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Quantized tension: Stringy amplitudes with Regge poles and parton behavior
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We propose stringy hadronic amplitudes that combine some of the features of sister trajectories and
running tension. By summing over string amplitudes with varying Regge trajectories that have integer
tension and converging intercept, we obtain parton hard-scattering and Regge soft-scattering behaviors,
while preserving discrete poles in both momentum and angular momentum.
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I. INTRODUCTION

Hadronic physics can be divided into four regions of
‘‘phase space’’: (1) low energy, (2) spectrum, (3) high
energy, small angle, and (4) high energy, large angle.
Low energy (including the low end of the spectrum) is
described by many methods, such as lattice Quantum
ChromoDynamics, nonlinear sigma models, instantons,
and nonrelativistic quark models (which also handle
mass differences within any multiplet). The parton model,
and more accurately perturbative QCD, describe high en-
ergy at large angles, and to a lesser extent at small angles
(total cross sections and related processes). Regge theory
describes the spectrum, and scattering for high energies at
small angles, as well as being consistent with low energy.

Regge theory directly relates the hadronic spectrum to
the high-energy behavior of scattering amplitudes at small
angles.1 Amplitudes are described by a Regge trajectory
��t�: The spectrum consists of states of spin J � ��M2� at
massM, while amplitudes go as s��t�. The requirement of a
perturbation expansion whose lowest order realizes this
behavior only as poles in angular momentum implies [2]
Dolen-Horn-Schmid duality [3], which is explicitly real-
ized in string theory. Experiment has verified duality quali-
tatively, and Regge high-energy behavior up to jtj of the
order of 1 GeV2, but the most striking confirmation of
Regge behavior is the appearance of the known hadrons
on very linear trajectories up to spins as high as 4.

From the beginning it was known that string amplitudes
had exponential decay at large transverse momenta, as seen
w, see [1].
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in the fixed-angle limit of high-energy scattering [4,5], and
it was soon realized that this could not easily be reconciled
with the observed power-law behavior described by parton
models [6]. One interpretation was that strings and QCD
were dual descriptions of the same physics, so that parton
behavior in theories of hadronic strings is nonperturbative,
just as confinement is nonperturbative in QCD. Thus at the
very least an infinite summation of diagrams would be
required to obtain one description from the other. For
example, in Regge theory a cut produced from the ex-
change of multiple Reggeons has a Regge slope a fraction
of that of the original Reggeon [1], so a summation can
produce an effective leading trajectory, running along the
tops of the trajectories of the pole and cuts, that has harder
behavior in the appropriate region [7]. A similar approach
is to use the ‘‘sister trajectory’’ poles related to these cuts,
also found in progressively higher-point amplitudes [8].
Unfortunately such an approach is intractable, just as try-
ing to calculate the soft parts of perturbative QCD ampli-
tudes by infinite resummation of QCD graphs. Also, the
hard limits obtained in both the cut and sister approaches
are not the usual power laws of the parton model.

An alternative method is to use the coordinate of a fifth
dimension as an effective running tension [9]. In fact, this
can be realized along the lines of the Anti-deSitter/
Conformal Field Theory conjecture [10]. The simplest
models are built from old-fashioned Veneziano or
Virasoro-Shapiro amplitudes An integrated over the tension
with an appropriate weight factor as [11,12]2
Ân�p1; . . . ; pn;
i; . . . ; 
n� �
Z 1

r0
drr3��nAn�p1; . . . ; pn;
i; . . . ; 
n�j�0!�0R2=r2 ; (1.1)
expansion, then the full amplitude can be defined as
here � is the Euler number [13].
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where pi’s and 
i’s are momenta and wavefunctions of
particles. �n, R and r0 are some parameters whose mean-
ing will be clarified shortly.3 We will call An (without any
modification of �0) a ‘‘primary’’ amplitude to differentiate
it from Ân.

