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Rephasing invariant parametrization of flavor mixing matrices

T. K. Kuo* and Tae-Hun Lee†

Physics Department, Purdue University, W. Lafayette, Indiana 47907, USA
(Received 12 April 2005; published 31 May 2005)
*Electronic
†Electronic

1550-7998=20
The three-flavor mixing matrix can be parameterized by the rephasing invariants �ijk � V1iV2jV3k. This
formulation brings out the inherent symmetry of the problem and has some appealing features. Examples
illustrating the parametrization and applications to quark mixing are presented.
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I. INTRODUCTION

It is well known that the flavor mixing matrices of
quarks �VCKM� and neutrinos (V�) can be multiplied by
phase matrices (rephasing) without changing their physical
contents. Thus, amongst the full set of parameters of these
matrices [nine for U(3) and eight for SU(3)], only four are
physical. The choices of these physical parameters are by
no means unique. In fact, a number of them are in common
usage. One may choose three mixing angles and a phase, as
in the original Cabibbo-Kobayashi-Maskawa (CKM) pa-
rametrization [1], or the ‘‘standard parametrization’’ in the
particle data book [2], or other similar schemes [3]. For
VCKM, a very convenient choice turns out to be the
Wolfenstein parametrization [4], which exhibits the mag-
nitude of the matrix elements clearly, even though the
rephasing angles are fixed in a specific way. One could
also use the absolute values jVijj [5], which are manifestly
rephasing invariant, although it is not clear which four of
these nine should be singled out. Similarly, another choice
is to use four of the nine rephasing invariants VikVj‘V

�
i‘V

�
jk

[6].
In this paper we suggest yet another parametrization

based on rephasing invariants. Without loss of generality,
we consider only mixing matrices with detV � 1. There
are then six rephasing invariants �ijk � V1iV2jV3k,
�i; j; k� � permutation of �1; 2; 3�. They are shown to sat-
isfy two simple constraints, leaving us with four indepen-
dent ones. These �’s are found to be closely related to
the other rephasing invariants, jVijj

2 and VikVj‘V
�
i‘V

�
jk.

However, they retain a lot of the symmetry inherent in
the problem and their construction is equally valid for
VCKM as for V�. These features seem to be rather appealing,
theoretically. We hope that their use can help to further our
understanding of the flavor mixing problem.

In Sec. II, we define the rephasing invariants �ijk and
exhibit the two constraints which reduce the number of
independent parameters to four. Section III is devoted to a
description of their detailed properties. Applications to the
quark mixing matrix will be presented in Sec. IV. Finally,
some concluding remarks are offered in Sec. V.
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II. REPHASING INVARIANT PARAMETRIZATION

As we mentioned in the introduction, there are several
known parametrizations of the flavor mixing matrix. A
common drawback of these schemes is the lack of unique-
ness. For instance, there are many ways to choose the
mixing angles because of noncommmutativity [3].
Similarly, it is not clear which four of the nine quantities,
jVijj

2 or VikVj‘V
�
i‘V

�
jk, should be favored. Despite argu-

ments preferring one choice over another, it seems fair to
say that a general criterion for a ‘‘best’’ set is still absent.
We will now introduce yet another parametrization, which,
in our opinion, alleviates the above problem to a large
extent.

We begin by considering, without loss of generality,
only mixing matrices which satisfy

detV � �1; (1)

i.e., only SU(3), but not U(3), matrices are used. Note that,
while the ‘‘standard parametrization’’ satisfies Eq. (1), the
original KM matrix does not. Equation (1) implies that, in
the rephasing transformation, V ! V 0 � PVP0, we can
impose on the diagonal phase matrices the conditions,
detP � detP0 � 1. It follows immediately that we can
construct a set of six rephasing invariants [7],

�ijk � V1iV2jV3k; (2)

where �i; j; k� � permutations of (1, 2, 3). These �’s satisfy
the constraints ( detV � 1),

