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Leptonic CP violation in a two parameter model
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We further study the ‘‘complementary’’ ansatz, Tr�M�� � 0, for a prediagonal light Majorana type
neutrino mass matrix. Previously, this was studied for the CP conserving case and the case where the two
Majorana type CP violating phases were present but the Dirac type CP violating phase was neglected.
Here we employ a simple geometric algorithm which enables us to ‘‘solve’’ the ansatz including all three
CP violating phases. Specifically, given the known neutrino oscillation data and an assumed two
parameter (the third neutrino mass m3 and the Dirac CP phase �) family of inputs we predict the
neutrino masses and Majorana CP phases. Despite the two parameter ambiguity, interesting statements
emerge. There is a characteristic pattern of interconnected masses and CP phases. For large m3 the three
neutrinos are approximately degenerate. The only possibility for a mass hierarchy is to have m3 smaller
than the other two. A hierarchy with m3 largest is not allowed. Small CP violation is possible only near
two special values of m3. Also, the neutrinoless double beta decay parameter is approximately bounded as
0:020 eV< jmeej< 0:185 eV. As a by-product of looking at physical amplitudes we discuss an alter-
native parametrization of the lepton mixing matrix which results in simpler formulas. The physical
meaning of this parametrization is explained.
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I. INTRODUCTION

The remarkable experimental achievements (for some
recent examples see Refs. [1–3]) relating to neutrino os-
cillations [4] have brought much closer to reality the goal
of determining the ‘‘light’’ neutrino masses and the pre-
sumed 3� 3 lepton mixing matrix. It is possible that more
than three light neutrinos are required in order to under-
stand the results of the LSND Collaboration experiment
[5]. However, we consider it reasonable, before deciding
on this, to wait for further supporting evidence as should be
supplied soon by the MiniBooNE Collaboration [6]. The
mixing matrix contains three mixing angles and, if the
neutrinos are considered to be Dirac type fermions, a single
CP violation phase. That would be completely analogous
to the situation prevailing in the quark sector of the elec-
troweak theory. But it seems very interesting to consider
the possibility that the three light neutrinos are Majorana
type fermions. This involves only half as many fermionic
degrees of freedom and would be mandated if neutrinoless
double beta decay were to be conclusively established. The
Majorana neutrino scenario implies the existence of two
additional CP violation phases [7–10]. Then nine quanti-
ties (beyond the charged lepton masses) would be required
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for the specification of the lepton sector: three neutrino
masses, three mixing angles and three CP violation phases.

According to a recent analysis [11] it is possible to
extract from the data to good accuracy, two squared neu-
trino mass differences: m2

2 �m2
1 and jm2

3 �m2
2j, and two

intergenerational mixing angle squared sines: s212 and s223.
Furthermore the intergenerational mixing parameter s213 is
found to be very small. Thus 5 out of 9 quantities needed to
describe the leptonic sector in the Majorana neutrino sce-
nario can be considered as ‘‘known.’’ For many purposes it
is desirable to get an idea of the remaining 4 parameters.
As an aid in partially determining the other parameters, a
so-called ‘‘complementary ansatz’’ was proposed [12–15].
The name arises from the fact that if CP violation is
neglected, the ansatz determines (up to two different cases)
all three neutrino masses, given the two known squared
mass differences.

This complementary ansatz simply reads

Tr �M�� � 0: (1)

Here M� is the symmetric, but in general complex, pre-
diagonal Majorana neutrino mass matrix. It is brought to
diagonal form by the transformation

UTM�U � diag�m1; m2; m3� � M̂�; (2)

where U is a unitary matrix and the mi may be chosen as
real, positive. We impose the condition in a basis where the
-1  2005 The American Physical Society
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charged leptons are diagonal so that U gets identified with
the lepton mixing matrix. This choice is briefly motivated
below and in somewhat more detail elsewhere [16]. Once
we have made this choice the ansatz, of course, will not
hold in any other basis. We nowhere need to impose basis
invariance of the ansatz since, once it is imposed in the
given basis, the physical Lagrangian is already specified.

To count parameters let us rewrite Eq. (2) as M� �

U�M̂�U
y. M� has in general 12 arbitrary real parameters

which equal the sum of the three real parameters of M̂� and
the nine real parameters of a general unitary matrix U.
Now, as will be reviewed in the next section, the conven-
tional lepton mixing matrix K has only six parameters—
three angles and three phases. Three additional phases are
needed to get the most general U. These three phases can
be included by multiplying K on the left by a diagonal
matrix of phases. However, these additional phases may be
eliminated by a rephasing of the charged lepton fields
which sit to the left of K in the standard weak
Lagrangian. This means that if a matrix U which diago-
nalizes M� is found, there will always exist a physically
equivalent situation in which the three phases to the left of
K are eliminated. In this rephased basis the ansatz may be
restated as Tr�K�M̂�Ky� � 0.

Since Eq. (1) comprises two real equations, it gives two
conditions on the unknown 4 parameters of the lepton
sector. In other words, the lepton sector is described by a
two parameter family of solutions. This can be approxi-
mately simplified [12,14,15] by noting that the effects of
one CP violation phase get suppressed when the small
quantity s13 vanishes. Then there is a one parameter family
of solutions describing the lepton sector and it is straight-
forward to compute physical quantities for parameter
choices which span this family. The main purpose of the
present paper is to find the general solutions of Eq. (1)
without making this approximation. This gives a two pa-
rameter family which allows one to study the interplay of
all three CP violation phases.