Integrating from zero to infinity manifestly produces a
scale invariant amplitude, appropriate to some conformal
field theory (for example, N � 4 super Yang-Mills), while
putting a lower limit on the integration keeps that limit as a
unit of tension, breaking scale invariance, as appropriate to
QCD. This effectively produces a continuum of sister
trajectories, but all for the four-point amplitude (for ex-
ample). The ‘‘top’’ trajectory for positive argument corre-
sponds to the minimum-tension trajectory, while for
negative argument it corresponds to the infinite-tension
(zero-slope) trajectory, appropriate to a parton. Regge
high-energy behavior comes from the smooth joining re-
gion intermediate between these two top pieces.4

Unfortunately, the ‘‘smearing’’ of the trajectories repla-
ces the particle poles with cuts (as opposed to the usual
distinct poles plus cuts required by unitarity): Effectively
this means that for any spin the masses are continuous.
Similar behavior occurs in conformal theories with non-
vanishing mass: A conformal transformation scales p2, and
thus the mass, so it is possible for massive theories to be
conformally invariant if the mass spectrum includes all
positive real numbers. In this case not all continuous
masses extend to zero once one has introduced the QCD
tension as an integration limit, breaking the conformal
invariance but leaving the continuous mass problem unre-
solved. (Continuous mass is a possible problem in AdS/
CFT, and related problems appear in membranes and sub-
critical closed strings.) In particular, this destroys the usual
low-energy limit (‘‘pion physics’’).

In this paper we propose amplitudes that simultaneously
have (1) a discrete (integer-spaced) particle spectrum ap-
pearing on linear Regge trajectories,5 (2) Regge behavior
in the soft limit, and (3) parton behavior in the hard limit.
Continuous spectra are avoided by replacing the integral
over tension with a sum. The original spectrum is pre-
served by requiring the tensions to be integer multiples
3Note that one can think of Ân as the Mellin transform of An,
namely Ân � r4��n

0

R
1
1 d��

�!�1Anj�0!�̂=�2 , with ! � �n � 4
and �̂ � �0R2=r20. The factor r4��n

0 simply adjusts the
dimension.

4For a different approach to Regge physics also motivated by
the AdS/CFT conjecture, see [14] and references therein.

5In the literature there exist models also providing discrete
spectra (see [15] and references therein). Their crucial differ-
ences from ours are: (1) the use of the supergravity approxima-
tion, and (2) occurrence of continuous spectra as well as poles.
Since their assumptions do not seem fundamentally different
from those of [9,11,12] (slight modification of the metric to
implement a cutoff in the fifth dimension), in general it is
difficult to see how this discrete spectrum can be made consistent
with Regge behavior and allowed kinematic regions.
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of the original, as for sister trajectories. The correct parton
behavior follows from requiring that the trajectory inter-
cepts (which also have a type of integer constraint) con-
verge. (For large integers, which contribute to the parton
behavior, the sum can be approximated as an integral.) We
do not provide a string Lagrangian for these amplitudes,
but propose them as a starting point, as was the case for the
original string.

We propose these amplitudes to describe ‘‘tree-level’’
behavior with respect to both partons and hadrons, which
seems the only way to perturbatively calculate amplitudes
that necessarily contain both hard and soft pieces.
Generally, when nonperturbative properties are important
in a formulation of a theory, it is an indication of the
limitation of that formulation. For example, in the usual
formulation of Quantum ElectroDynamics, one first calcu-
lates classical (tree), then perturbative (loop) contributions,
and that is sufficient for observed phenomena (except when
corrections of a nonelectrodynamical nature contribute).
On the other hand, in QCD nonperturbative effects such as
renormalons or confinement are important in almost all
processes. A more useful alternative would be a formula-
tion where both confinement and partons are incorporated
at ‘‘tree’’ level, as defined by partons or hadrons appearing
only as poles, with small corrections from loops, without
the need for further contributions that are both poorly
defined and almost impossible to calculate. There is
some experimental evidence to indicate that such an ap-
proach is possible [16–18]. In this paper we propose such a
model, and give some preliminary comparison to the real
world.

