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Propagators with the Mandelstam-Leibbrandt prescription in the light-cone gauge
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We show that the Feynman propagator in the light-cone gauge with the Mandelstam-Leibbrandt
prescription has a logarithmic growth for large ~n � x which is related to the presence of a residual gauge
invariance. Furthermore, we show that the retarded propagator for the ~n � A component of the gauge field
develops a coordinate dependent mass. We argue that this feature is unphysical and may be eliminated by
fixing the residual gauge degrees of freedom.
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I. INTRODUCTION

In the study of gauge theories, the light-cone gauge has
proven to be quite intriguing and challenging [1]. We recall
that in a general axial type gauge (where n2 � 0 in general
and which includes both temporal as well as axial gauges)

n � A � 0; (1)

the path integral propagator in the momentum space takes
the form

D�PI�
�� �n; p� � �

i

p2 � i


�
��� �

n�p� � n�p�
�n � p�

�
n2

�n � p�2
p�p�

�
: (2)

[In the case of non-Abelian theories, the gauge potential
will correspond to a matrix in the adjoint representation
while the propagator will have an identity matrix multi-
plying the expression (2).] The additional poles of the form
1

�n�p� in (2) require a prescription for the propagator to be
well defined. In a recent paper [2], we showed that this
arbitrariness in the propagator is a consequence of a resid-
ual gauge symmetry in the generating functional and fixing
this determines the propagator uniquely. The explicit form
of the propagator determined in [2] is well behaved for
large values of n � x. In contrast, in the light-cone gauge
where n2 � 0, we showed that the prescription dependence
persists even after a residual gauge fixing is used. We
traced the origin of this arbitrariness to the presence of
an additional local symmetry in the generating functional.

We note that the Mandelstam prescription [3] (the
Leibbrandt prescription [4] is equivalent to that of
Mandelstam, but we use the Mandelstam prescription ex-
plicitly throughout our discussions) is widely used in the
light-cone gauge calculations. We recall that this prescrip-
tion corresponds to defining the additional pole as

1

��n � p��
� lim


!0

1

n � p� i
~n � p
: (3)

Here ~n� is a second lightlike vector such that n � ~n � 0.
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Such a prescription allows for a Wick rotation of the
propagator to Euclidean space [1,5]. Although calculations
with the Mandelstam prescription lead to the correct be-
havior of physical quantities such as the Wilson line [6–8],
it is also known that this prescription gives rise to some
unphysical features such as nonlocal ultraviolet divergent
terms in loop diagrams [1]. We would, therefore, like to
study systematically the structure of propagators in the
light-cone gauge using the Mandelstam prescription. This
leads to some interesting and surprising results including
the fact that this prescription induces an unphysical behav-
ior even at the tree level. More specifically, we find that this
prescription leads to a propagator which has a logarithmic
growth for large values of ~n � x. Following our earlier
argument, this would correspond to the fact that the
Mandelstam prescription does not completely fix the
light-cone gauge and we determine this residual gauge
symmetry explicitly. The second result that comes out of
our analysis is that the light-cone gauge and the
Mandelstam prescription induce a coordinate dependent
mass for the ~n � A component of the gauge field which can
be seen from the analytic structure of the retarded propa-
gator as well as from the spectral function. This unex-
pected behavior turns out to be a consequence of the
presence of the residual gauge symmetry in the theory.

Our paper is organized as follows. In Sec. II, we study
the Feynman propagator in the coordinate space with the
Mandelstam prescription. We show that the propagator is
not well behaved for large values of ~n � x. Following our
earlier observations [2], we show that this is a reflection of
the fact that the Mandelstam prescription does not fix the
light-cone gauge completely and that the free theory has a
residual local symmetry. In Sec. III, we study in some
detail the structure of the retarded propagator, which in-
dicates that in the light-cone gauge with the Mandelstam
prescription, a coordinate dependent mass is induced for
the ~n � A mode. This conclusion is further supported by the
structure of the spectral function. In Sec. IV, we argue that
such an unphysical behavior may be eliminated through an
appropriate gauge fixing of the residual gauge degrees of
freedom of the theory.
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II. FEYNMAN PROPAGATOR IN THE
COORDINATE SPACE

Let us begin with some useful notation for carrying out
calculations in the light-cone gauge. Let n�; ~n� represent
two lightlike vectors such that n2 � 0 � ~n2, but n � ~n � 0.
For simplicity, we will choose sgn�n � ~n� to be positive.
Any vector can now be decomposed as

V� �
~n�

�n � ~n�
�n � V� �

n�
�n � ~n�

�~n � V� � VT
�; (4)

where

n � VT � 0 � ~n � VT: (5)

Let us next note that Mandelstam’s prescription (3) leads
upon Fourier transformation to the Green’s function

G�x� �
i
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�4�x� �

Z d4p
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�
1

2�
1

n � x� i
~n � x
�2�xT�: (6)

The explicit representation (6) is very useful in evaluating
systematically the coordinate representation of any quan-
tity. For example, for a general function f�p�, we can write
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n � p� i
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Z
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�
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�2��4
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0
: (7)

