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Generalized Boltzmann formalism for oscillating neutrinos
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In the standard approaches to neutrino transport in the simulation of core-collapse supernovas, one will
often start from the classical Boltzmann equation for the neutrino’s spatial, temporal, and spectral
evolution. For each neutrino species, and its antiparticle, the classical density in phase space, or the
associated specific intensity, will be calculated as a function of time. The neutrino radiation is coupled to
matter by source and sink terms on the ‘‘right-hand side’’ of the transport equation and together with the
equations of hydrodynamics this set of coupled partial differential equations for classical densities
describes, in principle, the evolution of core collapse and explosion. However, with the possibility of
neutrino oscillations between species, a purely quantum-physical effect, how to generalize this set of
Boltzmann equations for classical quantities to reflect oscillation physics has not been clear. To date, the
formalisms developed have retained the character of quantum operator physics involving complex
quantities and have not been suitable for easy incorporation into standard supernova codes. In this paper,
we derive generalized Boltzmann equations for quasiclassical, real-valued phase-space densities that
retain all the standard oscillation phenomenology, including the matter-enhanced resonant flavor conver-
sion (Mikheev-Smirnov-Wolfenstein effect), neutrino self-interactions, and the interplay between deco-
hering matter coupling and flavor oscillations. With this formalism, any code(s) that can now handle the
solution of the classical Boltzmann or transport equation can easily be generalized to include neutrino
oscillations in a quantum-physically consistent fashion.
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I. INTRODUCTION

Particle oscillations are fundamental for a wide range of
interesting physics: quark mixing by the Cabbibo-
Kobayashi-Maskawa matrix, its leptonic analog for mas-
sive neutrinos [1,2], hypothetical photon-axion and
photon-graviton oscillations in the presence of external
magnetic fields [3,4], and K0 � �K0 oscillations [5].
Physically, these quantum systems are coupled to macro-
scopic systems and through external interaction their quan-
tum evolution is altered. One prominent astrophysical
context in which such oscillation for macroscopic systems
is important involves the neutrinos in supernova cores that
may execute flavor oscillations while simultaneously in-
teracting with ambient supernova matter [6–11]. The pri-
mary motivation of the present paper is to provide a
straightforward generalization of the Boltzmann formalism
with which to analyze the kinetics of oscillating neutrinos
with collisions. By taking ensemble-averaged matrix ele-
ments of quantum field operators for mixed particles,
following the pioneering work of [12–16], we obtain qua-
siclassical phase-space densities that satisfy real-valued
Boltzmann equations with coupling terms that account
for the neutrino oscillations. The formalism is clear, nu-
merically tractable, and does not contain operators, com-
plex quantities, or wave functions.
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In Sec. II, we introduce the Wigner phase-space density
operator approach from which we derive our formalism
involving classical phase-space neutrino flavor densities
and their off-diagonal, overlap correlates. The latter couple
the different flavor states to account for neutrino oscilla-
tions. In Sec. III, we demonstrate with several simple
examples that the set of equations reproduces (i) standard
flavor oscillations in a vacuum, (ii) flavor oscillations with
absorptive matter coupling (‘‘quantum decoherence’’
[17]), and (iii) resonant matter-induced flavor conversion
(the MSW effect) for a neutrino beam [18–20]. In Sec. IV,
we summarize the salient features of our new approach. We
show in Appendix A how one might include neutrino and
antineutrino self-interactions into our formalism.
II. GENERALIZED BOLTZMANN EQUATIONS

To analyze a multiparticle system and reflect its inherent
statistics, one usually sets up the density matrix of the
system [15,16]. For classical systems this is the phase-
space density. For quantum fields, the conceptually most
similar analog is the Wigner phase-space density operator
[21,22]
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where  y and  denote the creation and annihilation
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operators, respectively, for the mixing particles of interest
[12,16]. � works for fermions or bosons (resulting in
different commutation relations of the creation and anni-
hilation operators) and massive or massless particles. Here,
we average over an ensemble of two neutrino species, for
example �e’s and �’s and take the matrix elements in the
number-density basis of Fock space:

F � hnij�jnji �
f�e fe
f�e f�

 !
; (2)

where the indices i, j run over the neutrino flavor, and �
means complex conjugation. A generalization to more
particle species is straightforward. The diagonal terms
are real-valued and denote quasiclassical phase-space den-
sities. The off-diagonal entries are complex-valued macro-
scopic overlap functions. For completely decohered
ensembles and for nonmixing ensembles the off-diagonal
entries vanish. A Heisenberg-Boltzmann-type equation
[12,15,17,23,24], which can heuristically be derived by
merging the Boltzmann equation with the Heisenberg
equation, governs the time evolution of the matrix elements
of the Wigner phase-space density operator:
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where curly brackets denote matrix anticommutators,
square brackets are matrix commutators, C is the collision
matrix and � is the mixing Hamiltonian. We componen-
tize this equation for two oscillating neutrino species in-
teracting with a background medium. Then,

C �
C�e 0
0 C�

 !
; (4)

and the following general mixing Hamiltonian reads:

��r;p; t� � ��"; r� �����r;p; t� ���~��r;p; t�; (5)

where ��"; r� encompasses the vacuum mixing and the
neutrino-matter interaction amplitude for the �e neutrino
connected with the matter-induced mass. ��� is the off-
diagonal mixing contribution from neutrino-neutrino self-
interactions and ��~� is the analog for neutrino-
antineutrino interactions. We show how to include neutrino
self-interactions and neutrino-antineutrino interaction into
our formalism in Appendix A and work here with the
vacuum and ordinary matter contribution only. Therefore,
we have for ��"; r� the expression

��"; r� �
�c
L

� cos2�� 2A sin2�
sin2� cos2�

� �
; (6)

where � is the neutrino vacuum mixing angle between �e
and � and A is given by [25,26]
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�
L
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���
2

p
GF

�h
ne�r�; (7)
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where L is the vacuum neutrino oscillation length:

L �
4� �hc"

�m2c4
: (8)

GF denotes Fermi’s constant, ne�r� the electron number
density, " the neutrino energy,m1 andm2 are the masses of
the neutrino mass eigenstates, and �m2 � m2

2 �m2
1. The

other variables have their standard meanings. For antineu-
trinos the sign of A is reversed. Note that A, through ne, is
in general a function of spatial position. In this paper, we
do not take into account the effects of microscopic density
fluctuations on the mixing in the ensemble [27]. In other
words, we assume that the scale of the spatial variation of
the phase-space density is larger than the neutrino
de Broglie wavelength. Similarly, we assume small exter-
nal forces. With these reasonable assumptions, we can
ignore the off-diagonal terms on the left-hand side of
Eq. (3). Defining the real part of the off-diagonal macro-
scopic overlap in Eq. (2) as

fr �
1

2
�fe � f�e�; (9)

and the corresponding imaginary part as

fi �
1

2i
�fe � f�e�; (10)

respectively, we find the generalized Boltzmann equations
for real-valued quantities:
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The neutrino oscillations are incorporated with new sink
and source terms indirectly coupling the standard
Boltzmann equations for f�e and f� through the off-
diagonal macroscopic overlap functions fr and fi. The
number of equations is increased from two to four. In
principle, one can insert blocking factors for both the
collision terms and the oscillation terms. Note that in the
absence of collisions, Liouville’s theorem for the total
lepton specific intensity, d=dt�f�e � f�� � 0, is
recovered.