A plausibility argument supporting the complementary
ansatz is concisely presented in Secs. 2 and 3 of [16]. It is
based on using the SO(10) grand unification group in the
approximation that the nonseesaw neutrino mass term
dominates. The Higgs fields which can contribute to fer-
mion masses at tree level are the 10, 120, and the 126. If
only a single 126 appears (but any number of the others)
one has the relation

Tr �MD � rME� / Tr�M��; (3)

where MD and ME are, respectively, the prediagonal mass
matrices of the charge �1=3 quarks and charge �1 lep-
tons, while r 
 3 takes account of running masses from the
grand unified scale to about 1 GeV. Now one of the major
surprises generated by the neutrino oscillation experiments
is that, unlike the quark mixing matrix which has the form
diag�1; 1; 1� � O���, the lepton mixing matrix is not at all
093005
close to the unit matrix. This suggests a further approxi-
mation in which one takes MD and ME to be diagonal but
allows the neutrino mass matrix to be far from the unit
matrix. Then the left hand side of Eq. (3) is approximately
�mb � 3m��, which is in turn close to zero.

As we will see, the model makes a number of character-
istic predictions for the neutrino mass spectrum which
should enable it to be readily tested in the near future. A
very recent review of many other models is given in
Ref. [17].

For convenience, our notation (essentially the standard
one) for the lepton mixing matrix and the corresponding
parametrized ansatz is given in Sec. II.

In Sec. III the ansatz is solved in the sense of providing a
geometrical algorithm which, given the two input quanti-
ties m3 (third neutrino mass, taken positive) and � (con-
ventional CP violation phase in the lepton mixing matrix),
enables one to predict the other two neutrino masses as
well as the other two CP violation phases. Of course, the
experimental knowledge on the neutrino squared mass
differences and CP conserving intergenerational mixing
angles are taken to be ‘‘known.’’ We separate the solutions
into two types I and II, depending, respectively, on whether
m3 is the largest or the smallest of the neutrino masses. In
addition, there is a discrete ambiguity corresponding to
reflecting a triangle involved in the algorithm. A ‘‘pan-
oramic’’ view of the predictions as functions of m3 and �
are presented in a convenient tabular form. The greatest
allowed value of m3 is determined by a cosmology bound.
As m3 decreases, a point is reached at which the type I
solutions no longer exist. As m3 decreases even further, the
type II solutions also cease to exist. The corresponding
values of m3 at which these solutions become disallowed
depend on the assumed value of the input �. This correla-
tion is studied analytically.

Some physical considerations are discussed in Sec. IV.
First, the dependence on the experimentally bounded
squared mixing angle s213 is investigated. We present also
a chart showing the dependence of the neutrinoless double
beta decay parameter jmeej on the input parameters m3 and
�. Even though the inputs are varying over a fairly large
range, the rather restrictive approximate bounded range
0:020 eV< jmeej< 0:185 eV emerges from the ansatz.

After calculating observable quantities in the model one
observes that they depend more simply on certain linear
combinations of the conventional ‘‘Dirac’’ and
‘‘Majorana’’ CP violation phases. In Sec. V we discuss
an alternative parametrization of the lepton mixing matrix
in which these combinations occur directly. In this parame-
trization the three phases just correspond to the three pos-
sible intergenerational mixings. An ‘‘invariant’’ combina-
tion of these three corresponds to the usual Dirac phase �.

We conclude in Sec. VI which contains a brief summary
and a discussion of results which emphasize some unique
features of the present work.
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II. PARAMETERIZED COMPLEMENTARY
ANSATZ

We define the lepton mixing matrix K from the charged
gauge boson interaction term in the leptonic sector of the
electroweak Lagrangian:

L �
ig���
2

p W�
� �eL��K�� H:c: (4)

Note that the ‘‘mass diagonal’’ neutrino fields �i are related
to the fields �i in the prediagonal mass basis by the matrix
equation

� � U�: (5)

We adopt essentially what seems to be the most common
parametrization:

K � Kexp!�1
0 ���; (6)

where a unimodular diagonal matrix of phases is defined as
093005
!0��� � diag�ei�1 ; ei�2 ; ei�3�; �1 � �2 � �3 � 0: (7)

The remaining factor Kexp which is the only part needed for
describing ordinary neutrino oscillations is written as the
product of three successive two dimensional unitary trans-
formations,

Kexp � !23��23; 0�!13��13;���!12��12; 0�; (8)

with three mixing angles and the CP violation phase �. For
example in the (12) subspace one has

!12��12; �12� �
cos�12 ei�12 sin�12 0

�e�i�12 sin�12 cos�12 0
0 0 1

2
64

3
75

(9)

with clear generalization to the (13) and (23) transforma-
tions. Multiplying out yields
Kexp �
c12c13 s12c13 s13e�i�

�s12c23 � c12s13s23e
i� c12c23 � s12s13s23e

i� c13s23
s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

2
64

3
75; (10)
where sij � sin�ij and cij � cos�ij.
Identifying K with U in Eq. (2), the ansatz of Eq. (1)

now reads

Tr �M̂�K�1
expK�

exp!0�2��� � 0; (11)

where Eqs. (2) and (6) were used. With the parametrized
mixing matrix of Eq. (10) the ansatz finally becomes

m1e
2i�11�2i�c12s13�

2 sin�e�i��

�m2e
2i�21�2i�s12s13�

2 sin�e�i��

�m3e
2i�31�2i�s13�

2 sin�ei���0: (12)

In this equation we can choose the diagonal masses
m1; m2; m3 to be real positive. Notice that setting the mix-
ing parameter s13 to zero eliminates the dependence on the
CP violation phase �. Then Eq. (12) goes over to the
simpler form studied previously [15].
III. SOLVING THE ANSATZ IN THE GENERAL
CASE

