momentum spectrum, because the
distributions in the fluctuation meson are distorted.
For completeness, we will consider both alternatives
in our predictions for the s� �s asymmetry
(Sec. III D).
(3) T
he limits on the remnant momenta were put to r2 >
0 (to ensure that f�x� ! 0 as x ! 1) and �r� R�2 �
�p� k�2 > 0. This latter choice is motivated by the
fact that the fluctuation hadrons are close in space,
such that an exchange of momentum on a soft scale
should be possible, and, therefore, the condition is
on the whole remnant system. Another possibility
would be to force r and R separately to be timelike.
This is obviously not possible if we scatter on a
baryon with mass larger than the original hadron
mass and make the fluctuation hadrons on-shell,
since R2 > 0 can then never be satisfied. In the
off-shell case discussed under point 1, this is pos-
sible and gives slightly harder meson spectra for low
meson masses, whereas for meson masses *

300 MeV the difference is negligible.
D. GVDM contributions at low Q2

In the same spirit as the hadronic fluctuations of the
proton described above in Eq. (7), one should also note that
a photon may appear as a vector meson, such that the
quantum state should be expressed as

j(i � C0j(0i �
X
V

e
fV

jVi �
Z
m0

dm�� � ��: (9)

In the original vector meson dominance model (VDM)
only fluctuations to vector mesons were considered [10],
but in generalized models (GVDM), a contribution from a
continuum of higher-mass states is also included [11],
represented in Eq. (9) by an integral over masses.

The GVDM interpretation of the photon-proton interac-
tion is illustrated in Fig. 3. The corresponding cross section
is given by a convolution of the photon-to-meson fluctua-
tion probability with the meson propagator and the meson-
proton cross section [11], and the continuum contribution
is included using a phenomenologically chosen spectral
weight function. As shown in Ref. [12], the resulting
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expression for the proton structure function,

F2�x;Q
2� �

�1� x�Q2

4�2"

( X
V�+;!;-

rV

�
m2

V

Q2 �m2
V

�
2



�
1� .V

Q2

m2
V

�
� rC

�
�1� .C�

m2
0

Q2 �m2
0

� .C
m2
0

Q2 ln
�
1�

Q2

m2
0

��)
A(

Q20

x0
; (10)

describes data very well for Q2 & 0:7 GeV2.
At higher Q2 this GVDM contribution should be phased

out in order to conform to the conventional description in
terms of parton density functions. One way of doing this
[12] is by introducing a phenomenological form factor
�Q2

C=Q
2�a on the GVDM contribution for Q2 >Q2

C, which
gives a good description of HERA F2 data at these inter-
mediate Q2 & 4 GeV2. The GVDM component was found
to be negligible for Q2 * 4 GeV2.

The details of the phasing out of the GVDM component
are not known and would require additional assumptions
and parameters in the model. Fortunately, GVDM (giving
symmetric quark-antiquark contributions) can be neglected
in this study of the asymmetries in the proton, since the
relevant data used in the following is at Q2 * 4 GeV2,
where the GVDM component was found to be negligibly
small.
III. RESULTS AND COMPARISONS
TO EXPERIMENT

With this simple model, based only on Gaussian mo-
mentum fluctuations and hadronic quantum fluctuations
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FIG. 4 (color online). Parton distributions from our model at the
distributions (note the different scales).
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together with kinematical constraints, we are able to de-
scribe several different aspects of the parton distribution
functions of the nucleon. Perhaps phenomenologically
most interesting, we describe the asymmetries between �u
and �d in the proton quark sea. Also, we get an asymmetry
in the nucleon strange sea, such that the s quark has a
harder momentum distribution than the �s antiquark, which
is of interest [13] in relation to the NuTeV anomaly [14].