It is instructive to rewrite Eq. (11) in terms of the specific
intensities of the neutrino radiation field. We use the one-
to-one relation [28,29] between the invariant phase-space
densities, f�e , f� and the specific intensities, I�e , I� , and
-2
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define accordingly:

I�e �
"3f�e

�2� �h�3c2
; I� �

"3f�
�2� �h�3c2

: (12)

For the off-diagonal macroscopic overlap analogs one
defines
093004
R e �
"3fr
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; Ie �

"3fi
�2� �h�3c2

: (13)

The generalized Boltzmann equations in the laboratory
(Eulerian frame) for the radiation field of two oscillating
neutrino species with collisions are then:
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(14)
These equations and Eqs. (11) are our major results. The
collision terms can be conveniently written as [28]

C0
�e � ��s�eI�e � �a�e

�B�e � I�e
1�F eq

�e

�

�
�s�e
4�

Z
��e��;�

0�I�e��
0�d�0; (15)

where ��e is a phase function for scattering into the beam
integrated over the solid angle d�0, �a�e is the sum of all
absorption processes

P
ini!

a
i , where ni is the number

density of matter species i and !ai denotes the absorption
cross sections (for scattering processes the superscript a is
replaced with s), F eq

�e is the equilibrium Fermi-Dirac oc-
cupation probability, and B�e is the corresponding black-
body specific intensity. Changing the subscript from �e to
� yields the corresponding parameters for the �’s. For
sterile neutrinos, one substitutes �s for � and sets the
scattering and absorption terms to zero. Similarly, one can
write a set of equations for antineutrinos with different
collision terms and with the sign of A reversed. Neutrino
and antineutrino evolution are implicitly coupled through
pair processes. If self-interactions are included as we show
in Appendix A, neutrino and antineutrino evolution are
nonlinearly coupled.

III. SIMPLE TESTS OF THE NEW FORMALISM

A. Oscillations with absorptive matter coupling

It is straightforward to show that our set of generalized
coupled Boltzmann equations behaves as we would expect
from our experience with the standard wave function ap-
proach. As our first example, we solve Eq. (14) for �e–�
oscillations in box of isotropic neutrinos that can also
experience decohering absorption on matter. Note that in
reality neutrino interactions only play a role at densities
where observable neutrino oscillations are suppressed [11].
To demonstrate the expected limiting behavior of our
formalism we artificially ‘‘turn off’’ matter suppression
by setting the matter term A to zero. This is not the
situation found in nature. We define the approximate os-
cillation time

tosc ’
L

2�c
�

2 �h"

�m2c4
; (16)

and set the interaction rate of the �e’s equal to the interac-
tion rate of the �’s to define the characteristic absorption
time

t�ecol �
1

�a��e c
�

�1�F eq
�e�

cNA�Yn!a�en
: (17)

NA denotes Avogadro’s number, Yn is the neutron fraction
per nucleon, and !a�en is the cross section for absorption on
neutrons (see Appendix B). We define the ratio of the
oscillation to the absorption time scale:

$ �
tosc
t�ecol

; (18)

and the dimensionless time coordinate %:

% �
t
tosc

: (19)

Furthermore, we set B�e � B� and denote the dimension-
less specific intensities and the off-diagonal macroscopic
overlap functions that are normalized to the blackbody
intensity with a hat. The resulting dimensionless version
of Eq. (14) reads:
-3
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FIG. 1. �e–� oscillations of boxed isotropic neutrinos with
absorptive matter coupling. (a) Specific intensities. (b) Off-
diagonal macroscopic overlap functions. Parameters: "�e �
"� � 10 MeV, � � 8� 1012 g cm�3, T � 5 MeV, and from
the large-mixing-angle solution (LMA) [30]: sin2� � 0:9, and
�m2 � 6:9� 10�5 eV2. A is artificially set to zero.
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where the scattering in and out of the beam has been
canceled due to the assumption of isotropy. In a vacuum
($ � 0) and with the initial conditions Î�e � 1, Î� � 0,
and consequently no off-diagonal overlap terms at % � 0,
we obtain

Î�e�%� � 1� sin22� sin2
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1

2
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1

2
sin2� sin%:

(21)

This behavior of the radiation field is unambiguously
identical to the probability density obtained by squaring
the amplitude of a single-neutrino wave function in a beam.
The off-diagonal terms representing the macroscopic over-
lap peak when mixing of �e and � neutrinos is maximal
and vanish when the ensemble is single-flavored. In matter
and for the initial conditions Î� � R̂e � Îe � 0 and

Î�e � 0, one can derive an harmonic oscillator equation for
the early rate of evolution of Î�e :

@2Î�e
@%2

�

�
1

2
� $2

�
Î�e � const: (22)

As expected, for $� 1, the early time dependence of the
solution is predominantly sinusoidal: neutrino oscillations
dominate. For $� 1, an exponential decay/increase
dominates. The time scale then is 1=$.