In particular, this leads to the following coordinate repre-
sentation for the Feynman propagator in the light-cone
gauge with the Mandelstam prescription:
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; (8)

where we have identified �xT�2 � �xT � xT � 0. There are
several things to note from the explicit structure of the
Feynman propagator (8). We see that, apart from the first
two tensor structures, all other terms vanish for ~n � x � 0.
This may be understood by noting that, since (6) is for-
mally an integration operator, one may evaluate several
terms in the Feynman propagator (2) (with n2 � 0) as

Z d4p

�2��4
eip�x
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n � p� i
~n � p

�
i
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Z ~n�x

~n�x0
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Z d4p

�2��4
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0

p2 � i

; (9)

where the ‘‘prime’’ in x0 in the exponent refers only to the
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coordinate ~n � x0. We note that if ~n � x � 0, the exponent in
the first expression has no dependence on �n � p� and since
the two poles in the integrand of this expression lie on the
same side of the complex �n � p� plane, such an integral
will give zero in this limit. This implies, from the second
expression in (9), that in this case the reference point can
be chosen to be the origin [9], which therefore explains the
vanishing of the above terms at ~n � x � 0.

On the other hand, for large values of ~n � x, the propa-
gator in (8) has a logarithmic growth and, therefore, it is
not well behaved. This mildly singular behavior can be
viewed from various points of view. Probably the simplest
way is to note that the prescription (3) does not quite
regularize the singularities when �n � p�; �~n � p� ! 0 si-
multaneously. This lack of a bounded behavior of the
propagator even with the Mandelstam prescription is con-
sistent with our analysis and following our earlier argu-
ments should correspond to the presence of some residual
gauge symmetry. To see, in the simplest way, that the
theory has a residual gauge symmetry even with the
Mandelstam prescription, let us write an effective
Lagrangian density for the free theory which would repro-
duce the Mandelstam prescription in the propagator natu-
rally. It is easy to check that the free Lagrangian density
(the non-Abelian theory would involve a trace over the
matrix indices)

L � �
1

4
�@�A� � @�A���@�A� � @�A��

�
1

2
�N � A�

�2

��2 � 
2�~n � @�2
�N � A�; (10)

where

N� � n� � i

�~n � @�@�

�
; (11)

leads, in the limit �! 0, to the Feynman propagator in the
light-cone gauge with the Mandelstam prescription [10].
The fact that this effective Lagrangian density is not
Hermitian could signal certain difficulties in a theory in-
corporating the Mandelstam prescription. However, from
the point of view of looking for residual symmetries, the
Lagrangian density (10) is suitable for our purpose. We
note that under a gauge transformation of the form

A��x� ! A��x� � @�!�x�; (12)

the invariant action will, of course, not change.
Furthermore, it follows from the structure in (11) that,
under such a transformation

N � A! N � A; (13)

if !�x� is a function only of x�T. Thus, the free theory (10)
has a residual gauge symmetry with a parameter !�xT�.
As we have argued in our earlier work [2], the presence
of this residual symmetry is responsible for the propagator
(8) in the light-cone gauge with the Mandelstam prescrip-
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tion having a (mildly) singular behavior for large values of
~n � x.
III. RETARDED PROPAGATOR AND THE
SPECTRAL FUNCTION

The Feynman propagator (8) is an analytic function in
the upper half of the complex ~n � x plane except for an
isolated pole and a logarithmic branch cut beginning at the
light cone x2 � 0. Therefore, one can easily write down a
dispersion relation in the complex ~n � x plane with one
subtraction because of the logarithmic behavior.
However, we do not give any further detail on this and
instead we now analyze the retarded propagator, which is
more useful for a better understanding of the structure of
this theory.

The retarded propagator of the theory can be obtained
from the form of the Feynman propagator in (8) as [11,12]

D�PI��R�
�� �x� � 2��x0�Im�D�PI�

�� �

� �
��x0�
2�

��
��� �

n�~n� � n�~n�
�n � ~n�

�
2�xT�n� � xT�n���~n � x�

�n � ~n�xT � xT

�
��x2�

� n�n�
�xT�2

�n � x�2

�
��x2� �

1

�xT�2
��x2�

��
:

(14)

The ��x2� term simply corresponds to a massless pole in
the momentum space. However, the coefficient of n�n�
shows a more interesting structure of ��x2�. To appreciate
what this corresponds to, let us define

��x� �
sgn�x0�
2�

�n � ~n��xT�2

�n � x�2

�
��x2� �

1

�xT�2
��x2�

�
; (15)

so that we can identify

�
~n�~n�
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� �
��x0�
2�

�n � ~n��xT�2
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�

�
��x2� �

1

�xT�2
��x2�

�
: (16)

Comparing this with the retarded propagator for a massive
scalar field near the light cone [11,12],

D�R��x� � �
��x0�
2�

�
��x2� �

m

2
�����
x2

p J1�m
�����
x2

p
���x2�

�

� �
��x0�
2�

�
��x2� �

m2

4
��x2�

�
; (17)

we conclude that near the light cone, the ~n � A component
of the gauge field, in the light-cone gauge with the
Mandelstam prescription, has developed a coordinate de-
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pendent mass

m2 �
4

�xT�2
> 0: (18)