Since we have most data on the proton, the parton widths
are fitted for this special case of a hadron. For other
hadrons, we assume for simplicity that the widths of the
gluon distribution are the same as those for the proton. For
valence quarks, we assume that the d quark width is the
typical width for a quark with quark number

R
q�x�dx � 1

in a hadron, while the u quark width is typical for a quark
with number

R
q�x�dx � 2. This means that in all mesons

and also e.g. the � baryon, all valence quark widths are
given by the proton d quark width. This can be motivated
by the hadrons having essentially the same spacial extent,
making the only relevant difference the possible effects of
the Pauli exclusion principle. Such ‘‘Pauli blocking’’ (see
[6] and references therein) would reduce the effective
space available for the u quarks in the proton, resulting
in a larger momentum fluctuation width. Therefore, for the
neutron we simply make an isospin transformation d $ u
of the proton distribution parameters.

The model provides valence and sea parton x distribu-
tions as shown in Fig. 4. These apply at the low starting
scale Q2

0, while the parton distributions and the proton
structure function F2�x;Q

2� at higher Q2 are obtained by
applying standard QCD evolution as implemented in the
QCDNUM16 code [15]. For the results below, we have used
0
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0: (a) all parton distributions, (b) the sea parton
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the conventional MS scheme and the evolution equations
in next-to-leading order to have the highest available theo-
retical accuracy. Using the option of only leading order
equations, the values of all model parameters are unaf-
fected except Q0 and �g as discussed in Sec. III E. With
leading order evolution, however, the quality of the fit to
data becomes worse.

Since different model parameters are sensitive to differ-
ent data, we have used data from several different experi-
ments:
(i) fi
0

0.5

1

F
2(

x)

0

0.5

1

F
2(

x)

0

0.5

1

F
2(

x)

FIG. 5 (
variation
xed-target F2 data [16,17] to fix large-x (valence)
distributions;
(ii) H
ERA F2 data [18] for the gluon distribution width
and the starting scale Q2

0;

(iii) W
	 charge asymmetry data [19] as a cross-check

on the ratio of Gaussian widths for the u and d
valence quark distributions;
(iv) �d
= �u-asymmetry data [20] for the normalizations of
the jp�0i and jn��i fluctuations;
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Model
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color online). The proton structure function F2�x;Q
2�; H1

of the width parameter �g of the gluon distribution.
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(v) s
x
10

-

data [18

-6
trange sea data [21] to fix the normalization of the
fluctuations including strange quarks.
It should be noted, however, that most of the model pa-
rameters influence several observables at least to some
degree, making the task of a total fit quite involved.

It is interesting to note that this simple model can
describe such a wealth of different data with just one or
two parameters per data set, as will be seen in detail below.
The best-fit parameters are

�u � 230 MeV; �d � 170 MeV;

�g � 77 MeV; Q0 � 0:75 GeV;

�H � 100 MeV; "2p� � 0:45;

"2n� � 0:14; "2�K � 0:05:

(11)

The normalization "2BM for the proton fluctuating to a
baryon B and a meson M is defined as the fraction of the
proton momentum taken by all partons i in the fluctuation
Q2= 8.5 Q2= 12

Q2= 35 Q2= 45

4
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Q2= 120
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-1

x
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] compared to our model with its sensitivity to a 	50%
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BM,

"2BM �
Z 1

0
dx

"X
i2B

xfi=B�x� �
X
i2M

xfi=M�x�

#
: (12)
A. Inclusive F2 data

The model was originally [5] used only to fit inclusive
data, using a somewhat different definition for the hadronic
fluctuations, and was shown to give a good fit. Now we are
interested mainly in the model’s description of asymme-
tries in the proton, and, hence, the F2 data is used mainly to
fix some model parameters which are not well restricted by
asymmetry data, namely, the Gaussian width of the gluon
distribution �g and the starting scale Q0. However, in view
of the simplicity of the model, we still get a nice descrip-
tion of F2 data from H1 [18], see Fig. 5. To show the
sensitivity to the value of �g, we also show the result of
varying this parameter with 	50%. The surprisingly low
value for �g obtained in the fit will be discussed in
Sec. III E.