X
�	��ijk � 1; (3)

where the ��–� sign applies when �i; j; k� is an even (odd)
permutation of (1, 2, 3). Let us define a matrix v, satisfying

X
Vijvik �

X
Vjivki � 
jk; (4)

i.e., vij is the cofactor of Vij. Then, from VVy � 1 �

detV,

V�
ij � vij: (5)

For example, V�
11 � V22V33 � V23V32, V�

12 � ��V21V33 �
V23V31�, etc. Using these equalities, we can relate �ijk to
jV‘mj

2. For instance,
-1  2005 The American Physical Society
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jV12j
2 � V12V

�
12

� V12��V21V33 � V23V31�

� �231 � �213: (6)

Similarly, all the jVijj
2 are equal to the differences of the

�’s. Thus, they must all have the same imaginary part,

�ijk � Rijk � iJ; (7)

where Rijk is real and J can be identified with the familiar
CP-violation measure as follows. We define [6]

��i � V�jV�kV�
�kV

�
�j; (8)

where ��;�; �� and �i; j; k� are cyclic permutations of (1, 2,
3), with

Im��i � J: (9)

Using Eq. (5), we have, for instance,

�11 � V22V33V�
23V

�
32

� �V�
11 � V23V32��V

�
23V

�
32�

� ��
132 � jV23j

2jV32j
2: (10)

establishing Im�132 � �J. At the same time, we may
eliminate V�

23V
�
32 in �11 and find

�11 � ��123 � jV22j
2jV33j

2; (11)

i.e., the sum (R123 � R132) is simply related to a combina-
tion of products of the jVijj

2’s.
The above results, with all possible choices of indices,

can be collected in a compact form. Let us define the
matrix.

W �
jV11j

2 jV12j
2 jV13j

2

jV21j
2 jV22j

2 jV23j
2

jV31j
2 jV32j

2 jV33j
2

0
B@

1
CA (12)

together with the matrix w (wij � cofactor of Wij) defined
by

X
i

Wijwik �
X
i

Wjiwki � �detW�
jk: (13)

Thus, for instance, w12 � ��jV21j
2jV33j

2 � jV23j
2jV31j

2�.
We further separate the even and odd permutation Rijk’s by
defining
093011
�x1; x2; x3� � �R123; R231; R312�;

�y1; y2; y3� � �R132; R213; R321�:
(14)

The relation detV � 1 now reads

�x1 � x2 � x3� � �y1 � y2 � y3� � 1: (15)

The relations between jVijj
2 and Rijk are summarized in

W �

x1 � y1 x2 � y2 x3 � y3
x3 � y2 x1 � y3 x2 � y1
x2 � y3 x3 � y1 x1 � y2

0
@

1
A; (16)

w �

x1 � y1 x2 � y2 x3 � y3
x3 � y2 x1 � y3 x2 � y1
x2 � y3 x3 � y1 x1 � y2

0
@

1
A: (17)

These equations enable one to switch between the two sets
of parameters, �xi; yj� and jV‘mj

2.
We now turn to the relations between J and Rijk

j�ijkj
2 � jV1ij

2jV2jj
2jV3kj

2 � jRijkj
2 � J2: (18)

Using Eqs. (14) and (16), there result six such equations
with i � 1; 2; 3,

�xi � y1��xi � y2��xi � y3� � x2i � J2; (19)

�x1 � yi��x2 � yi��x3 � yi� � y2i � J2: (20)

These are consistency conditions which, more interest-
ingly, may be regarded as cubic equations whose solutions
are the x’s and y’s. Thus, xi are the three solutions of

�3 � �1�
X

yj��
2 � �y1y2 � y2y3 � y3y1��

� �J2 � y1y2y3� � 0: (21)

Likewise, yi are those of

�3 � �1�
X

xj��2 � �x1x2 � x2x3 � x3x1��

� �J2 � x1x2x3� � 0: (22)