For definiteness we will use the following best fit values
for the differences of squared neutrino masses obtained in
Ref. [11]:

A � m2
2 �m2

1 � 6:9� 10�5eV2;

B � jm2
3 �m2

2j � 2:6� 10�3eV2:
(13)

The uncertainty in these determinations is roughly 25%.
Similarly for definiteness we will adopt the best fit values
for s212 and s223 obtained in the same analysis:
s212 � 0:30; s223 � 0:50: (14)

These mixing angles also have about a 25% uncertainty.
The experimental status of s213 is less accurately known. At
present only the 3% bound,

s213 � 0:047; (15)

is available. For our discussion we will consider s213 to be
known at a ‘‘typical’’ value satisfying this bound and
examine the sensitivity to changing it. Of course, the
experimental determination of s13 is a topic of great current
interest.

Previously [15], the (positive) mass of the third neutrino
m3 was considered to be the free parameter. It was varied to
obtain, via the simplified ansatz equation, a ‘‘panoramic
view’’ of the two independent Majorana phases (say �1 and
�2). In the present case, we shall not neglect the CP
violation phase � and consider it too as a free parameter
to be varied. It is necessary to specify a suitable algorithm
to treat the full ansatz. Previously it was noted that the
simplified ansatz could be pictured as a vector triangle in
the complex plane having sides equal to corresponding
neutrino masses (see Fig. 1 of [15]). The three internal
angles were found by trigonometry and related to the three
angles made by the sides with respect to the positive real
axis. Those in turn were twice the three (constrained)
Majorana phases. The orientation of the triangle got deter-
mined (up to a reflection) by the constraint in Eq. (7). In the
present case we will also rewrite the ansatz equation as a
vector triangle in the complex plane. However, the sides
will differ from the neutrino masses. In addition the angles
will differ from twice the constrained Majorana phases.
-3
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To start, we choose a value for m3 and a value for the
phase �. Then we can obtain from Eqs. (13) two different
solutions for the other masses m1 and m2. We call the
solution where m3 is the largest neutrino mass, the type I
case. The case where m3 is the smallest neutrino mass is
designated type II. m1 will be determined from the as-
sumed value of m3 as

m2
1 � m2

3 � A� B; (16)

where the upper and lower sign choices, respectively, refer
to the type I and type II cases. In either case we find m2 as

m2
2 � A�m2

1: (17)

Next, we redefine variables so that each of the three
terms in the ansatz equation, (12) is characterized by a
single magnitude m0

i and a single phase 2�0i. Equation (12)
then reads,

m0
1e

2i�01 �m0
2e

2i�02 �m0
3e

2i�03 � 0: (18)

This equation evidently represents a vector triangle in the
complex plane, as illustrated in Fig. 1. However, the
lengths are not the physical neutrino masses and the phases
are not twice the physical Majorana CP violation phases.
The auxiliary, primed, masses are seen to be related to the
(now known) physical masses by

m0
i � Gimi; (19)

where,

G1 � 1� 4�c12s13�2sin2�� 4�c12s13�4sin2��1=2;

G2 � 1� 4�s12s13�2sin2�� 4�s12s13�4sin2��1=2;

G3 � 1� 4s213sin
2�� 4s413sin

2��1=2:

(20)

Notice that, since � has already been specified, the rela-
tions between the m0

i and the mi are now known. Similarly,
the physical phases are related to the primed ones by

�i � �0i � Fi; (21)
FIG. 1. Vector triangle representing Eq. (18).
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where,

F1 �
1

2
arctan

�c12s13�2 sin�2��

1� 2�c12s13�2sin2�
;

F2 �
1

2
arctan

�s12s13�2 sin�2��

1� 2�s12s13�
2sin2�

;

F3 � �
1

2
arctan

s213 sin�2��

1� 2s213sin
2�

:

(22)

Again, note that, since � has been specified, the relations
between the �i and the �0i are now known. Referring to
Fig. 1 we can determine the internal angles �0

i by using the
law of cosines. For example,

cos�0
1 �

��m0
1�

2 � �m0
2�

2 � �m0
3�

2

2m0
2m

0
3

: (23)

Next, the auxiliary phases �0i can be related to the internal
angles just obtained as

�01 �
1

6
�(��0

1 � 2�0
2� � �;

�02 �
1

6
�(� 2�0

1 ��0
2� � �;

�03 �
1

6
��2(��0

1 ��0
2� � �:

(24)

The remaining still unknown parameter here is � which we
added to the right hand side of each equation. It represents
the effect of an arbitrary rotation of the whole triangle,
which should not be determinable from the internal angles.
It can be determined, however, by making use of the
constraint on the physical phases

P
i�i � 0. Notice that

there is no corresponding constraint for
P

i�
0
i. Using

Eq. (21) we get,

� � �
1

3

X
i

Fi; (25)

where the Fi are to be read from Eqs. (22). Now the masses
m1; m2 and the phases �1; �2 have been determined by a
simple algorithm, upon specification of m3 and �.