Since this data is restricted to relatively low x values, we
also compare to fixed-target NMC and BCDMS data
[16,17], which constrains the Gaussian widths of the u
and d quark distributions, �u and �d. This is shown in
Fig. 6, which also shows the sensitivity of the fit to chang-
ing these parameters with 	20%. As seen in the figure, the
u width is quite well constrained by the large-x data, while
the d width is less well constrained, and the data might
account for a �d which is up to 20% smaller. This is
certainly true for the NMC data, which actually seem to
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FIG. 6 (color online). The proton structure function F2�x;Q2� for
model, also showing the results of 	20% variations of the width pa
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prefer a smaller d width. However, the solid curve de-
scribes the best-fit value due to the very small error bars
on the BCDMS data, so we keep this as our main result in
the following.

B. The W	 forward-backward asymmetry

The forward-backward charged lepton asymmetry from
W	 decays in p �p collisions at the Tevatron provides
information on the large-x distributions of d and u quarks.
This is because the W bosons are produced mainly through
the processes u �d ! W� and d �u ! W�. If the u distribu-
tion is harder than the d distribution, we will get more W�

than W� in the direction of the proton beam and vice versa
in the direction of the �p beam, which is precisely what is
observed. The data is for Q2 * M2

W and 0:006< x< 0:34,
corresponding via PQCD evolution to 0:01 & x & 0:6 at
the starting scale Q2

0 � 1 GeV2. We can therefore use the
data on the charge asymmetry versus rapidity, expressed as

A�yl� �
d��=dyl � d��=dyl
d��=dyl � d��=dyl

(13)

to get further information on the Gaussian width of the d
quark distribution. The result, using our PQCD-evolved
parton distributions in PYTHIA to simulate W	 production
via the processes q �q0 ! W	, q �q0 ! gW	, and qg !
W	q0, and subsequent decay W	 ! l	4l, is shown in
Fig. 7. It is clear that the model reproduces the salient
features of the data, in particular, when the d width is
reduced as preferred by the NMC data discussed above.
x= 0.275

NMC
BCDMS
σu+20%
σd+20%
Model
σd-20%
σu-20%

0
2

V2)
1 10 10

2

Q2 (GeV2)

x= 0.65

1 10 10
2

Q2 (GeV2)

x= 0.75

large x values; NMC and BCDMS data [16,17] compared to our
rameters �u and �d for the u and d valence distributions.
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The difference between the widths of the u and d quarks
(�u � 230 MeV and �d � 135–170 MeV) can perhaps be
attributed to the Pauli blocking effect on the u quarks as
discussed above. Large differences in the intrinsic trans-
verse momentum between the u and d quarks are indeed
indicated by data from HERMES [22]. Also, the standard
parametrizations of parton densities [3,4] result in harder
spectra for the u than for the d valence distribution.

C. The �d- �u asymmetry

Now we come to the important results of the model
regarding the sea quark asymmetries. These result from
the fluctuations of the proton to meson-baryon pairs. The
first such asymmetry that we will investigate, and the one
with most experimental data, is the difference between �u
and �d distributions.

In this model, the �u and �d sea comes mainly from
fluctuations of the proton into a nucleon and a pion, since
these are the lowest energy fluctuations. This means that
we will get an excess of �d over �u, since jp�0i is symmetric
between �d and �u, while jn��i contains only �d and no �u. If
these were the only available fluctuations we would get
from isospin Clebsch-Gordan coefficients, the ratio
"2p�="2n� � C2p�=C2n� � 1=2. However, this is modified
by the inclusion of j��i fluctuations (which have small
mass suppression relative to the jN�i fluctuations). In the
SU(6) scheme, the j�����i fluctuation has a larger
Clebsch-Gordan coefficient than the j�0��i, which in-
creases the relative amount of �u quarks. In our model, we
094015
take such higher-mass fluctuations into account by simply
fitting the normalization parameters "2p� and "2n� using
experimental data on the light sea.

The ratio �d= �u can be extracted by comparing muon pair
production through the Drell-Yan process, q �q ! l�l�, in
pp collisions with that in pd collisions assuming isospin
symmetry. Using parametrizations for the sum �d�x� �
�u�x�, the difference �d�x� � �u�x� can also be extracted.