In Fig. 1, we depict the solutions to Eq. (20) for oscillat-
ing �e’s in a box with nucleons. Initial conditions are Î� �

R̂e � Îe � 0 and Î�e � 0:8. For this example, flavor
oscillations and collisions happen on the same time scale.
The ensemble is guided to flavor and radiative equilibrium.
Coherent flavor oscillations are disrupted by absorptive
collisions. Asymptotically, the diagonal specific intensities
for the �e’s and �’s equilibrate. Absorption on neutrons,
and by detailed balance, the resulting emissivity, drive the
�e’s to the blackbody intensity. The oscillation amplitude
decreases with time; the quantum evolution of the system
is decohered through absorptive coupling with matter
(‘‘quantum decoherence’’ [17]). The real part of the off-
093004
diagonal overlap, R̂e, takes predominantly negative val-

ues whereas the imaginary part, Îe, oscillates symmetri-
cally around zero. Both vanish asymptotically and no
oscillations persist.

B. Matter-enhanced resonant flavor conversion

To demonstrate that our formalism contains the MSW
effect [18–20], we solve Eq. (14) for a monoenergetic one-
dimensional neutrino beam propagating down a density
profile for which resonant matter-enhanced flavor conver-
sion takes place. We define the dimensionless distance
coordinate in terms of the oscillation length:

x̂ � x
2�
L
; (23)

and the dimensionless matter-induced mass term in terms
of its resonance value:
-4
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Â �
A
Ares

�
A

cos2�
: (24)

The beam passes the resonance density for Â � 1. We
analyze the following dimensionless version of Eq. (14):
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where C0
�e and C0

� have been set to zero.
In Fig. 2, we depict the solutions to Eq. (25) for a density

profile of A � (=x̂2. We set ( � 900 and thus ensure that
the scale of spatial inhomogeneities is large compared to
the microscopic length scales such as the neutrino
de Broglie wavelength and the oscillation length.
Initially, the beam contains only �e neutrinos. The mixing
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FIG. 2. MSW effect. (a) Specific intensities. (b) Off-diagonal
macroscopic overlap functions. An initially �e beam propagates
down the density profile (=x̂2, where ( � 900.
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angle is arbitrarily taken to be sin22� � 0:18 (at present
the LMA is favored [30]). From Fig. 2, it is clear that at the
resonance density, x̂ �

����
(

p
� 30, the flavor composition

of the beam is radically altered. For higher values of x̂, the
beam executes vacuum oscillations. In this illustrative
problem the density at production is much greater than
the resonance density. Then, the spatially averaged survival
probability of a �e neutrino going from matter to free space
should be [31]

hP��e ! �e�i � �1� Px�sin2�� Px cos2�; (26)

where Px is the Landau-Zener probability for nonadiabatic
transitions. For the chosen density profile, propagation is
adiabatic and Px � 0. The averaged �e survival probability
in Fig. 2 converges toward �0:05, which is congruent with
the value predicted in Eq. (26): sin2�� 0:05. For high
densities (x̂ � 20), matter suppression is severe. No flavor
oscillations happen and the off-diagonal overlap functions
Re and Ie are close to zero. In free space for x̂ > 60, the
imaginary part Ie oscillates symmetrically around zero
whereas the real part Re is positive.

The solution given in Fig. 2 is numerically equivalent to
the solution obtained using the standard wave function
formalism [18–20,26]:

i
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2
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;

(27)

when we identify the specific intensities with the proba-
bility densities

I�e $ j �e j
2 I� $ j � j

2; (28)

and the macroscopic overlap functions with

Re $
1

2
� �e 

�
� �  �

�e ��

Ie $
1

2i
� �e 

�
� �  �

�e ��:
(29)

Thus, our Boltzmann formalism is completely consistent
with the existing description.

