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Semiclassical ultraextremal horizons
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We examine backreaction of quantum massive fields on multiply-degenerate (ultraextremal) horizons.
It is shown that, under influence of the quantum backreaction, the horizon of such a kind moves to a new
position near which the metric does not change its asymptotics, so the ultraextremal black holes and
cosmological spacetimes do exist as self-consistent solutions of the semiclassical field equations.
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There exist two qualitatively distinct classes of black
holes—nonextremal (TH � 0) and extremal (TH � 0),
where TH is the Hawking temperature. The latter means
that the system possesses a degenerate (at least twice)
horizon. In turn, in the latter case the subclass of so-called
ultraextremal horizons (UEH) is singled out. It represents
spacetimes with horizons with triple and higher multiplic-
ity. If one writes the asymptotic form of the metric coeffi-
cient �g00 � f in the Schwarzschild-like coordinates near
the horizon r� as f� �r� r��

n, then n � 3 corresponds
to UEH which can be, in principle, black hole or cosmo-
logical horizons. Ultraextremal horizons appear naturally,
for instance, in general relativity and supersymmetrical
theories in the spacetimes with the cosmological constants
�> 0 and nonzero charge Q (Reissner-Nordström-de
Sitter solution (RNdS), provided some special relation-
ships between � and Q hold [1]. It is worth noting that
recently interest to RNdS revived in the context of dS/CFT
correspondence [2] and higher-dimensional theories (see.
e.g., [3] and references therein).

Up to now, to the best of our knowledge, spacetimes with
ultraextremal horizons were considered only classically,
with quantum backreaction neglected. Meanwhile, the po-
tential effect of such backreaction on multiple horizons is
not evident in advance since it is unclear whether the
condition of (ultra)extremality is simply slightly shifted
or backreaction pushes classically degenerate horizons
away. There was some discussion in literature on the ex-
istence of ‘‘ordinary’’ (n � 2) semiclassical extremal black
holes (EBH) and it was established that such solutions do
exist [4–6]. On the other hand, recent investigations in
two-dimensional dilaton gravity confirmed the existence of
semiclassical EBH but showed that semiclassical UEH are
forbidden (except some very special exactly solvable
models) [7]. It is also worth mentioning another issue
(closely related to that of EBH) - quantum-corrected ac-
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celeration horizons that arise in the Nariai and Bertotti-
Robinson solutions [6,8–15].

In the present article we examine the spherically-
symmetric UEH metric with quantum backreaction and
show that self-consistent solutions possessing triply degen-
erated horizon do exist. In doing so, we restrict ourselves to
the case of massive fields in the large mass limit since only
in this case one knows the approximate one-loop stress-
energy tensor in terms of the geometry explicitly (see [16–
18] and references therein).

The metric under consideration reads

ds2 � �U�r�dt2 � V�1�r�dr2 � r2d�2; (1)

and it follows from Einstein equations with the stress-
energy tensor T�� that

U�r� � e2 �r�V�r�; (2)

where

 � 4�
Z r

drF�r�; F�r� � r
T1
1 � T0

0

V
: (3)

As the RNdS-like geometries are not asymptotically flat
one can always rescale time that is equivalent to the change
of the integration constant in (3) whose particular value is
thus unimportant. However, it is unclear in advance
whether  remains finite when r approaches UEH (see
below).

We assume that the right hand side of the Einstein field
equations G�

� ����� � 8�T�� is given by T�� � T��cl�� �

T��q�� , where the first term stems from classical source
whereas the second one describes the backreaction of
quantum fields on the geometry. As backreaction is con-
sidered as a small perturbation, one could try to use the
expansion of the metric taking as the main approximation
the unperturbed metric. However, such a naive approach
suffers from serious shortcomings. It tacitly assumes that
parameters of the classical metric such as the charge, mass,
etc. are fixed. Then the metric which was extremal classi-
cally, in general becomes nonextremal (or vice versa) if
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quantum corrections are taken into account. (To avoid
potential confusion, this has nothing to do with the third
general law since it is not real transformation of a physical
system but, rather, comparison of different configurations
in the space of parameters.) Therefore, we prefer to treat
the problem in a self-consistent way and use the true
(quantum-corrected) horizon value r� from the very begin-
ning. In what follows we restrict ourselves to the case of
the electromagnetic field. Then T1�cl�

1 � T0�cl�
0 and it fol-

lows from (2) and (3) that in the zeroth-order of the
approximation (with the backreaction neglected) U � V
and we obtain the classical RNdS metric.