It follows that

�x1 � x2 � x3� � �y1 � y2 � y3� � 1; (23)

x1x2 � x2x3 � x3x1 � y1y2 � y2y3 � y3y1: (24)

In addition,

J2 � x1x2x3 � y1y2y3: (25)
-2
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Note that Eqs. (24) and (25) also follow from Eq. (15) and
the identity �123�231�312 � �132�213�321. Thus, a rephas-
ing invariant parametrization of V, with detV � 1, consists
of the set �xi; yj� subject to the two constraints in Eqs. (23)
and (24). Further, the CP-violation measure is given by the
very appealing expression in Eq. (25). One may obtain four
independent parameters out of the set �xi; yj� by eliminat-
ing any two of them through Eqs. (23) and (24). However,
it is clear that doing so would lose much of the inherent
symmetry of the problem.

At this juncture it is instructive to compare our results
with those of two-flavor mixings. For SU(2),

V � ei
�3ei��2ei
0�3 (26)

�
g h

�h� g�

� 	
; (27)

�jgj2 � jhj2 � 1�, and we may parameterize V either by �
or by one of the jVijj’s, say, jV11j

2 � jgj2 � cos2�.
However, one may equally well have used the (real) re-
phasing invariant parameters defined by

x � �12 � V11V22 � cos2�; (28)

y � �21 � V12V21 � �sin2�; (29)

x� y � detV � 1: (30)

While the generalizations to three flavors of the first two
parameterizations are well known, that of the third leads to
the set �xi; yj� which was studied above.

III. PROPERTIES OF THE PARAMETRIZATION

We now turn to some detailed properties of the parame-
ters �xi; yj�. Let us start by establishing the range of their
values. First, from Eq. (16), we have

�y1; y2; y3� � �x1; x2; x3�: (31)

Next, with Wij � 1 and jwijj � 1, and relations Eqs. (16)
and (17) such as x1 �

1
2 �W11 � w11�, etc., we readily find

�1 � �xi; yj� � 1: (32)

Consistency of the constraint, Eq. (24) with Eqs. (31)
and (32) can now be used to establish that at most one xi
can be negative (and, similarly, only one yj can be positive)
and that

x1x2 � x2x3 � x3x1  0: (33)

Finally, it is not hard to deduce that

0 � �x1 � x2 � x3� � 1; (34)

�1 � �y1 � y2 � y3� � 0: (35)

To summarize, the parameters �xi; yj� are distributed in
the interval ��1; 1�, with xi  yj, for all �i; j�. Also, 0 �
093011
P
xi � 1, with at most one negative xi, while �1 �P
yj � 0, with at most one positive yj.
Turning to the matrices W and w, with WwT � �detW�I,

we find

detW � �x21 � x22 � x23� � �y21 � y22 � y23�; (36)

which, by Eqs. (23) and (24), reduces to

detW � �x1 � x2 � x3� � �y1 � y2 � y3�: (37)

It follows, by Eqs. (34) and (35), that

�1 � detW � 1: (38)

It is interesting to note that, while the elements of any row
or column in W sum up to unity, the corresponding sum in
w is equal to detW,

P
iwiI �

P
iwIi � detW.

The properties discussed above also suggest an interest-
ing relation between three-flavor and two-flavor mixing, as
contained in the correspondence: �

P
xi� ! x and �

P
yj� !

y. For two flavors, detW �� x� y � cos2�) can be re-
garded as a measure of the deviation of the mixing from
identity, with detW � 0 at maximal mixing. It seems rea-
sonable to use detW as a measure of the total amount of
mixing for three flavors, with a necessary condition for
maximal mixing again being detW � 0.

We now consider two concrete examples which should
help to illuminate the nature of the �xi; yj� parametrization.