IV. CONCLUSIONS

In this paper, we have derived a generalized set of
Boltzmann equations for real-valued phase-space densities
of oscillating neutrinos interacting with a background me-
dium. The off-diagonal functions of the Wigner phase-
space density matrix representing macroscopic overlap
are explicitly included and serve to couple the flavor states
to reflect neutrino oscillation physics. Conceptually, we
have reduced the time evolution of creation and annihila-
tion operators to that of real-valued phase-space densities
without losing quantum-physical accuracy. Important
quantum effects such as matter-enhanced resonant flavor
conversion and ‘‘decoherence’’ [17] through matter cou-
-5



P. STRACK AND A. BURROWS PHYSICAL REVIEW D 71, 093004 (2005)
pling are correctly incorporated. The generalized
Boltzmann equations are simple and very similar to the
equations of classical transport theory. Neutrino oscilla-
tions are incorporated by new sink and source terms that
indirectly couple the expanded set of equations. We have
shown how to include neutrino self-interactions in our
formalism. The self-interactions nonlinearly couple neu-
trino and antineutrino evolution and therefore for the most
generic case one has to deal with eight nontrivially coupled
equations for a two-flavor ensemble and their antiparticles.

Using this formalism, codes that now solve the standard
Boltzmann equations for the classical neutrino phase-space
density (f�i), or which address its angular and/or energy
moments, can straightforwardly be reconfigured by the
simple addition of source terms and similar transport equa-
tions for overlap densities that have the same units as f�i , to
incorporate neutrino oscillations in a quantum-physically
consistent fashion.
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Baden-Württemberg Stiftung for support, and Steward
Observatory for kind hospitality. We acknowledge support
for this work through the SciDAC program of the
Department of Energy under Grant No. DE-FC02-
01ER41184. We thank Zackaria Chacko for helpful con-
versations and for reading the manuscript. We also thank
Casey Meakin and Martin C. Prescher for useful
discussions.
APPENDIX A: NEUTRINO SELF-INTERACTIONS

Evolution in a neutrino background is nontrivial [32–
35]. To address this, one can retain the one-particle char-
acter of description and neglect any effects arising from
coherent many-body state formation or flavor entangle-
ment [36–40]. The local low-energy four Fermi-
interaction Hamiltonian of neutrino-neutrino scattering is
given by

�pq
�� �

GF���
2

p

 X
i

� iq+
 iq

! X
j

� jq+ 
j
q

!
; (A1)

where the sum is over all neutrino flavors. This effective
Hamiltonian must satisfy U�N� flavor symmetry for a
system of N flavors [33]. For a two-flavor system consist-
ing of �e’s and �’s one can rewrite this Hamiltonian to
accentuate its off-diagonal character [34,36]:

�pq
�� � (�1� cos�pq�

� j q
�e j

2 � j q
� j

2 �
j q

�e j
2  q

�e 
q�
�

 q�
�e  

q
� j q

� j
2

 !" #
;

(A2)
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where the coupling coefficient includes the angle between
the ‘‘test neutrino’’ with momentum p and the background
neutrino with momentum q and the coupling strength is
given by ( � �

���
2

p
GF�= �h. The neutrino fields of the back-

ground neutrino with momentum q are normalized such
that

Z
dV�j q

�e j
2 � j q

� j
2� � 1: (A3)

We now match the above expressions and convert them
into our quasiclassical phase-space densities and the mac-
roscopic overlap functions. The �–� mixing Hamiltonian
for test neutrinos with momentum p in ensemble-averaged
form is denoted by

����p; r; t� �
B�e Br � iBi

Br � iBi B�

 !
; (A4)

where, while throwing away the overall phase term in
Eq. (A2) proportional to the identity matrix, we have for
the diagonal elements:

B�e�p; r; t� � (
Z
d3q�1� cos�pq�f�e�q; r; t�

B��p; r; t� � (
Z
d3q�1� cos�pq�f��q; r; t�:

(A5)

We used the ‘‘matching’’ from our formalism to the wave
function formalism as prescribed in Eqs. (28) and (29). The
momentum integration goes over all momenta q in the
ensemble. For the off-diagonal elements we write in our
notation,

Br�p; r; t� � (
Z
d3q�1� cos�pq�fr�q; r; t�

Bi�p; r; t� � (
Z
d3q�1� cos�pq�fi�q; r; t�;

(A6)

where we have used the variables of Eqs. (9) and (10). For
the neutrino-antineutrino interaction there is

��~��p; r; t� �
~B�e

~Br � i ~Bi
~Br � i ~Bi ~B�

 !
; (A7)

where the B’s are now defined in terms of the antineutrino
phase-space densities ~f�e ,

~f� , ~fr, and ~fi. Note that in
accordance with Eq. (5) the coupling coefficient in front of
the integrals has to be implemented in the equations for
neutrinos with reversed sign. For two mixing neutrino
species and their antiparticles interacting with a back-
ground medium and with neutrino-neutrino interactions
included, the generalized Boltzmann equations in their
most generic form are
-6
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�A� cos2�� � B�e �
~B�e � B� �

~B�

�
� �f�e � f���

~Bi � Bi�

@fi
@t

� v �
@fi
@r

� _p �
@fi
@p

� �f�e � f��

�c
L

sin2�� �Br � ~Br�
�
� fr


2�c
L

�A� cos2�� � B�e �
~B�e � B� �

~B�

�
:

(A8)

In a very similar fashion one can write the corresponding antiparticle analog. We need to interchange tildes and reverse the
sign for A to complete our set of equations:

@~f�e
@t

� v �
@~f�e
@r

� _p �
@~f�e
@p

� �~fi


2�c
L

sin2�� 2� ~Br � Br�
�
� 2~fr� ~Bi �Bi� � ~C�e

@~f�
@t

� v �
@~f�
@r

� _p �
@~f�
@p

� ~fi


2�c
L

sin2�� 2� ~Br �Br�
�
� 2~fr� ~Bi �Bi� � ~C�

@~fr
@t

� v �
@~fr
@r

� _p �
@~fr
@p

� ~fi


2�c
L

��A� cos2�� � ~B�e �B�e �
~B� � B�

�
� �~f�e �

~f���Bi �
~Bi�

@~fi
@t

� v �
@~fi
@r

� _p �
@~fi
@p

� �~f�e �
~f��


�c
L

sin2�� � ~Br � Br�
�
� ~fr


2�c
L

��A� cos2�� � ~B�e � B�e �
~B� � B�

�
:

(A9)
Neutrino and antineutrino evolution are nonlinearly
coupled. The collision terms differ for neutrinos and anti-
neutrinos. The sign reversal of A means that, dependent on
the mass hierarchy, only neutrinos or antineutrinos execute
the MSW resonance. The above nontrivially coupled set of
eight equations is entirely real-valued; yet they contain all
the quantum-mechanical oscillation phenomenology. This
is the complete set of kinetic equations that include neu-
trino self-interactions for the real-valued neutrino phase-
space densities f�e and f� and the corresponding antineu-
trino phase-space densities ~f�e and ~f� .

APPENDIX B: CROSS SECTION: �e � n ! e� � p

A convenient reference neutrino cross section is !o,
given by
093004
!o �
4G2

F�mec
2�2

�� �hc�4
’ 1:705� 10�44 cm2; (B1)

whereGF is the Fermi weak coupling constant ( ’ 1:436�
10�49 ergs cm3). The total �e � n absorption cross section
for the reaction �e � n! e� � p is then given by

!a�en � !0

�
1� 3g2A

4

��"�e � �np

mec
2

�
2

�


1�

�
mec

2

"�e � �np

�
2
�
1=2
; (B2)

where gA is the axial-vector coupling constant ( ��1:23),
and �np � mnc

2 �mpc
2 � 1:29332 MeV.
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