As we consider only the tree contribution, we compare
mostly to Reggeons, since for the pomeron (‘‘glueballs’’)
cuts are difficult to disentangle from poles for t < 0, while
no glueballs have been unambiguously identified to allow
identification of trajectories for t > 0.
II. CUTS AND SISTERS

In this section we give some background on the cut and
sister trajectory approaches to high-energy behavior to
make the further discussion more tangible. In both the
approaches, the main idea is that a resummation of string
loops will modify the effective leading trajectory: In the
cut approach one looks at the trajectories of the cuts
produced by exchanges of multiple poles; similarly, in
the sister trajectory approach, the sister trajectories appear
only in higher-and-higher-point amplitudes, so a summa-
tion over these trajectories can be applied only by a sum-
mation over all loops.

In the case of cuts, the general rule for linear trajectories
(poles or cuts), written as

��t� �
�0

a
t� b	 1 (2.1)

is that the trajectory � resulting from the exchange of
multiple trajectories �i satisfies
-2
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a �
X
ai; b �

X
bi: (2.2)

For example, if we consider the sum of n identical trajec-
tories (in units ai � 1), we find

�n�t� �
�0

n
t� bn	 1: (2.3)

(We could also consider one Reggeon trajectory plus n� 1
pomeron trajectories, with qualitatively similar results.)
Sister trajectories have a similar form,

�n�t� �
1

n
��0t	 �0� �

1

2
�n� 1�: (2.4)

The basic idea is that in general one trajectory will be
higher than the rest, where the value of n for that trajectory
will depend on the value of t. Explicitly, if we sum the
high-energy contributions over n,X

n

�n�t���n�s��
�n�t�; (2.5)
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then the leading contribution can be found by a saddle-
point approximation on the exponent of�n�s�, approximat-
ing the sum as an integral.6 The result of treating n as
continuous is that a differentiable curve is obtained for this
effective trajectory, which is a better approximation than
the piecewise differentiable trajectory that would be ob-
tained by simply connecting together the pieces of which-
ever trajectory happens to be highest in any particular
region. For a generic contribution that includes the cut
and sister cases,

�n�t� �
�0

n
�t� t0� � bn	 J0; (2.6)

where b 
 0, we find the maximum (for t < t0) from

0 �
@
@n
�n�t� � �

�0�t� t0�

n2
� b) n0 �

��������������������������
�0�t0 � t�=b

q
(2.7)
) ~��t� �
�
�1�t� � �0�t� t0� � b	 J0 for t 
 t0 � b
�n0�t� � �2

�����������������������
�0b�t0 � t�

p
	 J0 for t � t0 � b

; (2.8)
where ~� is the ‘‘top trajectory’’ obtained by combining the
parts of the trajectories from each n where it is greater than
the others. This modifies the effective behavior of the
amplitude, but not enough to mimic parton behavior in
the hard limit. The only exception is the case b � 0: This is
irrelevant to the sister case, while in the cut case it relates to
the pomeron, whose intercept is near 1, with trajectories
converging at t � 0. That case is too extreme, since it
would eliminate Regge behavior altogether (flat trajectory
for all t < 0).

III. NEW MODELS

Our models will be based on several assumptions:

(i) A
mplitudes are sums of ‘‘standard’’ (primary)

string amplitudes. In this paper we examine only
the 4-point amplitudes, so this means Beta func-
tions, or more general ratios of products of Gamma
functions, whose arguments are linear trajectories.
This guarantees duality.
(ii) A
ll amplitudes have poles that are a subset of those
of the ‘‘first’’ amplitude. This prevents cuts in this
Born approximation (unlike continuously running
tension). The trajectories are then quantized, so we
parameterize them by a positive integer ‘‘n,’’ with
first meaning n � 1. For simplicity we assume no
degeneracy, so this one parameter is sufficient to
identify a trajectory. (In principle, degeneracy
might be hidden in the normalization of the
weights.)
(iii) T
6A better approximation would include the effect of �n and the
n-dependence of �n�s�, as we will see in the following section.
he trajectories converge toward a flat trajectory.
This allows parton behavior [19], since Reggeons
with small slopes resemble ordinary particles for a
large range of energy. The natural ordering is for
-3
the trajectories’ slopes to decrease with increasing
n. For simplicity we assume the slopes are non-
degenerate. Thus the slopes approach zero in the
limit as n goes to infinity. The intercepts also
converge (unlike methods using cuts or the usual
sister trajectories), so the ‘‘top trajectory’’ ap-
proaches a constant at t � �1. The use of an
infinite number of trajectories is also a simplifying
assumption, since it allows the small-slope contri-
bution to be approximated by an integral:
Integrating over slope (tension) produces approxi-
mate conformal invariance at large transverse
momenta.
(iv) T
he weights are also n-dependent, in a way con-
sistent with quark counting rules in the hard-
scattering limit where they are relevant.
To preserve the integer (in units �0 � 1) spacing of the
poles, we require the masses of the states on the leading
(linear) trajectory for each n satisfy

