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Two-flavor condensates in chiral dynamics: Temperature and isospin density effects
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Facultad de Fı́sica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile

(Received 1 February 2005; published 2 May 2005)
1550-7998=20
Isospin density and thermal corrections for several condensates are discussed, at the one-loop level, in
the frame of chiral dynamics with pionic degrees of freedom. The evolution of such objects gives an
additional insight into the condensed-pion phase transition that occurs basically when j�Ij > m�, j�Ij
being the isospin chemical potential. Calculations are done in both phases, showing a good agreement
with lattice results for such condensates.
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This paper is an extension of our previous analysis of
pion dynamics, according to chiral perturbation theory, in
the presence of isospin chemical potential and temperature.
In the first article [1] we discussed the evolution of the
masses and decay constants from the perspective of the first
phase (j�Ij < m�). In the second paper [2], we proposed a
scheme of calculation in the second phase (j�Ij > m�) for
the pion masses. The method allowed us to explore the
regions where the chemical potential is close to the phase
transition point (j�Ij * m�) and also where j�Ij � m�.
The validity of this approach is restricted to values of �I

less than the � or � masses.
Here we would like to address the thermal and density

behavior of several condensates that can be built in
this frame, as well as the validity of the Gell-Mann–
Oakes–Renner (G-MOR) relation, completing in this
way the discussion of the pion properties. We compare
our results with those obtained through lattice measure-
ments.

This analysis is relevant since some of these condensates
are sharp signals for the occurrence of the phase transition,
i.e., phenomenological order parameters. Natural scenarios
where this dynamics can play a role are in the core of
neutron stars (especially during the cooling period), pos-
sible asymmetries in the pion multiplicity in the central
rapidity region at RHIC or ALICE, etc.

As in the previous articles, we introduce the chemical
potential following [3,4]. Even though these articles deal
with QCD with two colors rather than QCD with three
colors, it is clear that both problems are intimately related.
The introduction of in-medium processes via isospin
chemical potential has been studied at zero temperature
[5,6] in both phases (j�Ij + m�) at tree level.
05=71(9)=094001(9)$23.00 094001
Different approaches, such as Lattice QCD [7–10],
Ladder QCD [11], and Nambu-Jona-Lasinio model-based
analyses [12–16] have confirmed the appearance of an
interesting and nontrivial phase structure as function of
temperature and chemical potentials, in particular, isospin
chemical potential.

I. CHIRAL LAGRANGIAN

In the low-energy description where only pion degrees
of freedom are relevant, the most general chiral invariant
Lagrangian at the second order, O�p2�, according to an
expansion in powers of the external momentum is given by

L 2 �
f2

4
Tr��D�U�yD�U � Uy� � �yU	 (1)

with

D�U � @�U 
 i�v�; U	 
 ifa�; Ug; (2)

� � 2B�s � ip�; (3)

U � �U1=2�ei�a�a=f� �U1=2; (4)

s� s0�x��sa�x��a, p�p0�x��pa�x��a, v� � 1
2 va

��x��
a,

and a� � 1
2 aa

��x��a being the scalar, pseudoscalar, vector,
and axial-vector external sources, respectively, where �a

are the Pauli matrices. �U is the vacuum expectation value
of the field U. M � diag�mu; md� is the quark-mass matrix
and B in the previous equation is an arbitrary constant
which will be fixed when the mass is identified setting
�mu � md�B � m2, where m denotes the bare (tree-level)
pion mass. We will use m� to denote the pion masses after
renormalization.