As remarked above, the dependence on the CP violation
phase � is suppressed in the limit that the mixing parameter
s213 vanishes. Hence, to illustrate this new feature, we will
consider a value s213 � 0:04, close to the 3% upper bound of
0.047 [11]. The predictions of the neutrino masses �m1; m2�
and two independent phases ��1; �2�, from the ansatz for
various assumed values of m3 and � are given in Table I.
Representative values of � were chosen to lie between 0
and ( since it may be observed from Eqs. (20) and (22) that
the solutions will have a periodicity of ( with respect to �.
Just from the ansatz there is no upper bound on the value of
m3. However, there is a recent cosmological bound [18]
which requires

jm1j � jm2j � jm3j< 0:7 eV: (26)

Thus values of m3 greater than about 0.3 eV are physically
-4



TABLE I. Panorama of solutions as m3 is lowered from about the highest value which is experimentally reasonable to about the
lowest value imposed by the model. For each value of m3, predictions are given for �m1; m2� and for ��1; �2� in the cases where
� � 0; 0:5; 1:0; 1:5; 2:0; 2:5. All phases are measured in radians. Here the value s213 � 0:04 was adopted. In the type I solutions m3 is
the largest mass while in the type II solutions m3 is the smallest mass.

Type m1; m2; m3 in eV �1; �2�� � 0� �1; �2�� � 0:5� �1; �2�� � 1:0� �1; �2�� � 1:5� �1; �2�� � 2:0� �1; �2�� � 2:5�

I 0.2955, 0.2956, 0.3 0:0043; 1:0428 0:0126; 1:0495 0:0058; 1:0536 �0:0108; 1:0510 �0:0210; 1:0440 �0:0153; 1:0394
II 0.3042, 0.3043, 0.3 �0:0041; 1:0512 0:0043; 1:0577 �0:0023; 1:0615 �0:0189; 1:0587 �0:0291; 1:0518 �0:0235; 1:0476
I 0.0856, 0.0860, 0.1 0:0486; 0:9975 0:0566; 1:0049 0:0489; 1:0106 0:0318; 1:0091 0:0219; 1:0015 0:0285; 0:9953
II 0.1119, 0.1123, 0.1 �0:0311; 1:0774 �0:0226; 1:0835 �0:0289; 1:0863 �0:0453; 1:0828 �0:0556; 1:0763 �0:0503; 1:0731
I 0.0305, 0.0316, 0.06 0:3913; 0:6543 0:3873; 0:6748 0:3578; 0:7048 0:3288; 0:7167 0:3258; 0:7013 0:3530; 0:6720
II 0.0783, 0.0787, 0.06 �0:0669; 1:1119 �0:0583; 1:1174 �0:0644; 1:1188 �0:0806; 1:1145 �0:0911; 1:1085 �0:0860; 1:1066
II 0.0643, 0.0648, 0.04 �0:1064; 1:1494 �0:0978; 1:1541 �0:1040; 1:1538 �0:1203; 1:1483 �0:1307; 1:1430 �0:1255; 1:1428
II 0.0541, 0.0548, 0.02 �0:1747; 1:2115 �0:1669; 1:2142 �0:1751; 1:2095 �0:1928; 1:2012 �0:2024; 1:1976 �0:1951; 1:2019
II 0.0506, 0.0512, 0.005 �0:2601; 1:2620 �0:2603; 1:2611 �0:2914; 1:2276 �0:3251; 1:2035 �0:3250; 1:2094 �0:2950; 1:2369
II 0.0503, 0.0510, 0.001 �0:3830; 1:1805
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disfavored. Table I shows that at this value both type I and
type II solutions exist. This is true also for higher values of
m3. The picture remains very similar down to around m3 �
0:1 eV but as one gets closer to roughly 0:06 eV, there is a
marked change. If one further lowers m3, it is found that
the type I solution no longer exists. On the other hand the
type II solution persists and does not change much until m3

approaches the neighborhood of 0.001 eV. There are no
solutions for m3 below this region.

Note that the columns in Table I with � � 0 correspond
to the previous case, discussed in some detail in Sec. IV of
[15]. In this case, m0

i and �0i, respectively, coincide with mi
and �i so we can identify the vectors of the triangle with the
physical masses and phases. As one decreases the value of
m3 the type I triangle goes from being close to equilateral
to the degenerate situation with three collinear vectors. In
this limiting case the vectors representing neutrino one and
neutrino two are approximately equal and add up to exactly
cancel the vector representing neutrino 3. The precise
orientation of the straight line is due to imposing the
constraint in Eq. (7). This is actually a CP conserving
case [19]. Then one can find the m3 value (a little below
0.06 eV) for this situation by looking for a real solution of
m1 �m2 �m3 � 0 together with Eqs. (13) [See Eq. (4.4)
of [12] ]. Clearly there can be no type I solutions below this
value of m3. The type II solutions can exist below this value
but similarly end (a little below m3 � 0:001 eV) when the
triangle becomes degenerate in a different way. For the
type II degenerate triangle, the neutrino 1 and neutrino 2
vectors are collinear but oppositely directed and the small
neutrino 3 vector adds to the neutrino 1 vector to cancel the
neutrino 2 vector. This is also a CP conserving case.

When the effects of � not equal to zero are included, it is
not possible to make a triangle out of the physical neutrino
masses and phases. The relevant auxiliary triangle is made,
as illustrated, using the primed masses and phases. Thus
the limiting values of m3, where the type I and type II cases
each end, correspond to this primed triangle becoming
degenerate. We can get the limiting value by looking for
093005
real solutions of
P

iGimi � 0, together with Eqs. (13). The
limiting value �m3�min is found to be

�m3�
2
min �

1

2)



�*� �*2 � 4)��1=2

�
; (27)

where,

) � �G2
1 �G2

2 �G2
3�

2 � 4G2
1G

2
2;

* � �2�G2
1 �G2

2 �G2
3��AG

2
1 � B�G2

1 �G2
2��

� 4G2
1G

2
2�A� 2B�;

� � �AG2
1 � B�G2

1 �G2
2��

2 � 4G2
1G

2
2B�A� B�:

(28)

Here the upper and lower sign choices, respectively, refer
to the type I and type II cases.