�0M2 	 �0 � anJ	 bn for mass M and spin J; (3.1)

where �0 is an n-independent constant (determined by the
trajectory for n � 1), and an and bn are n-dependent
integers. Since these states appear at integer J � ��M2�,
we have for the trajectories

�n�t� �
1

an
��0t	 �0 � bn�; (3.2)

where an increases with increasing n. (We can always
normalize �0 so b1 � 0; in most cases we also have
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a1 � 1, so �0 is the intercept for �1�t�.) Since the trajec-
tories converge

lim
n!1

bn
an

� const (3.3)

power-law behavior in the hard-scattering limit can be
obtained by choosing the relative normalization of the
weights for the amplitude Â so that

Â �
X1
n�1

wnA�n�; (3.4)

where wn is a weight and A�n� differ only by the fact that
they depend on �n. One convenient choice is to take wn in
the form7

wn �
c
n
a�cn ; (3.5)

where c is some parameter, since this form is less sensitive
to choice of an: When we approximate the sum as an
integral for large n, if we choose an to go as a power of
n in that limit, then different choices of that power will
have little affect on the integral, as it depends on n only
through an, bn, and the ‘‘measure’’ dn=n. From a hard-
scattering analysis, c will turn out to be integer, half the
total number of quarks. (c � 4 for the 4-meson amplitude
on which we focus.)
IV. BACKGROUNDS

We have not given the physical interpretation of the
integer parameter n. One possibility is first-quantization:
It might be the zero-mode (perhaps the only mode) of a
fifth dimension, whose momentum is compact.8 If so, it
would be interesting to see a relation to the model of [20]
where the extra dimension is also latticized. Alternatively,
it might be a consequence of latticization of the world sheet
itself: Random lattice quantization, before taking the world
sheet continuum limit, can lead to quantized values of the
slope [21].

Another possibility is second-quantization: The slope,
intercept, and string coupling are quantized, suggesting
something along the line of the quantization of the gravi-
tational constant found in another context by Bagger and
Witten [22]. In this interpretation summation over the
values of these couplings, like a sum over instantons,
would initially be considered nonperturbative; the result
of this simple resummation would then be treated as the
tree approximation of a new perturbation expansion. The
definitions of ‘‘nonperturbative’’ and tree are mere seman-
tics; what matters is that our definition of tree gives a
simple amplitude that one can apply explicitly.

Each of the integers an, bn, and c would then be asso-
ciated with the quantization of the ‘‘vacuum’’ value of a
closed-string field: The slope (associated with the integers
7Note that any function whose large-n asymptotics has such a
form provides the parton behavior in the hard-scattering limit.

8A topological quantity such as world sheet instanton number
or Euler number does not seem possible, since those are world
sheet-integrated quantities.
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an) with the (four-dimensional) ‘‘graviton’’, the intercept
(associated with the ratio bn=an) perhaps with the
‘‘tachyon’’, and c, which is required by dimensional analy-
sis in terms of the number of quarks, with some other
scalar, like the ‘‘dilaton’’ (which by definition is related
to dilatations and thus engineering dimension) or a higher-
dimensional component of the metric. (Of course, for the
pomeron, or closed hadronic string, all these states are now
massive; we simply use the names associated with these
fields in conventional string theory.)