The most general O�p4� chiral Lagrangian has the form
L4 �
1

4
l1�Tr��D�U�yD�U	�2 �

1

4
l2 Tr��D�U�yD�U	Tr��D�U�yD�U	 �

1

16
�l3 � l4��Tr��Uy � U�y	�2

�
1

8
l4 Tr��D�U�yD�U	Tr��Uy � U�y	 � l5 Tr��L��U � UR����UyL�� � R��Uy�	

� l6 Tr�iL��D�U�D�U�y � iR���D�U�yD�U	 

1

16
l7�Tr��Uy 
 U�y	�2 �

1

4
�~h1 � ~h3�Tr��y�	



1

8
�~h1 
 ~h3�Tr��� 
 Tr��	�2 � ��y 
 Tr��y	�2	 
 2~h2Tr�L��L�� � R��R��	: (5)
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The li are the original Gasser and Leutwyler coupling
constants [17] for a SU�2� Lagrangian, and the ~hi constants
are couplings to pure external fields, and their values are
model dependent. They have to be determined experimen-
tally and are also tabulated in several articles and books.
This Lagrangian includes the chemical potentials in the
covariant derivatives and in the expectation value of the �U
matrix. The constants li include divergent corrections
which allow us to cancel the divergences from loops cor-
rections constructed from the L2 Lagrangian

li��� �
"i

32�2

�
�li 
 # � ln

�
m2

�2

��
(6)

with the ms pole

# �
2

4
 d
� ln4� � �0�1� � 1: (7)

The ~hi constants do not include divergent terms.
For j�Ij > m there is a symmetry breaking. The vacuum

expectation value that minimizes the potential, calculated
in [6], is

�U �
m2

�2
I

� i��1 cos$ � �2 sin$	

���������������
1


m4

�4
I

s
� c � i~�1s;

(8)

where c � m2=�2
I , s �

���������������������������
1
 �m4=�4

I �
q

. From now on, we
will use a tilde to refer to any vector rotated in a $ angle,

~v1 � v1 cos$ � v2 sin$

~v2 � 
v1 sin$ � v2 cos$:
(9)

For our purposes it is enough to keep the L2;2 terms of
the Lagrangian to construct the Dolan-Jackiw propagators
(DJp) which are the same as the ones we used in the
previous articles, both in the first and in the second phase,
respectively [1,2].

In both phases the �0 propagator will be the same,
because it is always diagonal,

DDJ�p�00 �
i

p2 
 m2 � i&
� 2�nB�jp0j�(�p2 
 m2�:

(10)

In the first phase, where the charged pions do not mix, the
thermal propagators are

DDJ�p��
 �
i

�p � �Iu�
2 
 m2 � i&

� 2�nB�jp0j�(��p � �Iu�2 
 m2� (11)

and DDJ�p�
� � DDJ�
p��
. Those propagators refer to
the fields �� and �
. In the second phase, where the
charged pion fields become mixed, the propagators have
a nontrivial matrix structure (see [2]). By scaling all the
parameters and variables with j�Ij, it is possible to make
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an expansion in terms of an appropriate smallness parame-
ter in powers of sn when j�Ij * m and cn when j�Ij � m,
where s and c are defined in Eq. (8). A similar expansion
criteria was proposed earlier by Splittorff, Toublan, and
Verbaarschot [18,19]. In this case we will use the lowest
order term in the expansion and a negative isospin chemi-
cal potential �I � 
j�Ij, as in the case of neutron stars.

The DJp in the region where j�Ij * m are the same as in
Eq. (11) plus corrections of O�s2� referring to the fields ~��

and ~�
. The other propagators DDJ�p��� � DDJ�p�

 are
of order s2.

In the case where j�Ij � m, it is better to work with the
fields ~�1 and ~�2 instead of ~��. The DJp for the ~�1 field is
the same as the �0 propagator plus higher corrections:
DDJ�p�11 � DDJ�p�00 � �
2

I O�c2�. For the ~�2 propagator
we have

DDJ�p�22 �
i

p2 � i&
� 2�nB�jp0j�(�p2� � �
2

I O�c2�:

(12)

The last propagator we will introduce is the mixed ~�1 ~�2

propagator, which will be used in the loop calculation for
the axial-charge density condensate,

DDJ�p�12 � 
2ic
p0

j�Ij

�
i

p2 
 �2
I � i&



i

p2 � i&

� 2�nB�jp0j��(�p2 
 �2
I � 
 (�p2�	

	
� �
2

I O�c3�: (13)

As in the case of the �� propagators, which are antidiag-
onal in the propagator matrix, we have DDJ�p�21 �
DDJ�
p�12. The other possible propagators are zero in
both phases: DDJ�p�3;a�3 � 0.
II. CONDENSATES