The computed values of �m3�min as a function of � are
shown in Table II. Looking at this table, one can see why
the entries in Table I for m3 � 0:001 eV and nonzero
values of � are missing. Simply, for those cases, �m3�min >
0:001 eV. Clearly, this correlation of the allowed input
values of m3 with the input values of � must be respected
in studying the present model. This correlation is imposed
by the ansatz itself. For large values of m3 there is no
constraint from the ansatz but Eq. (26) gives an experi-
mental constraint. It should be remarked that the collinear
auxiliary triangles with nonzero � correspond to CP vio-
lation. In these cases the CP violation arises from non-
trivial phases �i in addition to the assumed nonzero �.
Actually, a better measure of CP violation involves the
(two independent) phase differences �i � �j. These are the
objects essentially related to the internal angles in Fig. 1.

As noted in Ref. [15], the possibility of reflecting the
triangle about any line in the plane gives another set of
solutions corresponding to reversing the signs of all the
phase differences �i � �j. In the present case, where � is
not zero, reflecting the ‘‘unphysical’’ triangle about any
line in the plane will give an alternate solution in which the
�0i � �0j are reversed in sign. More specifically, one should
-5



TABLE III. Panorama of solutions, using the reflected triangle, as m3 is lowered from about the highest value which is
experimentally reasonable to about the lowest value imposed by the model. Notice that the predicted masses m1 and m2 have not
been given since they are the same as in Table I.

Type m3 in eV �1; �2�� � 0� �1; �2�� � 0:5� �1; �2�� � 1:0� �1; �2�� � 1:5� �1; �2�� � 2:0� �1; �2�� � 2:5�

I 0.3 �0:0043;�1:0428 0:0113;�1:0393 0:0210;�1:0422 0:0151;�1:0492 �0:0015;�1:0536 �0:0123;�1:0512
II 0.3 0:0041;�1:0512 0:0196;�1:0475 0:0291;�1:0500 0:0232;�1:0569 0:0066;�1:0614 �0:0040;�1:0593
I 0.1 �0:0486;�0:9975 �0:0326;�0:9947 �0:0221;�0:9992 �0:0275;�1:0073 �0:0444;�1:0111 �0:0560;�1:0070
II 0.1 0:0311;�1:0774 0:0465;�1:0732 0:0557;�1:0748 0:0495;�1:0810 0:0331;�1:0859 0:0228;�1:0848
I 0.06 �0:3913;�0:6543 �0:3634;�0:6645 �0:3310;�0:6934 �0:3246;�0:7149 �0:3483;�0:7109 �0:3806;�0:6837
II 0.06 0:0669;�1:1119 0:0822;�1:1071 0:0912;�1:1073 0:0849;�1:1127 0:0685;�1:1180 0:0584;�1:1183
II 0.04 0:1064;�1:1494 0:1217;�1:1438 0:1308;�1:1423 0:1246;�1:1465 0:1082;�1:1526 0:0979;�1:1506
II 0.02 0:1747;�1:2115 0:1909;�1:2040 0:2019;�1:1981 0:1971;�1:1994 0:1799;�1:2072 0:1676;�1:2136
II 0.005 0:2601;�1:2620 0:2853;�1:2447 0:3182;�1:2162 0:3294;�1:2017 0:3024;�1:2190 0:2694;�1:2486
II 0.001 0:3830;�1:1805

TABLE II. Minimum allowed value of the input mass m3 as a function of the input CP violation phase �. These correspond to the
cases where the triangle in Fig. 1 becomes degenerate. Here, the choice s213 � 0:04 has been made.

Type �m3�min �� � 0� in eV �m3�min �� � 0:5� �m3�min �� � 1:0� �m3�min �� � 1:5� �m3�min �� � 2:0� �m3�min �� � 2:5�

I 0.059 271 6 0.059 096 7 0.058 717 8 0.058 479 9 0.058 620 3 0.058 997 1
II 0.000 681 1 0.001 0546 1 0.001 902 4 0.002 463 6 0.002 129 4 0.001 272 3
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reverse the signs of the first terms on the right hand sides in
Eqs. (24). The physical phases �i for this alternate solution
will then depend on � as illustrated in Table III.

Unlike the � � 0 case, the phase differences for the
reflected triangle solution are now only approximately
the negatives of those for the original solution. For ex-
ample, in the case of a type I triangle with m3 � 0:3 and
� � 1:0, Table I shows �1 � �2 � �1:0478 for the origi-
nal solution while Table III shows �1 � �2 � �1:0632 for
the reflected triangle solution.

It should be remarked that the number of decimal places
to which we are calculating is chosen in order to be able to
compare various solutions of the ansatz with each other for
precisely fixed values of the input mass differences and
mixing angles. The experimental accuracy of the inputs
must, of course, be kept in mind.
TABLE IV. Panorama of solutions as in Table I but with s213 � 0:01
since they are the same as in Table I.