(A) x1 � 1; x2 � x3 � y1 � . . . � 0.
This solution of course corresponds to the identity ma-

trix, V � I, with detW � �1. Cyclic permutations of the
states generate equivalent solutions, with some xi � 1
while all other parameters vanish. An exchange of the
states switches the roles of x with y, resulting in solutions
such as y1 � �1; x1 � ::: � 0, with detW � �1.

The physical quark mixing matrix, VCKM, is very close
to the identity matrix, with x1 ’ 1 and all other parameters
’ 0. We will give a detailed description of VCKM in the next
section.

(B) x1 � x2 � x3 � 1=6, y1 � y2 � y3 � �1=6.
The solution exhibits maximal symmetry for three-

flavor mixing, with

W �

1=3 1=3 1=3
1=3 1=3 1=3
1=3 1=3 1=3

0
@

1
A (39)

detW � 0 and wij � 0. It is the three-flavor generalization
of the maximal mixing solution for the flavors, where the
2� 2 W matrix is given by

W �
1=2 1=2
1=2 1=2

� 	
(40)

so that � � !=4 and detW � 0.
The mixing matrix corresponding to the maximal sym-

metry solution, Eq. (39), can also be written down, pro-
vided one chooses a specific phase. If we use the
‘‘standard’’ parametrization, then
-3
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V �

1��
3

p 1��
3

p � i��
3

p

� ei���
3

p e�i���
3

p 1��
3

p

e�i���
3

p � ei���
3

p 1��
3

p

0
BB@

1
CCA; � � !=6: (41)

This solution is now known as being ‘‘trimaximal’’ [8]. It is
a particular case of a bimaximal solution [9], with �12 �

�23 � !=4, but sin�13 � 1=
���
3

p
, and 
 � !=2. It is note-

worthy that the matrix V is complex. Indeed, this solution
was known [6] to give rise to the maximally allowed value
for J2, given by Eq. (25)

J2 � 1=108; (42)

Within the present parametrization, we may demonstrate
this fact by considering the variation of J2 � x1x2x3 �
y1y2y3, for arbitrary 
xi and 
yj but subject to the con-
straint

P
�
xi� �

P
�
yj� � 0. At a symmetric point, xi �

�yj, for all �i; j�, so that also xixj � y‘ym,


J2 � �
x1 � 
x2 � 
x3�xixj � �
y1 � 
y2 � 
y3�y‘ym

� 0: (43)

Physically, the neutrino mixing matrix is close to being
bimaximal but with a small �13, and with 
 completely
unknown. It is tempting to speculate that there is a common
origin (renormalization being a prime candidate) of the
deviations of �12; �13 and 
 from the maximal symmetry
solution. If this is correct, then, from the known physical
values of �12 and �13, we would have a means to calculate
the phase 
.
IV. APPLICATIONS TO VCKM

For the CKM matrix, a particularly useful (approximate)
parametrization is due to Wolfenstein [4], with " ’ 0.22,

VCKM �

1� "2=2 " A"3�$� i��

�" 1� "2=2 A"2

A"3�1� $� i�� �A"2 1

0
BB@

1
CCA

� O�"4�: (44)

More accurate formulas are also available [10]. The matrix
is simple in form yet it captures all of the essence of the
quark mixing. Note, however, detV � 1.

To arrive at Eq. (44), one needs to choose the phases so
that only V13 and V31 are complex. We note that a rephas-
ing invariant parametrization can be constructed in terms
of the W matrix.