The stress-energy tensor of the quantized massive scalar
(with arbitrary curvature coupling �), spinor and vector
fields [17,18] can be obtained by means of standard meth-
ods from the approximate effective action [19,20]

W�1�
ren �

1

192�2m2

Z
d4xg1=2� �s�

1 R�R�  �s�
2 R���R��

�  �s�
3 R

3 �  �s�
4 RR��R

�� �  �s�
5 RR��"#R

��"#

�  �s�
6 R

�
� R�"R

"
� �  �s�

7 R
��R"#R

"#
��

�  �s�
8 R��R

�
$"#R

�$"# �  �s�
9 R

��
"#R

$%
��R

"#
$%

�  �s�
10R

"#
��R

��
$%R

$%
"#�; (4)
where the spin-dependent numerical coefficients are tabu-
lated in Table I. As the result of the functional differentia-
tion of WR with respect to the metric tensor one obtains a
rather complicated expression for T��q�� constructed from
the curvature tensor and its covariant derivatives. To avoid
unnecessary proliferation of long formulas we shall not
display it here. An interested reader is referred to [17,18]
for results and physical motivation.

In the ultraextremal case which we are interested in, the
classical metric functions in (1) read [1]
TABLE I. The coefficients  �s�
i for the massive scalar, spinor,

and vector field

s � 0 s � 1=2 s � 1

 �s�
1

1
2�

2 � 1
5� + 1

56 � 3
140 � 27

280

 �s�
2

1
140

1
14

9
28

 �s�
3 �16 � ��3 1

432 � 5
72

 �s�
4 � 1

30 �
1
6 � �� � 1

90
31
60

 �s�
5

1
30 �

1
6 � �� � 7

720 � 1
10

 �s�
6 � 8

945 � 25
376 � 52

63

 �s�
7

2
315

47
630 � 19

105

 �s�
8

1
1260

19
630

61
140

 �s�
9

17
7560

29
3780 � 67

2520

 �s�
10 � 1

270 � 1
54

1
18
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r2
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�
1�

"
r

�
3
�
1�

3"
r

�
; (5)

where " is the position of the horizon. It is seen from (5)
that the static region is confined by 0< r � ", r � 0 being
the singularity. The quantum state of the field we are
dealing with is supposed to be the Hartle-Hawking one
that physically describes the thermal equilibrium, that, in
turn, implies the staticity of the metric in the relevant
region. Now, in contrast to the black hole case the horizon
under discussion is of cosmological nature in the sense that
the metric is static for r < " and nonstatic for r > ". This
does not cause obstacles to the existence of the Hartle-
Hawking state since cosmological horizons are known to
possess thermal properties in a similar way to the black
hole case [21]. However, now there is a problem connected
with the presence of singularity. In the black hole case (say,
for the Schwarzschild metric) the singularity is hidden
behind the horizon, the region in which the metric is static
is r > ". Now the situation is opposite. To avoid this
difficulty, which is not connected by itself with the issue
of UEH, we somewhat modify the system by considering
the following model. Relying on the fact that the singular-
ity in the case under discussion is timelike, we smear or
simply replace it by some central body with a regular
center and the boundary at r � R. Then for R< r � "
we can use safely the formulas for the stress-energy tensor
obtained for the Hartle-Hawking state.