Type m3 in eV �1; �2�� � 0� �1; �2�� � 0:5� �1; �2��

I 0.3 �0:0043;�1:0428 0:0063; 1:0445 0:0046;
II 0.3 0:0041;�1:0512 �0:0020; 1:0528 �0:0037;
I 0.1 �0:0486;�0:9975 0:0505; 0:9994 0:0486;
II 0.1 0:0311;�1:0774 �0:0290; 1:0789 �0:0306;
I 0.06 �0:3913;�0:6543 0:3900; 0:6597 0:3816;
II 0.06 0:0669;�1:1119 �0:0608; 1:1132 �0:0634;
II 0.04 0:1064;�1:1494 �0:1043; 1:1505 �0:1058;
II 0.02 0:1747;�1:2115 �0:1728; 1:2122 �0:1748;
II 0.005 0:2601;�1:2620 �0:2605; 1:2602 �0:2673;
II 0.001 0:3830;�1:1805 0:4036; 1:1593 �0:4828;
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IV. PHYSICAL APPLICATIONS

It is very interesting to note the dependence of our
results on the value of the necessarily small quantity s213,
which can be seen from the ansatz Eq. (12) to modulate the
� dependence. For this purpose let us consider, instead of
the value 0.04, the value 0.01. The resulting analog of
Table I is presented in Table IV.

Notice that Table IV has fewer missing solutions for the
case m3 � 0:001 than does Table I. This is because de-
creasing s213 brings the Gi in Eq. (19) closer to unity, which
in turn brings the physical neutrino masses closer to the
auxiliary m0

i. The modified lower limits for m3 are illus-
trated in Table V.

The implications of this model are relevant to experi-
ments which are designed to search for evidence of neu-
. Notice that the predicted masses m1 and m2 have not been given

� 1:0� �1; �2�� � 1:5� �1; �2�� � 2:0� �1; �2�� � 2:5�

1:0455 0:0007; 1:0448 �0:0018; 1:0432 �0:0006; 1:0420
1:0537 �0:0076; 1:0530 �0:0101; 1:0514 �0:0089; 1:0503
1:0008 0:0446; 1:0004 0:0421; 0:9985 0:0436; 0:9970
1:0796 �0:0345; 1:0787 �0:0370; 1:0772 �0:0358; 1:0763
0:6681 0:3738; 0:6718 0:3736; 0:6676 0:3813; 0:6592
1:1136 �0:0702; 1:1125 �0:0727; 1:1111 �0:0716; 1:1106
1:1504 �0:1097; 1:1492 �0:1122; 1:1479 �0:1111; 1:1478
1:2110 �0:1789; 1:2091 �0:1813; 1:2082 �0:1797; 1:2091
1:2538 �0:2744; 1:2486 �0:2750; 1:2496 �0:2687; 1:2558
1:0840 �0:4252; 1:1420
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TABLE V. Minimum allowed value of the input mass m3 as a function of the input CP violation phase � as in Table II but with
s213 � 0:01.

Type �m3�min �� � 0� in eV �m3�min �� � 0:5� �m3�min �� � 1:0� �m3�min �� � 1:5� �m3�min �� � 2:0� �m3�min �� � 2:5�

I 0.059 271 6 0.059 226 3 0.059 131 2 0.059 073 5 0.059 107 4 0.059 200 9
II 0.000 681 1 0.000 775 5 0.000 976 1 0.001 099 3 0.001 026 8 0.000 828 7

TABLE VI. The neutrinoless double beta decay amplitude factor jmeej in eV as a function of the input CP violation phase �. Here,
the choice s213 � 0:04 has been made.

Type m1; m2; m3 in eV jmeej�� � 0� jmeej�� � 0:5� jmeej�� � 1:0� jmeej�� � 1:5� jmeej�� � 2:0� jmeej�� � 2:5�

I 0.2955, 0.2956, 0.3 0.164 0.174 0.183 0.181 0.170 0.162
II 0.3042, 0.3043, 0.3 0.167 0.177 0.185 0.183 0.172 0.164
I 0.0856, 0.0860, 0.1 0.051 0.055 0.057 0.057 0.054 0.051
II 0.1119, 0.1123, 0.1 0.058 0.062 0.065 0.064 0.060 0.057
I 0.0305, 0.0316, 0.06 0.026 0.028 0.029 0.030 0.029 0.027
II 0.0783, 0.0787, 0.06 0.038 0.040 0.042 0.041 0.039 0.037
II 0.0643, 0.0648, 0.04 0.029 0.031 0.032 0.031 0.029 0.028
II 0.0541, 0.0548, 0.02 0.022 0.023 0.023 0.023 0.022 0.021
II 0.0506, 0.0512, 0.005 0.019 0.020 0.020 0.019 0.019 0.019
II 0.0503, 0.0510, 0.001 0.019
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trinoless double beta decay. The amplitudes for these
processes contain a factor mee, which is independent of
the nuclear wave functions. Its magnitude is given by

jmeej � jm1�Kexp 11�
2e�2i�1 �m2�Kexp 12�

2e�2i�2

�m3�Kexp 13�
2e�2i�3 j; (29)

which appears to require, for its evaluation, a full knowl-
edge of the neutrino masses, mixing angles, and CP vio-
lation phases. The present experimental bound [20] on this
quantity is

jmeej< �0:35 ! 1:30� eV: (30)

A very recent review of neutrinoless double beta decay is
given in Ref. [21]. Using the general parametrization of
Eq. (6) one finds.
TABLE VII. The neutrinoless double beta decay amplitude factor
the reflected triangle. Notice that the predicted masses m1 and m2 h

Type m3 in eV jmeej�� � 0� jmeej�� � 0:5� jmeej�� �

I 0.3 0.164 0.161 0.167
II 0.3 0.167 0.163 0.169
I 0.1 0.051 0.051 0.053
II 0.1 0.058 0.057 0.059
I 0.06 0.026 0.027 0.029
II 0.06 0.038 0.037 0.038
II 0.04 0.029 0.028 0.029
II 0.02 0.022 0.021 0.022
II 0.005 0.019 0.019 0.019
II 0.001 0.019
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mee �
������������������
C2 �D2

p
; (31)

wherein

C � m1�c12c13�2 �m2�s12c13�2 cos2��2 � �1��

�m3�s13�
2 cos2��3 � �1 � ���;

D � m2�s12c13�
2 sin2��2 � �1��

�m3�s13�
2 sin2��3 � �1 � ���:

(32)

The dependence of jmeej on the input values of m3 and �,
obtained by using the ansatz of present interest, is dis-
played in Table VI for the same choices as in Table I. There
is noticeable dependence on the input CP phase � for the
larger values of m3.