WCKM �
1� a2 � b2 a2 b2

a2 � e2 1� a2 � d2 � e2 d2

b2 � e2 d2 � e2 1� b2 � d2

0
B@

1
CA:

(45)

In this construction, we have incorporated the unitarity
conditions which also imply the relations W12 �W21 �
093011
��W13 � W31� � W23 �W32. The choice W31 �W13 �
e2  0 is made here in accordance with the experimental
jVCKMj values. To make connections to VCKM and to ex-
hibit the order of magnitudes of the various parameters, we
may write

a2 � "2; b2 � B2"6; d2 � D2"4; e2 � E2"6:

(46)

These relations define �"2; B2; D2; E2�, with �B2; D2; E2�
all being of order unity. We emphasize that Eq. (45), with
the values given in Eq. (46), is an exact parametrization,
and not an expansion in ". Thus, Eq. (46) may be regarded
as a mnemonic device to remind us of the physical values
of the parameters �a2; b2; d2; e2�. At the same time, once
we have a quantity expressed in terms of them, it may also
be used to obtain an expansion in ". Thus, Eqs. (45), (46)
are a rephasing invariant generalization of the Wolfenstein
parametrization, whereby higher order terms in " can be
read off directly.

From Eq. (45), we can calculate the elements of w, and
hence the parameters �xi; yj�. We have

2x1 � 2� 2�b2 � a2 � d2� � e2 � �w; 2x2 � e2 � �w;

2x3 � �e2 � �w; 2y1 � �2d2 � e2 � �w;

2y2 � �2a2 � e2 � �w; 2y3 � �2b2 � e2 � �w; (47)

where �w is defined by

�w � a2d2 � b2�a2 � d2 � e2�: (48)

Equations (47) and (48) are exact. But it is useful to get an
order of magnitude estimate by putting in the values of
Eq. (46), we see that x1 ’ O�1�, �x2; x3� ’ O�"6�, y1 ’
O�"4�, y2 ’ O�"2�, y3 ’ O�"6�. �w contains terms up to
O�"12�, with the leading order term being a2d2. The con-
straint

P
xi �

P
yj � 1 is easily verified. The constraints,

Eqs. (23) and (24), which are valid to all orders in ", lead to
simple approximate relations [with O�"2� corrections]

x1 ’ 1� y1 � y2; (49)

x2 � x3 ’ y1y2: (50)

In terms of the parameterizations in Eq. (45), we can
readily find the CP-violation measure

J2 �
1

4
��a4d4 � b4 � �b2 � e2�2 � 2b2�b2 � e2�

� 2a2d2�2b2 � e2�� � �; (51)

� �
1

4
� �w� a2d2��� �w� a2d2� � 2e2�; (52)

where �w is defined in Eq. (48). In Eq. (51), � is O�"2�
compared to the term in the square bracket, which can be
shown to be the 4� �area�2 of a triangle with sides
�ad; b;

����������������
b2 � e2

p
�. This result is of course well known in
-4



REPHASING INVARIANT PARAMETRIZATION OF . . . PHYSICAL REVIEW D 71, 093011 (2005)
connection with the study of the unitarity triangles, which
we will discuss in the following.

Consider the unitarity conditions,
P

VijV�
ik � 
jk.

Within the context of the present discussion, for j � k,
they are rephasing invariant and, with Eq. (5), reduce toP
�	��ijk � 1, while for j � k, the conditions are rephas-

ing dependent, but are identities if Eq. (5) is used. Thus,
tests of the unitarity triangles amount to those of Eq. (5). It
is well known that the most interesting relation is

VudV�
ub � VcdV�

cb � VtdV�
tb � 0; (53)

or

V11V
�
13 � V21V

�
23 � V31V

�
33 � 0: (54)

We can turn this equation into one with only rephasing
invariants by multiplying, for instance, by V�

21V23:

V11V
�
13V

�
21V23 � jV21j

2jV23j
2 � V31V

�
33V

�
21V23 � 0: (55)

This relation is displayed in Fig. 1. It is the usual unitarity
triangle rotated and rescaled (by jV21jjV23j�. It has a base
jV21j

2jV23j
2. The other two sides are given by

V11V�
13V

�
21V23 � ���

312 � jV2
13jjV21j

2

� �x3 � iJ; (56)