We can derive further support for this by looking at the
spectral function associated with the ~n � A component of
the gauge field. Let us recall that the spectral function
[11,12] may be defined as

i
n � ~n

�~n � A�x�; ~n � A�y�� � ��x� y�

�
�n � ~n��zT�2

�n � z�2

� i
Z d4p

�2��3
�e�ip�z � eip�z��;

(19)

where for simplicity of notation we have identified z� �
�x� � y��. From the structure of (15), we note that the
covariant commutator (19) vanishes for spacelike separa-
tions, which is consistent with causality. Using the form of
� in (15), we can determine that

� �
m

�����
z2

p
2J1�m

�����
z2

p
�
��p0���p

2 �m2� � ��p0���p
2 �m2�;

(20)

where the second equality holds near the light cone with
m2 � �4=�zT�2�> 0. This can be compared with (18). We
see that near the light cone, where the discontinuity of
~n�~n�D�PI��R�

�� occurs, the spectral function is positive as it
should be. [We emphasize here that the spectral function in
(20) is not the inverse Fourier sine transform of ���z2� �
�1=�zT�2���z2��; the latter, in fact, is an ill-behaved function
which is ambiguous and regularization dependent.]

We note that all our results are manifestly invariant
under translations. However, a coordinate dependent
mass is quite unexpected. In fact, the spectral function �
is normally a function of the momentum variables whereas
in the present case, it depends on the transverse coordinates
(in a translational invariant manner) as well. The normal
assumptions in the derivation of the spectral representation
include invariance of the vacuum under translations,
namely,

e�iP�xj0i � j0i; (21)

and our result suggests that this assumption in the present
case may be violated for the ~n � A modes.

IV. DISCUSSION

As we have seen, the logarithmic term in the propagator
leads, through its ��x2� discontinuity, to a coordinate de-
pendent mass which would necessitate a redefinition of the
vacuum. This behavior is highly unreasonable considering
-3



BRIEF REPORTS PHYSICAL REVIEW D 71, 087701 (2005)
that we are dealing with a free theory. On the other hand,
we have shown that the growth for large ~n � x of this
logarithm is a consequence of a residual gauge symmetry
[with parameter !�xT�] present in the theory. From our
earlier results [2], it follows that if one would fix this
residual symmetry by imposing an appropriate extra gauge
condition, this will lead to a propagator which is well
behaved at infinity. For example, one could improve the
behavior at infinity by adding to the effective action an
extra gauge fixing term of the form

Sextra � lim
�!0

�
1

2�

Z
d4x��~n � x� "��@ � A�2; (22)

which is defined at some fixed value of ~n � x � ". This may
then remove from the propagator the logarithmic term
together with its ��x2� discontinuity. We have not worked
out the complete expression for such a gauge-fixed propa-
gator, whose form is rather complicated and beyond the
scope of this brief report. But we expect that the above
behavior would also remove from the theory the unphys-
ical coordinate dependent mass. One may understand this
feature in a simple way by considering the classical equa-
tions of motion. If we decompose the vector potential as in
(4), it is easy to check that the Maxwell equation

@�F
�� � ����� � @�@��A� � 0; (23)

leads, in the light-cone gauge, to the component equations
087701
��~n � A� � ~n � @�@ � A�; �AT
� � @T��@ � A�: (24)
At first sight, it would seem that these do not yield massless
equations for the components of the gauge field. However,
by choosing an appropriate gauge parameter !�n � x; xT�
such that @ � A � 0 at some fixed ~n � x, the extra terms in
the above equations can be eliminated.

In summary, we have shown that, at the tree level, the
propagator in the light-cone gauge with the Mandelstam
prescription has a logarithmic growth for large values of
~n � xwhich is a consequence of a residual gauge symmetry.
In turn, this induces an unphysical coordinate dependent
mass for the ~n � A component of the gauge field. In order to
remove this feature from Green’s functions, one must
eliminate the unphysical degrees of freedom by fixing
consistently the residual gauge symmetry, although in the
calculation of physical S-matrix elements, the
Mandelstam-Leibbrandt prescription seems to be sufficient
to obtain the correct behavior of physical quantities.
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[6] H. Hüffel, P. V. Landshoff, and J. C. Taylor, Phys. Lett. B

217, 147 (1989).
[7] A. Andrasi and J. C. Taylor, Nucl. Phys. B375, 341 (1992).
[8] A. Bassetto, I. A. Korchemskaya, G. P. Korchemsky, and

G. Nardelli, Nucl. Phys. B408, 62 (1993).
[9] A. Bassetto, Phys. Rev. D 46, 3676 (1992).

[10] E. V. Veliev, Phys. Lett. B 498, 199 (2001).
[11] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields

(McGraw-Hill, New York, 1965).
[12] P. Roman, Introduction to Quantum Fields (Wiley, New

York, 1969).
-4