The different condensates can be constructed taking
appropriate functional derivatives with respect to the ex-
ternal sources in the extended chiral Lagrangian. In this
way we will consider the following currents,

Va
� �

(S
(va

�
�

1

2
�q"��aq; Aa

� �
(S�

(aa
�
�

1

2
�q"�"5�

aq;

J0
p �

(S�

(p0 � �q"5q; Ja
p �

(S�

(pa � �q"5�aq;


 J0
s �

(S�

(s0
� 
 �qq; 
Ja

s �
(S�

(sa � 
 �q�aq;

(14)

where S��s; p; v; a� is the action of our extended chiral
Lagrangian. After computing the different currents, the
introduction of isospin chemical potential for massive
states is achieved by taking the following values of the
external sources: s � M, v� � 1

2 �I�3u�, and a� �p�0,
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where M is the quark-mass matrix and u� is the fourth
velocity.

The vacuum expectation values of these objects are
precisely the condensates we would like to analyze. Only
some of these condensates will behave in a nontrivial way
with respect to �I and T. Here we will compute the one-
loop corrections to these condensates in the two phases.

The resulting currents are sorted in powers of momen-
tum: J � J�1� � J�3� � . . . . Expanding then in powers of
fields, the effective current will be of the form Jeff �
J�1;0� � J�1;1� � J�1;2� � J�3;0�. The notation Jn;m refers to
the power counting of Pn (momentum powers) and �m

(field powers). In this case the term J�1;1� is not necessary
since the vacuum expectation value of a single pion field
vanishes: hh0j�aj0ii � 0. We refer j0ii to the thermal
vacuum or ‘‘populated’’ vacuum.

By considering S2 and S4, it is not difficult to realize that
hh0jJ0

pj0ii � 0 in both phases. For the case of hh0jJa
s j0ii we

find, as expected, the result by Gasser and Leutwyler [17],

hh0jJa
s j0ii � hh0j �uu 
 �ddj0ii(a3 � 4m2B&ud

~h3(a3; (15)

which depends only on the L4 coefficients. So, at the tree
level, this quantity vanishes. &ud � �mu 
 md�=�mu � md�
is a small quantity. The important thing is that this con-
densate does not depend on temperature and/or isospin
chemical potential, and therefore it does not play the role
of an order parameter for the phase transition.
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FIG. 1 (color online). Quark condensate as a function of the
temperature and the isospin chemical potential.
III. FIRST PHASE: j�Ij<m

In this phase the only nonvanishing condensates are the
chiral condensate and the isospin-number density. The
other condensates (pion condensate and axial-charge den-
sity) vanish due to the trivial structure of the vacuum in this
phase where parity is conserved.

A. Chiral condensate

The chiral condensate is the natural order parameter
associated with the chiral symmetry breaking. It corre-
sponds to the nonvanishing vacuum expectation value of
the scalar current

hh/ii � hh0j �qqj0ii � hh0jJ0
s j0ii: (16)

The components of the effective current relevant for
radiative calculations are

Js�1;0� � 
2Bf2; Js�1;2� � B��2
0 � 2j�j2	;

Js�3;0� � 
4Bm2�l3 � l4 � ~h1�;
(17)

where j�j2 � ���
. Using the fact that

hh0j�a�x��b�x�j0ii � hh0jT�a�x��b�y�j0iiy�x; (18)

the corrected chiral condensate turns out to be
094001
hh/ii�
2Bf2

�
1
2

�
1

2
�l3
2�l4
32�2 ~h1�2I0�4I

�	
;

(19)

where the divergences were removed by the L4 counter-
terms and I, I0 are integral functions of T and �I, which are
tabulated in the appendix.

The constant ~h1, as was said before, is model dependent.
From the G-MOR relation at finite temperature and zero
chemical potential

m2
�f2

� � 

1

2
�mu � md�hh/ii; (20)

and using the results for the evolution of the chiral con-
densate in the previous equation as well as the m��T� and
f��T� given in [1] (and also in other papers) we can see that
the G-MOR relation remains valid if we neglect the term
&2

udl7 � 0 that appears in the �0 mass corrections, and take
~h1 � 0. If we take into account higher corrections to the G-
MOR relation at finite temperature, the ~h1 can be associ-
ated with the continuum threshold that appears in the sum-
rules approach [20].