We have used data from the E866 Collaboration [20] to
fit the parameters relevant for the �d and �u distributions.
These parameters are the normalizations "2p� and "2n� and
the Gaussian width �H. However, the sensitivity of the
meson parton distributions to �H is small, and, in particu-
lar, the position of the peak of the momentum distributions
is quite independent of �H and depends only on the mass
of the fluctuation hadrons. For small �H & 100 MeV, also
the overall shape of the meson distributions is determined
mainly by the hadron masses. For larger �H * 100 MeV,
the parton distributions inside the fluctuation hadrons are
altered due to the kinematical limits in such a way as to
keep the convoluted shape stable. Therefore, we take the
value of �H to be 100 MeV, which is preferred by the fit.

In the distribution of �d�x� � �u�x� [or, equivalently
x �d�x� � x �u�x�], the effect of symmetric q �q pair production
from gluons in the PQCD evolution is canceled, and, thus,
the result depends only on the properties of the nonpertur-
bative distributions at the starting scale, barring the uncer-
tainties from the extraction of the data from experiments.
Therefore, it is quite interesting to compare the experimen-
tal results for this distribution with the model results. As
can be readily seen in Fig. 8(b), the pion distribution using
the physical pion mass m� � 140 MeV (solid line) is too
soft, peaking at x � 0:05, while the data peak around x ’
0:1. This cannot be cured using a larger �H, as explained
above, but rather indicates that one should use a larger
effective pion mass. Allowing this effective pion mass to be
a free parameter in the fit, the best-fit result is that meff �
400 MeV, as showed in Fig. 8 (dashed line). Note that the
points driving the fit are the small-x �d= �u data, which have
the smallest errors.

One can think of several explanations for such a large
effective pion mass. One could be that we need to include a
relatively large fraction of heavier mesons, such as the +
mesons, in our description. This would be in accordance
with the finding of a large jN+i component in the study [7]
based on a meson cloud model. Another explanation would
be that, since the pions have very nontypical hadron
masses, the meson-baryon fluctuations involve more ge-
neric meson states, with the quantum numbers defined by
the actual hadron states available, but with masses with
some distribution which can be approximated with a meson
mass of 400 MeV. In any case, the introduction of a larger
pion mass without any other modifications of the model
reduces the quality of the fit to the low-x F2 data described
in Sec. III A (the effect is comparable to changing the value
-8
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of �g by less than �50%), which points to the need of
introducing more assumptions and parameters to get a
perfect description of all data. Since our intention is not
to get the best possible fit (as conventional parton density
parametrizations), we refrain from doing this without a
physics motivation related to our model.

D. The strange sea asymmetry

Another consequence of the model is an asymmetry
between the strange and antistrange quark x distributions
in the nucleon, an aspect that we did a special study of in
Ref. [13] and extend here. The reason for this asymmetry is
that, in fluctuations with open strangeness, the s quark is
found in the baryon while the �s quark is in the meson. Since
the baryon, due to its higher mass, has a harder xH spec-
trum than the meson, we get a harder x spectrum for the s
quark than the �s. This effect persists in spite of the fact that
the s distribution in the � peaks at lower xp than the �s
distribution of the K�; see [5] for examples of typical
meson and baryon distributions from the model.

For simplicity, we assume that all fluctuations including
strangeness (such as j�K�i, j�Ki) can be implicitly in-
cluded in the j�Ki fluctuation. Fluctuations where the s�s
pair is part of a meson wave function, thus giving a
symmetric contribution, are neglected since they should
be suppressed (- due to large mass and 5 due to Clebsch-
Gordan coefficients). The resulting s and �s distributions are
shown in Fig. 4(b).

Note that in this model the criterion that the nucleon
should have zero total strangeness,

R
1
0�s�x� � �s�x�� � 0, is

automatically fulfilled, since all strange fluctuations have
the same number of s quarks in the baryon as �s quarks in
the meson due to the sum rules (3) modified for the hadrons
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in question. This normalization is not changed when the
parton distributions of the fluctuation are convoluted with
the distributions of the fluctuation hadrons in the nucleon
(except for the factor "BM, which is common to the baryon
and the meson).