Since an and bn are functions of n, the first step would be
to find background fields, representing a ‘‘ground state’’
solution of some field equations about which string pertur-
bation is performed, that are functions of a fifth dimension
r such that the fields take integer values when the ‘‘warp
factor’’ a�r� does: For example, it appears in the spacetime
metric, and thus the string Lagrangian, as

ds2 � �a�r�dx2 	 ::: ) L �
a�r�
�0
10

�@x�2 	 
 
 
 (4.1)

where �0
10 is the usual slope of the 10D string. (We discard

terms for other coordinates by assuming that they are
x-independent.) The amplitude is then defined by

Â4��
0� �

Z 1

r0

dr
r
ca�r��cA4

	
�0
10

a�r�



; �0 �

�0
10

a�r0�
: (4.2)

For example, the case of AdS5 [11] in Eq. (1.1) has a�r� �
r2=R2, where R is the radius of AdS5. As a result, all
parameters in the 10D formulation (�0

10, r0, R, 10D string
coupling) are replaced by just the 4D string coupling and
slope �0.

The next step would be to replace this integral with the
sum in Eq. (3.4) by performing the quantization

a�r�n��
a�r0�

�
an
a1
; (4.3)

where r � r0 corresponds to n � 1. However, the depen-
dence of the fields on r should be consistent with the
relations between an and bn that we have already found.
Effectively, this is the same as looking at the large-n limit
of our models, and treating the primary amplitudes as
functions of continuous n (i.e., r) in this limit. This limit
will also be important below in analyzing the high-energy
limits of amplitudes.

This restriction eliminates certain types of backgrounds
found in many supergravity solutions: For instance, in the
D3 brane solution there is the nonconformal geometry

a�r� �

��������������������������
c0 	 ck

	
r
R



kk0

s
; (4.4)

with some integers k and k0 ( � 1), which will not lead to
integer an. Also, we have not included the harmonic func-
tions usually occurring in supergravity solutions. A true
-4



QUANTIZED TENSION: STRINGY AMPLITUDES WITH . . . PHYSICAL REVIEW D 71, 086001 (2005)
string derivation of our models will require understanding
the origin of both background and quantization.

We have not taken into account the affects of (broken)
supersymmetry: In particular, we have not considered
Ramond-Ramond background fields, which would require
a Green-Schwarz formulation.

V. REGGE LIMIT

A. Lowest order approximation

As a simple example, we apply the analysis of section II
to a trajectory

�n�t� �
�0

an
�t� t0� 	 J0; (5.1)

for some integer J0. The leading intercept takes the arbi-
trary value J0 � �0t0=a1, but for large n the intercepts
converge to J0.

9 Since by assumption an being positive
9This includes as a special case the model of [11], where t0 �
0, and J0 � 2 is the usual closed-string intercept, for each
trajectory.
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increases indefinitely as n increases indefinitely, we easily
obtain

~��t� �
�
�1�t� �

�0

a1
�t� t0� 	 J0 for t 
 t0;

�1�t� � J0 for t � t0:
(5.2)

We can thus arbitrary fit the point �t0; J0� where ~� goes
from flat to slope 1. A particularly simple case is an � n.

By a slight generalization of the case an � n2, the
asymptotic intercept can be generalized to half-integer,
and the top trajectory can be made more smooth:

�n�t� �
�0

n2
�t� t0� 	

1

n

	
J0 �

1

2
J1



	

1

2
J1; (5.3)

where J0 and J1 are some integers obeying J1 � 2J0. The
top trajectory is then given by
~��t� �

8><>:
�1�t� � �0�t� t0� 	 J0 for t 
 t0 �

1
2

	
J0 �

1
2 J1



;

�n0�t� �
	
J0 �

1
2 J1



2
=4�0�t0 � t� 	 1

2 J1 for t � t0 �
1
2

	
J0 �

1
2 J1



;

(5.4)
which replaces the flat part with a hyperbola. The extra
parameter over the previous case allows for choice of the
sharpness of the hyperbola, which allows a smoother tran-
sition to flatness. (The previous top trajectory is obtained
for J1 � 2J0.)