Figure 1 shows the chiral condensate at finite tempera-
ture and isospin chemical potential. It is interesting to
remark that the chiral condensate vanishes also, almost
linearly with the baryonic density [21].

The introduction of the isospin chemical potential
breaks the degeneracy of the thermal evolution of the
pion masses and decay constants [1]. This suggests con-
sidering the G-MOR relation in terms of the average value
for the masses and decay constants. In fact, using our
results from the above quoted paper we find that

m 2
�f2

� � 

1

2
�mu � md�hh/ii; (21)

where
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m � �
1

3
�m�� � m�
 � m�0�; (22)

f � �
1

3
�f�� � f�
 � f�0�: (23)

With this prescription for the G-MOR relation, we can
consider ~h1 �

1
3 &2

udl7 � 0.

B. Isospin-number density

The isospin-number density condensate gives us infor-
mation about the baryon number difference between u and
d quarks in the thermal or populated vacuum. The isospin-
number density is defined as the 0-Lorentz component and
third-isospin component of the vector current

hhnIii �




0

��������12 qy�3q
��������0

��
� hh0jV3

0 j0ii: (24)

We need to calculate the expectation value of the vector
current in the vacuum. We will see that the only non-
vanishing component of the vector-current in the vacuum
is the isospin-number density. In fact, by considering the
expansion of the vector current and using the fact that
hh0j�aj0ii � 0 and hh0j�a�3�3j0ii � 0 we find in the first
phase case

hh0jV�1;2��j0ii � hh0j 
 i���@��
 
 �
@����

� 2�Ij�j2u�j0iie3: (25)

This means that the isospin-number density depends on
temperature only through thermal insertions in loop cor-
rections, and therefore, vanishes for T � 0 or j�Ij � 0.
Using the fact that

hh0j�a�x�@�b�x�j0ii � �@yhh0jT�a�x��b�y�j0ii	y�x;

(26)

we find that the vacuum expectation value of the vector
current is oriented in the e3 direction and proportional to
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FIG. 2 (color online). Isospin-number density condensate as a
function of the isospin chemical potential for different values of
the temperature.
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the fourth velocity: hh0jV�j0ii � hhnIiiu�e3. The isospin-
number density condensate is then

hhnIii � 8mf22&��I�J; (27)

where J is a function of T; �I defined in the appendix. A
finite value of this condensate requires a finite value for
both �I and T, as can be seen in Fig. 2.
IV. SECOND PHASE: j�Ij*m

In this phase, due to the nontrivial vacuum expectation
value of the U fields mentioned in Eq. (8), a condensation
of pions, in this case of negative pion, occurs, giving rise to
a superfluid phase. The apparition of two new condensates,
the pion condensate and the axial-charge density conden-
sate, will break parity.

As we mentioned before in Sec. I, we can expand the
loop corrections in this region as a series of powers of s2 �
1
 �m4=�4

I �. The condensates will have the shape

hhJii � hJi
�
��s� � 20

X
n�0

/n�T=j�Ij�s
2n
	
: (28)
A. Chiral condensate

Following the same procedure we used in the case of the
first phase, the nonvanishing components of the chiral
condensate at order s0 are

Js�1;0� � 
2Bf2c; (29)

Js�1;2� � Bc��2
0 � 2j ~�j2	; (30)

Js�3;0� � 
4B�2
I c�l3 � l4 � ~h1 �O�s2�	: (31)

The term c must be kept because it is a global constant.
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FIG. 3 (color online). Chiral condensate as a function of the
isospin chemical potential for different values of the tempera-
ture. The vertical line denotes the transition point between the
two phases.
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The resulting chiral condensate at finite temperature and
isospin chemical potential is then

hh/ii � 
2Bf2c
�
1� 20

�


1

2
�l3 � 2�l4 
 2I00 
 4I0

�	
:

(32)

In Fig. 3, we can see the transition of the chiral conden-
sate from the first phase to the second phase. Now, the
chiral condensate in the second phase tends to decrease
abruptly with the chemical potential. This effect is en-
hanced by temperature. Keeping in mind the previous
section, we can set the constant ~h1 � 0 if the G-MOR
relation is valid.