V31V�
33V

�
21V23 � ��231 � jV23j

2jV31j
2

� �x2 � iJ; (57)

where we have used jV2
13jV21j

2 � �x3 � y3��x3 � y2� �
x3, and jV2

23jV31j
2 � �x2 � y1��x2 � y3� � x2. Thus, the

triangle in Fig. 1 has height J, with the lengths of the
two sides being approximately �x23 � J2�1=2 and �x22 �
J2�1=2. Also, the base line has length � x2 � x3, according
to Eq. (50). It follows that

tan� � J=x2; (58)

tan� � J=x3: (59)

A similar construction (by choosing a different real base
line) yields
FIG. 1. Rescaled unitarity triangle with sides jV21j
2jV23j

2,
V31V

�
33V

�
21V23 and V11V

�
13V

�
21V23. Their approximate lengths

are as labeled.

093011
tan� � J=y3: (60)

In other words, the angles ��;�; �� are simply the (ap-
proximate) phase angles of the rephasing invariants
��
231;�

�
312 and ��

321, respectively.
Experimentally, CP-violating processes seem to indi-

cate that � � !=2 [11]. This is a very intriguing result
since it implies that y3 is much smaller than O�"6�, the
expected ‘‘natural’’ value. To the extent that all of the
above results are valid to O�"2�, we take y3 � O�"8�.
From Eq. (47), � � !=2 implies that

a2d2 � 2b2 � e2 (61)

or

jVusj
2jVcbj

2 � jVubj
2 � jVtdj

2: (62)

Also, y3 � 0 means that x3 � b2, x2 � b2 � e2, from
Eqs. (16) and (45). Thus, a particularly simple set of
parameters results,

x1 � 1� jVusj
2 � jVcbj; x2 � jVtdj

2;

x3 � jVubj
2; y1 � �jVcbj

2; y2 � �jVusj
2;

y3 � 0;

(63)

assuming � � !=2. All above relations are accurate to
O�"2�. In addition, for � � !=2, tan� tan� � 1, so that
from Eqs. (58) and (59) [or from Eq. (25)] we find

J2 � x2x3 � jVtdj
2jVubj

2: (64)

The above relations reveal that for VCKM, the parameters
�xi; yj� have particularly simple relations with the directly
measured quantities jVijj

2 and ��;�; ��. Whether there is a
deeper meaning behind the pattern in Eq. (63) remains to
be seen.
V. CONCLUSION

In this paper, we propose to parameterize a three-flavor
mixing matrix by �ijk [Eq. (2)], which are rephasing
invariant when we demand, without loss of generality,
that detV � 1. All of the �’s have the same imaginary
part, �J, which is the CP-violation measure. The six
real parts of � satisfy two constraints [Eqs. (23) and
(24)], resulting in four independent ones, as expected. In
addition, J2 is given in a very symmetric expression,
Eq. (25).

The �-parametrization is characterized by its symmetry,
which is a reflection of the inherent property of the three-
flavor mixing. With its help we are able to identify a
mixing pattern of ‘‘maximal symmetry,’’ in Eqs. (39) and
(41). Its resemblance to the neutrino mixing matrix seems
to suggest a possible origin of the latter. This possibility
will be explored.

The relation between the �xi; yj� parameters and jVijj
2

was discussed in detail. As an application we find explicit
-5
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�xi; yj� values corresponding to the physical VCKM. It is
shown that all of the measurable quantities [jVijj

2, phase
angles ��;�; ��] are directly related to the �xi; yj� varia-
bles. Of the three x-values, one is close to unity and the
other two are small �O�"6��, while the three y-values are of
order O�"2�;O�"4�, and O�"8�, respectively. To a good
approximation, � � !=2, it is found that �x2; x3; y1; y2�
are simply equal to �jVtdj

2; jVubj
2;�jVcbj

2;�jVusj
2�.
093011
The use of rephasing invariants should be useful in other
problems, for instance, in parameterizing the mass matri-
ces. We hope to return to this topic in the future.
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