As a further generalization, consider

�n�t� �
1

nk
��0t	 �0 � Pk�: (5.5)

of which the previous example is the special case k � 2. Its
top trajectory is given by

~��t� �
�
�1�t� � �0t	 �0 � Pk�1� for n0 � 1;
�n0�t� � �P0

k�n0�=kn
k�1
0 for n0 
 1;

(5.6)

where Pk is a polynomial of degree k with positive coef-
ficients. n0 is a solution of the equation �0t	 �0 � Pk �
n
k P

0
k. Since the right hand side of this equation increases

with increasing n for n > 0, the solution exists if Pk�0�<
�0t	 �0. Note that other exactly solvable examples are
those of k � 3 and k � 4.

The story becomes more and more involved when ef-
fects of�n and �n�s� are taken into account. The novelty is
that n0 depends on s in a way that restricts the Regge
behavior to special kinematical regions. On the technical
side, a difficulty is related to the problem of solving the
equation for the top trajectory. The example of [11] in-
cludes simple power functions for wn and an.
B. Continuous limit

The approximation of simply determining the top tra-
jectory works well for values of t where ~��t� � �1�t�. In
general this means for positive t, where the trajectories are
fit to the spectrum, but can be extended some distance to
negative t (e.g., by choice of the parameter t0 in the above
examples).

Since experiments have not yet determined dependence
on t for a large range of negative values (in comparison
with that for positive t), that may be sufficient. However, if
we anticipate restrictions on possible models from criteria
we have not yet analyzed (higher-point functions, loops,
etc.), it will be useful to generalize by considering correc-
tions to Regge behavior from n-dependence of the cou-
plings that weight the primary amplitudes. This was found
to be the case in [11], where the flat part of the top
trajectory found in the first example above was found to
have effective nonvanishing slope for a region consistent
with experiment.

For the first model of the previous subsection, using the
couplings of (3.5) with Veneziano amplitudes as the pri-
mary amplitudes,10

Â �
X1
n�1

c
n
a�cn

Z 1

0
duuS=an	k�1� u�T=an	k: (5.7)

Here S � ��0�s� t0�; T � ��0�t� t0�; k � J0 � 1. We
first replace the sum with an integral, and make the change
of variables
10We can also include kinematic factors, which we assume are
n-independent.

-5
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v �
1

an
: (5.8)

If we assume an goes as a power of n (which we can
normalize as a1 � 1), then, dropping an overall constant,

Â �
Z 1

0
dvcvc�1

Z 1

0
duuSv	k�1� u�Tv	k: (5.9)

Since we are looking for Regge behavior with nonvanish-
ing slope, we will assume that for large s the integral over v
is dominated by v � 1 (small n), and see under what
conditions this assumption is justified.11 We therefore re-
arrange this integral as

Â �
Z 1

0
dvcvc�1

Z 1

0
duuS	k

� �1� u�T	ke��1�v��S lnu	T ln�1�u��: (5.10)

Since S and T are linear in �0, the exponential can con-
veniently be rewritten in terms of derivatives with respect
to �0, allowing the u and v integrals to be separated. The u
integral can then be identified as the Veneziano amplitude
for the first primary amplitude, yielding the expression

Â � f
	
�0 @
@�0



B���1�s�;��1�t��; (5.11)

with

f�x� � c
Z 1

0
dvvc�1e��1�v�x �

X1
n�0

c!
�c	 n�!

��x�n

� 1�
1

c	 1
x	O�x2�:

(5.12)

After taking the Regge limit, we have

Â � f
	
�0 @
@�0



����1�t�����1�s��

�1�t�: (5.13)

The modification to the s dependence comes from the
derivatives acting on the �0 in the exponent of s, so the
first two terms in the expansion of f yield

Â�

	
1	

�0�t0 � t�
c	 1

ln��0s�


��0s��1�t�: (5.14)

We thus see that the range of validity of �1 as the effective
Regge trajectory is extended from the region t 
 t0 found
in the previous subsection to the additional region (in t <
t0)

t0 � t�
c	 1

�0 ln��0s�
: (5.15)
11See also [23].
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VI. HARD-SCATTERING LIMIT

We begin by writing a tree Neveu-Schwarz amplitude
for massless vectors

A�0�
4 ��0� � ��0�2K

����0s�����0t�
��1� �0s� �0t�

; (6.1)

with the usual kinematical factor K (see, e.g., [24]). In
general, a modified amplitude will have a subset of poles of
the primary amplitude (6.1), if �0 is replaced with �0=an
such that the function an takes only positive integer val-
ues.12 Take, for example, a polynomial of degree k with
positive integer coefficients Pk�n�. According to our ansatz
[9], the modified amplitude is then

Â �0�
4 �

X1
n�1

wnA
�0�
4 ��0=Pk�: (6.2)

For what follows we assume that wn is a product of power
functions like n)P*k .