Since the normalization of the j�K�i fluctuation cannot
be safely calculated, we take it as a free parameter which
we fit to data from the CCFR Collaboration [21] on the
averaged strange sea �s� �s�=2, as shown in Fig. 9. Here
perturbative QCD evolution to larger Q2 shifts the original
s and �s distributions to smaller x and adds a symmetric sea
arising from g ! s�s. The fit gives a j�K�i normal-
ization "2�K � 0:055 such that

R
1
0 dx�xs�x� � x�s�x��=R

1
0 dx�x �u�x� � x �d�x�� � 0:5; i.e. the strange sea momen-

tum fraction at Q2
0 is approximately half of that of a light

sea quark, in agreement with the parton density analyzes in
e.g. Ref. [23] and the meson cloud model study in Ref. [7].

This normalization of the nonperturbative strange quark
sea means that the coefficient "2�K has essentially been
scaled down with the fluctuation time �t� 1=�E relative
to the light sea. This is a smaller suppression than 1=��E�2

that one might have expected based on old-fashioned
perturbation theory. On the other hand, this s�s suppression
is of similar magnitude as the ratio P�s�s�=P�u �u� � 1=3 of
the probabilities for quark-antiquark production in phe-
nomenological hadronization models, such as the Lund
model [24]. Given that both cases concern nonperturbative
s�s pair production in a color field, this need not be surpris-
ing but indicates common features.

This j�K�i fluctuation results in an asymmetry S� �R
1
0 dx�xs�x� � x�s�x�� � 0:00165 at Q2 � 20 GeV2.

However, this result is not altogether independent of the
details of the model. The precise definition for the upper
limit of the struck quark virtuality discussed in Sec. II C 1,
-9
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item 2, and the width of the d distribution (which gives the
width of the valence quark distributions in � and K) both
have influence on the value. Using both definitions for the
limit and allowing the d width to vary between the values
used in Fig. 7, we get a range of values for the asymmetry

0:0010 
 S� 
 0:0023: (14)

An asymmetry in the momentum distributions of s and �s
is especially interesting in view of the NuTeV anomaly. In
the NuTeV experiment [14], the value of sin26W was
extracted from neutral and charged current cross sections
of neutrinos and antineutrinos. The value they find differs
by about 3� from the value obtained in standard model fits
to data from other experiments: sin26NuTeVW � 0:2277	
0:0016, while sin26SMW � 0:2227	 0:0004. A number of
possible explanations [25] for this discrepancy have been
suggested, both in terms of extensions to the standard
model and in terms of effects within the standard model.
One explanation within the standard model is that, since
the neutrinos and antineutrinos interact differently with s
and �s quarks, an asymmetry S� � 0 shifts the NuTeV
result. In order to facilitate the calculation of such a shift,
NuTeV has published a folding function F�x� [26] to
account for their analysis and give the shift in the extracted
value of sin26W , where the parton densities are to be
calculated at Q2 � 20 GeV2. Using this, we get the shift
�sin26W �

R
1
0 dxs

��x�F�x� � �0:0017, corresponding
to a reduction of the significance of the anomaly with
1 standard deviation. Our results for s��x� � xs�x� �
x�s�x� and s��x�F�x� are shown in Fig. 10. The range of
values of S� of Eq. (14) corresponds to �0:0024 

�sin26W 
 �0:00097 for the shift in sin26NuTeVW . This
reduces the anomaly to between 1:6� and 2:4� away
from the standard model value.

This important topic has been investigated previously.
On the theoretical side we note that it has recently been
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shown [27] that higher order perturbative effects give a
negative contribution to S�, although significantly smaller
than our positive nonperturbative effect. Within the meson
cloud model of Ref. [28], based on exponentially sup-
pressed �K fluctuations, an inconclusive result on the
sign of S� was obtained and a strange sea that was too
small to affect the NuTeV anomaly. The meson cloud
model in Ref. [7] obtained that the s quark has the softer
spectrum than the �s, corresponding to a negative S�. Using
a light-cone two-body wave function model applied to �K
fluctuations [29], a positive result similar to ours was
obtained in Ref. [30], and in Ref. [31] an even larger
reduction of the anomaly than ours was found using an
effective chiral quark model. Unfortunately, none of these
studies provides comparisons with the measured strange
sea, making the significance of their results difficult to
assess.