For the reflected triangle solutions discussed above, the
predictions of jmeej are given below in Table VII. Again
jmeej in eV as a function of the input CP violation phase � using
ave not been given since they are the same as in Table VI.

1:0� jmeej�� � 1:5� jmeej�� � 2:0� jmeej�� � 2:5�

0.178 0.183 0.177
0.180 0.186 0.180
0.056 0.058 0.056
0.063 0.065 0.063
0.030 0.030 0.028
0.040 0.042 0.041
0.030 0.032 0.031
0.022 0.023 0.023
0.019 0.019 0.020
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TABLE VIII. The neutrinoless double beta decay amplitude factor jmeej in eV as a function of the input CP violation phase � as in
Table VI but with s213 � 0:01. Notice that the predicted masses m1 and m2 have not been given since they are the same as in Table VI.

Type m3 in eV jmeej�� � 0� jmeej�� � 0:5� jmeej�� � 1:0� jmeej�� � 1:5� jmeej�� � 2:0� jmeej�� � 2:5�

I 0.3 0.177 0.180 0.181 0.182 0.179 0.176
II 0.3 0.179 0.182 0.184 0.183 0.181 0.179
I 0.1 0.056 0.057 0.057 0.057 0.056 0.056
II 0.1 0.063 0.064 0.064 0.064 0.063 0.062
I 0.06 0.029 0.029 0.030 0.030 0.030 0.029
II 0.06 0.041 0.041 0.042 0.041 0.041 0.040
II 0.04 0.031 0.031 0.031 0.031 0.031 0.031
II 0.02 0.023 0.023 0.023 0.023 0.023 0.023
II 0.005 0.020 0.020 0.020 0.020 0.020 0.020
II 0.001 0.020 0.020 0.020 0.020
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there is a noticeable dependence on � for the larger values
of m3. However, the peak values occur at different values
of � compared to Table VI.

The effects of lowering s213 to 0.01 are finally illustrated
below, for the nonreflected triangle case, in Table VIII.

The main conclusion of this model for neutrinoless
double beta decay, obtained by looking at all three tables
above and noting the smooth dependence of jmeej on the
inputs m3 and � for each of the type I and type II solutions,
is that jmeej should satisfy the restrictive approximate
bounds:

0:020 eV< jmeej< 0:185 eV: (33)

Here, the lower bound is intrinsic to the model but the
upper bound reflects the experimental bound on the sum of
neutrino masses quoted in Eq. (26) and might be improved
upon. We also note that, when both type I and type II
solutions exist for a given value of m3, the type II solution
gives somewhat larger jmeej. The main dependence of
jmeej is, of course, on the input parameter m3.
093005
We plan to discuss elsewhere other physical applications
including beta decay end point spectra [22] and leptogen-
esis [23] using the approach of Ref. [15].

V. SYMMETRICAL PARAMETRIZATION

In the parametrization of the leptonic mixing matrix
given by Eq. (6), which is similar to the one usually
adopted, there appears to be an important distinction be-
tween the phase � and the phases �i in the sense that only �
survives when one considers the ordinary (overall lepton
number conserving) neutrino oscillation experiments.
However, this distinction may be preserved in a different
way while using a more symmetrical parametrization.
Thus consider,

KS � !23��23; �23�!13��13; �13�!12��12; �12�; (34)

which contains the same mixing angles �ij as before but
now has the three associated CP violation phases �ij. The
!ij��ij; �ij� were defined as in Eq. (9). Writing out the
whole matrix yields,
KS �
c12c13 s12c13ei�12 s13ei�13

�s12c23e
�i�12 � c12s13s23e

i��23��13� c12c23 � s12s13s23e
i��12��23��13� c13s23e

i�23

s12s23e�i��12��23� � c12s13c23e�i�13 �c12s23e�i�23 � s12s13c23ei��12��13� c13c23

2
64

3
75: (35)
To relate this form to the previous one, we can use the
identity [7],

!�1
0 ���KS!0��� � !23��23;��2 ��23 � �3�

�!13��13;��1 ��13 � �3�

�!12��12;��1 ��12 � �2�; (36)

where the diagonal matrix of phases !0��� was defined in
Eq. (7). Now choose the �i’s (two are independent) so that
the transformed (12) and (23) phases vanish. Then, with the
identifications,

�12 � �1 � �2; �23 � �2 � �3;

�13 � �1 � �3 � �;
(37)
we notice that KS is related to K of Eq. (6) as

KS � !0���K: (38)