To evaluate the role of backreaction, we proceed along
the same line as in [6]. We perform two steps: (i) we show
that the triple root of V�r� does exist and find correspond-
ing quantum-corrected relationships between parameters
M, Q, �; (ii) check that the function F�r� is finite, so that
U�r� has the same triple root as V�r�. It is convenient to
write

V � 1�
2m�r�
r

�
Q2

r2
�

�r2

3
; (6)

where

m�r� � M�mq�r�; (7)

M �
r�
2

�
Q2

r�
�

�r3�
6

: (8)

mq � �4�
R
r
r�
dr0r02T0�q�

0 is the contribution of quantum
fields, m�r�� � 0. To get rid off the denominators in (6), it
is convenient to introduce g�r� 
 r2V�r�.

In the vicinity of the horizon

m�r� � M� A�r� r�� � . . . ; (9)

where A � �4�T0�q�
0 r2� is a small parameter responsible

for backreaction. We should check that equations

g�r�� � 0 � g0�r�� � g00�r�� (10)

are self-consistent. The form (9) is inappropriate for analy-
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sis of the aforementioned equations since the equations
would contain as the parameter their own root that, as is
shown in [6] leads to difficulties connected with the ap-
pearance of spurious roots [4]. To avoid this difficulty, we
redefine M0 � M� Ar� and substitute in (6) the expres-
sion m�r� � M0 � Ar. Then it is straightforward to show
that all three equations (10) are mutually consistent, with

r2� �
1

2�
�1� 2A�; (11)

M0 �
1�������
2�

p �1� 3A�; (12)

Q2 �
1

4�
�1� 4A�: (13)

For the massive scalar, spinor and vector fields considered
in this paper one has respectively

A�0� �
�2�3780*3 � 63*� 8�

5670�m2 ;

A�1=2� � �
�2

252�m2 ; A�1� � �
2�2

105�m2 ;

(14)

where superscripts denote the value of spin and * � ��
1=6 and the form (14) implies that the parameters M, Q, �
are not arbitrary but connected by the relationship inherent
to the ultraextremal case.

Now we pass to the next step and substitute into the
expression for T��q�� the metric (1) in which we put, in the
main approximation, U � V � V0. The function  �r� is
given by Eq. (3) with

F�r� � r
T1�q�
1 � T0�q�

0

V
: (15)

If  �r�� is bounded, the backreaction does not change
qualitatively the character of the metric. It is worth noting
that the finiteness of  �r�� is equivalent of the finiteness of
the energy measured by an observer who moves along the
radial geodesics [22]. Specifically, for the line element (5)
one obtains after calculations

 �r� �
1

�m2

X8
i�4

���i�4�=2B�s�
i r

�i � C�s�
1 ; (16)
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where B�s�
i with B�s�

5 � 0 are coefficients depending on the
parameters of the theory and C�s�

i are integration constants.
Specifically, for the massive s � 0; 1=2; 1 fields one has

B�s�
4 � �h�0�

�
*
120

�
1

4320

�
�
h�1=2�
2880

� h�1�
23

4320
; (17)
B�s�
6 � h�0�

�
14

135
*�

7

3240

�
� h�1=2�

13

1080
� h�1�

211

1080
;

(18)
B�s�
7 � �21=2

�
h�0�

�
4

45
*�

17

6615

�
� h�1=2�

13

1470

� h�1�
1223

6615

�
; (19)
B�s�
8 � h�0�

�
13

320
*�

47

26880

�
� h�1=2�

37

17920

� h�1�
2141

26880
; (20)

where h�s� is the number of fields with spin s. We see that
 �r�� is bounded and this key feature entails immediately
the conclusion that semiclassical UEH of the type under
discussion do exist.

To summarize, we showed that there exist self-
consistent UEH solutions of semiclassical field equations,
if the corresponding classical system admits them.
Although we restricted ourselves by one concrete physi-
cally relevant example (RNdS metric) the general approach
applies to a more general situation when the function f has
near the asymptotics �r� r��

n, n � 3. In this case it also
turns out that the functions F�r� and  �r� are finite near the
horizon, so that U�r� has the root of same multiplicity n. In
this sense, ultraextremal horizons are stable against back-
reaction of massive fields. In particular, this confirms the
significance of ultraextremal black holes in addition to
ordinary EBH as potential candidates to the role of stable
remnants after black hole evaporation.
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