The experimental situation is at present unclear. In
Ref. [32], a positive S� was favored based on several
earlier experiments, whereas NuTeV [26,33] obtains the
opposite sign based on their own data. However, the global
-10
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analysis in Ref. [34] of the s� �s asymmetry, including the
NuTeV data as well as the CCFR data and using a very
general functional form for s��x�, gives a best-fit value for
the asymmetry S� of the same magnitude and sign as ours.

It is clear that an asymmetry in the strange quark sea of
the nucleon arises naturally in models where nonperturba-
tive sea quark distributions originate from hadronic fluc-
tuations of the nucleon. Our model, which reproduces the
measured strange sea, reduces the NuTeV anomaly to a
level which does not give a significant indication of physics
beyond the standard model.

E. Comparison to standard parametrizations

Let us first note that it is a nontrivial result that the many
different data sets shown above can be well described by a
model with only the eight parameters in Eq. (11). The
model provides all the different parton distributions in x
at Q2

0, i.e. uv�sea, dv�sea, g, �u, �d, s, �s. This is achieved with
only four shape parameters (the �’s) and three normaliza-
tion parameters (the "MB’s), i.e. significantly fewer shape
and normalization parameters than distributions.

The simplest possible conventional parametrization
based on counting rules [9], xfi�x� � Aix�1� x�ai , cannot
be as economic in the number of parameters and still allow
different shapes of different sea distributions. Considering
only valence and light sea distributions and neglecting the
strange sea, we were able to get reasonable fits of the same
data sets with eight free parameters [when applying the
constraints in Eqs. (3) and (4)]. However, the fitted values
for the exponents ai for the sea quarks and the gluon turn
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out more than twice as large as expected from the counting
rules (using the expected values gives a poor description of
the data). With our model we obtain a generally better
description of the data which is achieved with fewer pa-
rameters. Moreover, a physically motivated model whose
parameters have a physical interpretation can give new
insights about the unknown nonperturbative QCD dynam-
ics embodied in the parton distributions.

The standard parametrizations of parton densities, such
as CTEQ [3] and MRST [4], have many more parameters
(typically 20 for the x shapes and additional ones for
normalizations) and provide high-quality fits to large sets
of different kinds of data. It is, therefore, interesting to
compare the parton densities resulting from our model with
such standard parametrizations.

In Fig. 11 we show our parton densities together with the
uncertainty band of the CTEQ6M distributions [3] at the
low scale Q2 � 1:3 GeV2. Several features of the plot are
striking:
(1) F
0

0.1

0.2

0.3

xf
(x

)

2 � 1:
]). Note
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or large and intermediate x, our valence quark as
well as sea quark distributions from the model agree
quite well with those from CTEQ6M.
(2) O
ur gluon distribution is slightly lower at large x
and much larger at small x.
(3) F
or small x & 10�2 the quark and antiquark distri-
butions of CTEQ are clearly higher and growing
faster as x ! 0.
The last two points are connected; if there is a deficit in
low-x sea quarks of nonperturbative origin in our model,
this must be compensated by perturbatively generated sea
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quarks from g ! q �q in the PQCD evolution in order to fit
HERA F2 data. This requires a large gluon density at small
x and a low starting scale Q2

0, which combined with the
momentum sum rule equation (4) gives the low width �g of
the gluon distribution. If instead of using next-to-leading
order QCD evolution equations, we use only leading order
ones, then the evolution is slower, which makes the fit to
data prefer an even lower starting scale Q2

0 and a still more
peaked gluon distribution at small x, i.e. a smaller �g, in
order to develop a large enough q �q sea at low x. Thus, these
two model parameters depend on the order used in the
perturbative evolution, whereas the other parameters are
not affected much. Furthermore, a worse fit to data is
obtained with the leading order evolution.