Since K sits in the weak interaction Lagrangian, Eq. (4)
with the charged lepton field row vector on its left, all
physical results will be unchanged if K is multiplied by a
diagonal matrix of phases on its left. Thus K and KS are
equivalent and the relations between the CP violation
phases of the two parametrizations are given by Eq. (37).
By construction, � is the only CP violation phase which
can appear in the description of ordinary neutrino oscilla-
tions. Solving the Eqs. (37) for � in terms of the three �ij’s
gives,
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� � �12 ��23 ��13; (39)

which shows that in the symmetrical parametrization, the
‘‘invariant phase’’ [24] combination I123 � �12 ��23 �
�13 is the object which measures CP violation for ordinary
neutrino oscillations. It has the desired property of intrinsi-
cally spanning three generations, as needed for CP viola-
tion in ordinary neutrino oscillation or in the quark mixing
analog. Furthermore, it can be seen [25] to have an inter-
esting mathematical structure and to be useful for exten-
sion to the case where there are more than three generations
of fermions

The convenience of the symmetrical parametrization
can already be seen in Eqs. (32) needed for obtaining
jmeej. These equations simplify when one observes that
the combinations of phases occurring within them are
simply �12 and �13. These are evidently the two phases
which describe the coupling of the first lepton generation.
Similarly, the estimates of CP violation needed for the
treatment of leptogenesis made in Sec. V of [15] also
simplify when expressed in terms of the �ij.
VI. SUMMARY AND DISCUSSION

Assuming that the squared neutrino mass differences
and the three (CP conserving) lepton mixing angles are
known, the mass of one neutrino and three CP violation
phases remain to be determined. The complementary an-
satz, Tr�M�� � 0, provides two real conditions on the
parameters of the lepton system. Here, we took m3 and �
as input parameters and then determined the other two
masses and the other two CP violation phases according
to this ansatz. A geometric algorithm was presented based
on a modification of an earlier treatment [15] in which the
Dirac CP violation phase � was neglected, but the other
two Majorana type CP violation phases were retained.
That is a reasonable first approximation because the effect
of delta is always suppressed by s13 which is known
experimentally to be small. However, there is great interest
in the determination of � so it should not be ignored.
Additionally in Ref. [15] it was suggested that small CP
violation scenarios might be close to the physical case. The
present algorithm is exact and does not require the assump-
tion that any parameters are small.

The ansatz yields a characteristic pattern for the neutrino
masses and the CP violation phases. Because s213 is small,
the main cause of change is the assumed value of the input
parameter m3. First one notes that the small experimental
value of A in Eq. (13) always forces the neutrino 1 and
neutrino 2 masses to be almost degenerate (See Table I).
For the largest allowed [from the cosmological bound
Eq. (26)] value of m3, around 0.3 eV, there is an approxi-
mate threefold degeneracy of all the neutrino masses. This
is understandable since when the mass scale becomes
large, both A and B can be considered negligible. Then
the triangle of Fig. 1 becomes approximately equilateral.
093005
The internal angles of the triangle approximately measure
the strength of the CP phases �i � �j and are clearly large
in this situation. As m3 decreases, a point around 0.06 eV is
reached at which the type I solutions (m3 largest) no longer
exist. At this point the CP violation vanishes for the � � 0
case and becomes small when � � 0. Also at this point the
almost degenerate neutrino 1 and neutrino 2 masses de-
crease to about half the neutrino 3 mass in the type I case.
In the present model neutrinos 1 and 2 never go below
about half the mass of neutrino 3. The situation is a little
different for the type II cases (m3 smallest). The type II
solutions exist from a maximum of m3 about 0.3 eV to a
minimum of about 0.001 eV. At the minimum the CP
violation ceases for � � 0 and has small effects when � �

0. Furthermore, at the minimum neutrinos 1 and 2 are
about 50 times heavier than neutrino 3. Thus a possible
hierarchy of neutrino masses can only exist in one way for
the present model, with m3 considerably smaller than the
other two.

Some further technical details of the model were dis-
played in Tables II, III, and IV. These describe the �
dependence of the limiting values of the input parameter
m3 just mentioned, the solution corrresponding to a re-
flected triangle and the effect of varying s213.

The model might be handy for getting an idea about the
range of predictions for various leptonic phenomena, since
it gives a plausible two parameter complete set of neutrino
masses, mixing angles and CP violation phases. For ex-
ample, in Sec. V an application is made to the quantity
jmeej which characterizes neutrinoless double beta decay.
The results for about the largest allowed s213, the reflected
solution and a smaller s213 choice are shown in Tables VI,
VII, and VIII. It may be noted that the solutions vary rather
smoothly with m3 and � for a solution of given type. Thus,
even though one might initially expect the result of allow-
ing a two parameter family choice to be rather weak, it
turns out that one gets fairly restrictive upper and lower
bounds on jmeej as expressed in Eq. (33). These approxi-
mate bounds may be considered also as a test of the present
model. Of course, any direct determination of a neutrino
mass, say from a beta decay end point experiment, will also
provide a test of the model.

In Sec. V we took up a question which is independent of
the present ansatz. How should one parametrize the lepton
mixing matrix? Of course, this is fundamentally a question
of choice. However, we notice in the present work that the
physical quantities we calculate depend in the simplest
way not on the conventional phases � and �i (whereP

�i � 0) but on the quantities �ij given in Eq. (37).
Such a dependence arises naturally if one uses the alter-
native mixing matrix parametrization given by KS in
Eq. (34). This may be understood physically in the follow-
ing way. The �ij’s by definition [see Eq. (9), for example]
span two generations. It is known [10] that CP violation
begins at the two generation level for Majorana neutrinos.
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Thus it seems appropriate that the �ij’s should appear.
However, if � � 0, the three �ij’s are not linearly inde-
pendent according to Eq. (39). This takes care of the two
Majorana phases. When � � 0 the three �ij’s are of course
independent and the ‘‘invariant phase’’ combination I123
discussed some time ago [24,25] intrinsically spans three
generations, as expected for Dirac type CP violation.
093005
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