B. Isospin-number density

The nonvanishing components of the condensed vector
current at order s0 in the loop corrections are

hh0jV�j0ii�1;0� � 
f2j�Ijs2u�e3; (33)

hh0jV�j0ii�1;2� � hh0j 
 i� ~�1@� ~�2 
 ~�2@� ~�1�


 2j�Ijj ~�j2u� � j�Ij
3O�s2�j0iie3: (34)

Like in the first phase, the vacuum expectation value of the
vector current will be oriented as hh0jV�j0ii � hhnIiiu�e3.
The isospin-number density condensate at finite tempera-
ture and chemical potential is then

hhnIii � 
j�Ijf2fs2 � 820J0g: (35)

In Fig. 4, we can see the transition of the isospin-number
density from the first phase to the second phase. Like the
chiral condensate, in the second phase hhnIii tends to
decrease abruptly with the chemical potential. Once again
this effect is enhanced by temperature.
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FIG. 4 (color online). Isospin-number density as a function of
the isospin chemical potential for different values of the tem-
perature.
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C. Pion condensate

Now, in the second phase, the pion condensate is finite
and provides us important information about the con-
densed phase. The pion condensate is defined as

hh�aii � hh0ji �q"5�aqj0ii � hh0jJa
pj0ii; (36)

and carries the same quantum numbers of the pion field.
The nonvanishing components of the pion condensates are

J p�1;0� � 
2Bf2s~e1; (37)

J p�1;2� � Bs��2
0 � 2j�j2	~e1; (38)

J p�3;0� � 
4B�2
I s�l3 � l4 �O�s2�	~e1: (39)

As we did for the chiral condensate, we must keep the term
s, since it is a global factor. We can see that the pion
condensate is oriented in the direction ~e1, i.e., hh�ii �
hh ~�1ii~e1.

Proceeding in the same way as we did with the other
condensates, the pion condensate at finite temperature and
isospin chemical potential is

hh ~�1ii�2Bf2s
�
1�20

�


1

2
�l3�2�l4
2I00
4I0

�	
: (40)

It is important to recall that the pion condensates, like the
chiral condensate, give us information about the quarks
condensed in the vacuum; in this case the pion condensate
is a mixture of �u"5d and �d"5u. Although related, do not
confuse the pion condensate with the number density of
condensed pions.

Note that this result is basically the same as the chiral
condensate (except the global factors s and 
c) if we
neglect the term ~h1. Then the chiral condensate and pion
condensate satisfy the relation

shh/ii � chh ~�1ii � 0: (41)
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FIG. 5 (color online). Pion condensate as a function of the
isospin chemical potential for different values of the tempera-
ture. The vertical line denotes the transition point between the
two phases.
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We will see that this relation is valid in the limit when
j�Ij � m.

Figure 5 shows the behavior of the pion condensate as a
function of �I for different values of T. If we compare it
with Fig. 3, we can see that the chiral condensate dimin-
ishes with the chemical potential in a similar rate as the
pion condensate increases, according to Eq. (41). This
suggests that the quarks in the chiral condensate may
mix together to form a mixed u-d pseudoscalar Cooper-
pairs state. Because of the thermal bath, both chiral and
pion condensates decrease as a function of T, as expected,
due to the increase of the �
 mass in the thermal bath.

D. Axial-isospin charge density (AICD) condensate

The second phase also supports another condensate, the
axial-isospin charge density condensate, defined as

hhQa
Aii �




0

��������1

2
qy"5�aq

��������0
��

� hh0jAa
0j0ii: (42)

The nonvanishing components of the effective axial cur-
rent, according to the chiral approach, in the vacuum at the
lowest order in the s expansion are

hh0jA��1;0�j0ii � f2j�Ijcs~e2; (43)

hh0jA��1;2�j0ii�
j�Ijcs




0

�������� i
j�Ij

�~��@� ~�

 ~�
@� ~���

��2
0�3j�j2��2

IO�s2�
��������0

��
~e2; (44)

hh0jA��3;0�j0ii � j�Ij
3cs�2l4 �O�s2�	~e2: (45)