The Gaussian momentum fluctuations in our model
leads to parton number densities that go to a constant as
x ! 0 and, hence, momentum densities going to zero as
x ! 0. The increase of the momentum distributions at x !
0 seen in Fig. 11 is thus caused by PQCD evolution from
the starting scale Q2

0, which is forced to be very low. We
cannot, however, get a sea quark distribution rising as fast
as the x�0:3 shape obtained by CTEQ [as seen in Fig. 11(b)]
at their Q0 � 1:3 GeV, without an accompanying rise in
the xg�x� density. This indicates that, besides meson-
baryon fluctuations, there is some additional source of q �q
pairs. One possibility, which seems quite natural, would be
a nonperturbative ‘‘gluon splitting’’ process similar to the
one in PQCD evolution. However, the precise form and
effect of such a process is not known. Such a contribution
would not have any large effect on the asymmetries studied
in this work, since the asymmetry data are found at larger x
and Q2. Therefore, we have chosen not to complicate our
model by further assumptions and parameters to add such a
conceivable component.
IV. CONCLUSIONS

We have presented a model based on Gaussian momen-
tum fluctuations and hadronic fluctuations of baryons into
baryon-meson pairs. The resulting parton momentum dis-
tributions describe a wealth of data surprisingly well in
view of the simplicity of the model. In this study, we have
focused on different asymmetries of quark distributions in
the proton; most notably, the u-d asymmetry obtained from
the W	 forward-backward asymmetry at the Tevatron and
the �d- �u asymmetry measured in pp and pd scattering.
From the phenomenological success of the model, we
can draw some overall conclusions:
(i) T
he Gaussian, based on the law of large numbers,
used for the momentum distribution may justify a
statistical description of the nonperturbative forces
confining partons in hadrons.
094015
(ii) A
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symmetries in the quark sea can be explained by
hadronic fluctuations, such as jpi � "0jp0i �
"p�jp�0i � "n�jn��i � . . .� "�Kj�K�i � . . . .
From the details of our study, we can make some further
assertions:
(i) T
he difference in shape between the u and d va-
lence distributions of the proton corresponds to a
difference in the widths of their momentum distri-
butions, which may be interpreted as a difference in
the spacial region available due to Pauli blocking.
(ii) C
omparison with the experimental result for the
distribution of �d�x� � �u�x� indicates that a larger
effective mass is needed for the pion in the jN�i
states, which may be interpreted as an effective way
of also including fluctuations with heavier mesons.
(iii) B
esides fluctuations into hadronic states, some
other mechanism seems to be needed to explain
the rise in the sea q �q distributions as x ! 0, used in
standard parametrizations of parton distributions.
(iv) A
n asymmetry between the strange and antistrange
nucleon sea is unavoidable, although the magnitude
of the asymmetry S� �

R
1
0 dx�xs�x� � x�s�x�� can-

not be stated more precisely than 0:0010 
 S� 

0:0023. This reduces the NuTeVanomaly from 3 to
about 2 standard deviations, leaving no significant
indication for physics beyond the standard model.
Although our model invoke similar basic hadronic fluc-
tuations as in meson cloud models, it differs in important
aspects, primarily concerning the basis for the momentum
distributions of both the hadrons in the fluctuations and the
partons in the hadrons. As discussed above, our model is
also more economical in terms of using fewer parameters
than even the simplest parametrizations of parton densities.
Our model provides the parton distributions for all light
quarks, as well as the strange sea and gluons, with alto-
gether only four parameters giving the x shapes and three
parameters for normalizations.

Finally, we note that this model could be used to develop
a library of parton density functions for more general
usage. So far, we have not done this since our intention
has not been high precision functions to be folded with
parton level cross sections in practical calculations.
Instead, our primary aim has been to gain understanding
of the nonperturbative QCD dynamics of the bound state
nucleon that is embodied in the parton density functions at
the low scale Q2

0, which are otherwise just parametrized.
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