Note that this axial-charge density is oriented in the ~e2
direction: hh0jA�j0ii � hh ~Q2

Aiiu�~e2, perpendicular to the
orientation of the pion condensate and also with respect to
AICD condensate
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FIG. 6 (color online). Axial-isospin-charge density conden-
sate, scaled with m�f2

�, plotted in the neighborhood of the phase
transition as a function of temperature and isospin chemical
potential, both scaled with m�.
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the vector-current vacuum expectation value. The three
previous condensates are a basis in the isospin SU�2�
space. The AICD condensate is then

hh ~Q2
Aii � f2cs�1� 20�2�l4 
 4I0 
 4I00 
 8J0�	: (46)

Figure 6 shows the behavior of the AICD condensate as
a function of temperature and �I. Note that at a certain
critical temperature, for growing values of �I, the AICD
condensate changes its sign. We would like to remark that
this object seems to be a very interesting order parameter
for the phase transition into the pion superfluid phase.
Perhaps lattice measurements could confirm this point.
V. SECOND PHASE: j�Ij�m

When j�Ij � m, the natural expansion parameter is c �
m2=�2

I . So the different objects will be expressed as power
series of the form

hhJii � hJi
�
��c� � 20

X
n�0

�/n�T=j�Ij� � /log
n lnc	c2n

	
:

(47)

The main difference between the previous equation and
Eq. (28) is the presence of logarithms since loop correc-
tions give rise to terms of the form # 
 ln��2

I =�2�, which
cancel with the terms # 
 ln�m2=�2� coming from the li
coupling constants. These logarithms turn out to be ex-
tremely important for the behavior of the condensates in
this region.

A. Chiral condensate

The nonvanishing components of the chiral condensate,
neglecting higher corrections of order c2, are

hh0jJsj0ii�1;0� � 
2Bf2c; (48)

hh0jJsj0ii�1;2� � Bchh0j�2
0 � ~�2

1 � ~�2
2j0ii; (49)
2 2.2 2.4 2.6 2.8 3

0.1

0.125

0.15

0.175

0.2

0.225

0.25

T=0.9mΠ

T=0.5mΠ

T=0

<
<

qq
>

>
/<

qq
>

µ m Π|     | /I

FIG. 7 (color online). Chiral condensate as a function of the
isospin chemical potential for different values of the temperature
for high values of the chemical potential.
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hh0jJsj0ii�3;0� � 
2B�2
I c�l4 � 2~h1 �O�c2�	; (50)

keeping the global term c. Following the same procedure
as in the previous chapters, the chiral condensate at finite
temperature and isospin chemical potential is

hh/ii � 
2Bf2c
�
1� 20

�
�l4 � 32�2 ~h1 � 2 lnc


 4I00 

2

3

�
�T
�I

�
2
�	

: (51)

Figure 7 shows the chiral condensate behavior at finite
temperature for high values of the chemical potential. It
has a decreasing behavior as a function of both parameters.

B. Isospin-number density

The nonvanishing components of the vector current,
within the thermal vacuum, neglecting higher corrections
of order c2, are

hh0jV�j0ii�1;0� � 
j�Ijf2s2u�e3; (52)

hh0jV�j0ii�1;2� � j�Ijs2hh0j�2
0 � ~�2

1 � �2
IO�c2�j0iiu�e3;

(53)

hh0jV�j0ii�3;0� �
4j�Ij
3s2�l1� l2�O�c2�	u�e3: (54)

The isospin-number density is then

hhnIii � 
j�Ijf
2s2

�
1� 220

�
1

3
�l1 �

2

3
�l2 � 2 lnc 
 4I00

�	
:

(55)

Figure 8 shows the isospin-number density for different
temperatures and high values of the isospin chemical po-
tential. Because of the logarithmic term, it starts to grow
again with the chemical potential. As in the case of the ��

mass in this high chemical potential limit, it grows with
temperature, in contrast to the j�Ij � m case. A crossover
2 2.2 2.4 2.6 2.8 3
-1.85

-1.8

-1.75

-1.7

-1.65

-1.6

-1.55

T=0.8mΠ

T=0.6mΠ

T=0

−µ I /mΠ

<
<

   
>

>
/

n I
m

Π
f Π

2

FIG. 8 (color online). Isospin-number density as a function of
the isospin chemical potential at different values of the tempera-
ture in the high chemical potential limit.
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of the different temperature lines must occur somewhere in
the intermediate region of the chemical potential. At this
point, however, we must proceed with care since two-loop
corrections could provide us with other logarithmic terms
that may change the shape of this curve. In the previous
case, close to the phase transition point, we do not have
such difficulties to deal with.

C. Pion condensate

The nonvanishing components of the pseudoscalar cur-
rent, within the thermal vacuum and neglecting higher
corrections of order c2, are

J p�1;0� � 2Bf2s~e1; (56)

J p�1;2� � 
Bs��2
0 � ~�2

1 � ~�2
2	~e1; (57)

J p�3;0� � 2�2
I Bs�l4 �O�c2�	~e1: (58)

The pion condensate is then

hh ~�1ii�2Bf2s
�
1�20

�
�l4�2lnc
4I00


�
�T
�I

�
2
�	

: (59)

Figure 9 shows the pion condensate at finite temperature
and high values of the chemical potential. Like the isospin-
number density, it has a deflection and starts to decrease,
due to the logarithmic terms. Again in this case, we must be
careful since as in the isospin-number density evolution,
new important logarithmic terms, from two-loop calcula-
tions, could also change the bending as well as the general
shape of our one-loop result. Comparing with Eq. (51), if
we neglect the term ~h1, the pion condensate and the chiral
condensate follow the relation shh/ii � chh ~�1ii � 0, as
was the case in the region j�Ij * m.

D. AICD condensate

The axial-vector-current components, neglecting higher
terms in the expansion in terms of cn, are
2 2.2 2.4 2.6 2.8 3

0.86

0.88

0.9

0.92

0.94

0.96

T=0.9m Π

T=0.5m Π

T=0

−µ I /mΠ

<
<

∏
 >

>
/|

<
qq

>
|

∼ 1

FIG. 9 (color online). Pion condensate as a function of the
isospin chemical potential for different temperatures in the high
chemical potential limit.
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A��1;0� � f2j�Ijcsu�~e2; (60)

A��1;2� � j�Ijcs
�

1

j�Ijc
� ~�1@� ~�2 
 ~�2@� ~�1�


 �2
0 
 2 ~�2

1 
 ~�2
2

�
~e2; (61)

A ��3;0� � j�Ij
3cs2�l1 � l2 �O�c2�	u�~e2; (62)

where we keep the term cs as a global factor. In this case
we use also the propagator DDJ�p�12 which is of order c.
The factor 1=c in Eq. (61) cancels the other term c of the
propagator, so our result is still of O�c0�. As in the case
j�Ij * m, the AICD condensate will be oriented in the
u�~e3 direction. The AICD condensate is then

hhQ2
Aii � f2cs

�
1� 20

�
2

3
�l1 �

4

3
�l2 � 2 lnc 


1

2

 12I00

� I01 

2

3

�
�T
�I

�
2



32

15

�
�T
�I

�
4
�	

: (63)

Figure 10 shows the behavior of the AICD condensate
for high values of �I. Because of the logarithmic term, the
condensate for high T values starts to grow again as a
function of �I.

VI. FINAL COMMENTS AND SUMMARY

It is interesting to remark that our pion condensate
behaves as the diquark condensate, according to the lattice
QCD analysis, as a function of temperature and isospin
chemical potential [7,8]. This condensate starts to rise as
soon as we go into the second phase, close to the phase
transition point [9,10]. However, for bigger values of �I it
decreases, in agreement with our analytical results which
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AICD condensate
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1
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-1.
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<<Q  >>A

mΠ f Π
2

T/m Π

−µ I/mΠ

FIG. 10 (color online). Axial-isospin charge density conden-
sate, scaled with m�f2

�, plotted for high values of �I, as a
function of temperature and isospin chemical potential, both
scaled with m�.
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show a decreasing behavior as � ln1=�2
I . The lattice

analysis has confirmed also the relation between the chiral
condensate and the pion condensate according to Eq. (41).
The chiral condensate and the isospin-number density also
agree with the lattice results.

We would like to emphasize that the G-MOR relation (at
least in the first phase) remains valid if we write it in terms
of the average values of the pion masses and decay con-
stants. Also the relation shh/ii � chh ~�1ii � 0 is confirmed
by lattice results [10].

Finally, we think that the realization of condensates as a
basis in the isospin space in the second phase (hhA0ii,
hhV0ii, hhJpii are all perpendicular) is a very interesting
phenomenon. One-loop thermal corrections do not destroy
this property, which remains valid when j�Ij * m as well
as when j�Ij � m.
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APPENDIX

The functions involved in the radiative corrections in the
first phase are

2 � �m=4�f�2;

I �
Z 1

1
dx

��������������
x2 
 1

p
�nB�mx 
 j�Ij� � nB�mx � j�Ij�	;

J �
Z 1

1
dxx

��������������
x2 
 1

p
�nB�mx 
 j�Ij� 
 nB�mx � j�Ij�	;

In �
Z 1

1
dxx2n

��������������
x2 
 1

p
2nB�mx�;

2 being the perturbative parameter. These integrals do not
depend on the chemical potential sign and grow with both
temperature and chemical potential.

In the case of the second phase, we denote the same
functions with a prime: 20, I0, J0, I0n which are the same
functions, but with j�Ij instead of m.

20 � ��I=4�f�2;

I0 �
Z 1

1
dx

��������������
x2 
 1

p
�nB�j�Ij�x 
 1�� � nB�j�Ij�x � 1��	;

J0 �
Z 1

1
dxx

�������������
x2
1

p
�nB�j�Ij�x
1��
nB�j�Ij�x�1��	;

I0n �
Z 1

1
dxx2n

��������������
x2 
 1

p
2nB�j�Ijx�:

These integrals are also growing functions of the tempera-
ture but decrease with the chemical potential.
-8



TWO-FLAVOR CONDENSATES IN CHIRAL DYNAMICS: . . . PHYSICAL REVIEW D 71, 094001 (2005)
[1] M. Loewe and C. Villavicencio, Phys. Rev. D 67, 074034
(2003).

[2] M. Loewe and C. Villavicencio, Phys. Rev. D 70, 074005
(2004).

[3] J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett.
B 464, 183 (1999).

[4] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M.
Verbaarschot, and A. Zhitnitsky, Nucl. Phys. B582, 477
(2000).

[5] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592
(2001).

[6] J. B. Kogut and D. Toublan, Phys. Rev. D 64, 034007
(2001).

[7] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 014508
(2002).

[8] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505
(2002).

[9] J. B. Kogut, D. Toublan, and D. K. Sinclair, Phys. Lett. B
514, 77 (2001).

[10] J. B. Kogut, D. Toublan, and D. K. Sinclair, Nucl. Phys.
B642, 181 (2002).
094001
[11] A. Barducci, G. Pettini, L. Ravagli, and R. Casalbuoni,
Phys. Lett. B 564, 217 (2003).

[12] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,
Phys. Rev. D 71, 016011 (2005).

[13] D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212 (2003).
[14] L. He and P. Zhuang, hep-ph/0501024.
[15] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,

Phys. Rev. D 69, 096004 (2004).
[16] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562,

221 (2003).
[17] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142

(1984).
[18] K. Splittorff, D. Toublan, and J. J. M. Verbaarschot, Nucl.

Phys. B620, 290 (2002).
[19] K. Splittorff, D. Toublan, and J. J. M. Verbaarschot, Nucl.

Phys. B639, 524 (2002).
[20] C. A. Dominguez, M. S. Fetea, and M. Loewe, Phys. Lett.

B 387, 151 (1996).
[21] G. X. Peng, M. Loewe, U. Lombardo, and X. J. Wen, Nucl.

Phys. B, Proc. Suppl. 133, 259 (2004).
-9