To evaluate the amplitude in the hard-scattering limit,
s! 1, s=t fixed, we first split the sum into two parts and
then replace the second sum with an integral as

Â �0�
4 �

X�nc=N�
n�1

wnA
�0�
4 ��0=Pk� 	

Z 1

�nc=N�
dnwnA

�0�
4 ��0=Pk�;

(6.3)

where nc is a solution of equation Pk�n� � �0s. For this
value of n the arguments of gamma functions are of order
1, so Stirling formula is not applicable. Note that nc ��������
�0sk

p
for �0s! 1. �x� means the integer part of x. N is a

free parameter such that Stirling formula is applicable for
all the terms of the sum. If so, then the sum provides
exponential falloff in the hard-scattering limit. To see
that the integral provides the desired power law, it is
enough to rescale n as n!

����������
�0snk

p
. Indeed, in the lower

integration limit a factor
�������
�0s�k

p
cancels out the leading one

from nc. So, it behaves as const	O�1=
�������
�0sk

p
�. As to the

integrand, we have

�n�s� �
1

ckn
k

	
1�

ck�1

ckn
�������
�0sk

p 	 . . .


: (6.4)

Finally, the amplitude behaves as

Â �0�
4 � ��0s�2	*	�)	1�=k�1	O�1=

�������
�0sk

p
��: (6.5)

We have used that K � s2 in the hard-scattering limit.13

To compare with hard processes in QCD, we note that
the corrections to the scaling behavior correspond to sea
quarks and go as 1=s. Thus, it seems to be reasonable
taking the polynomial in the following form Pk�n� �
ckn

k 	 c0. The other parameters can be fixed by noting
However, in the hard-scattering limit it does not matter. We will
have more to say on this subject below.

13As in QCD [25], this is due to scattering of vector particles.
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that QCD amplitudes scale as s2�n=2, where n is a total
number of valence quarks. We take the option ) � �1 and
* � �n=2 (see (3.5)). A significant difference from others
is that ours is universal for all values of k.

It is also worth looking at a pole structure of the ampli-
tude (6.2). Using ) � �1 and * � �n=2, we find

Â �0�
4 � ��0�2K

X1
n�1

X1
m�0

1

n
P�1�n=2
k

1

�0s�mPk

�
�1	 �0t=Pk�m�1

m!
; (6.6)

where �x�n stands for a Pochhammer polynomial. This
equation shows that the poles are indeed a subset of those
of the primary amplitude (6.1) and their distribution is a
function of two integers �n;m�. The residue of Â�0�

4 at
�0s � l is given by

*�l� �
�0

t
K
X
fng

1

nl
P1�n=2
k B�1��0t=Pk; l=Pk�; (6.7)

where fng is a set of integer solutions of the equation l �
m�cknk 	 c0�. If the solutions do not exist, then * � 0.

A pole at l � 0 is special because all primary amplitudes
contribute. From this point of view it can be called infi-
nitely degenerate, while all others as finitely degenerate.
The residue is

*�0� �
�0

t
K

X1
n�1

1

n
P�n=2
k (6.8)

which is finite for positive n as it should be.14 This pole
corresponds to a massless ground state similar to that of the
primary amplitude. The first massive state is due to a pole
at l � ck 	 c0. Note that one can change its mass by
varying the parameters ck, c0 but keeping �0 close to the
Planck length. The effect is similar to that of [11]. This
gives a hint that spacetime geometry of our models might
be warped.

So far we have made the simplest modification �0 !
�0=an of the first amplitude. The reason for doing so is that
the slope is a dimensionful parameter which is easy to
trace. On the other hand, the intercept is dimensionless,
which makes it impossible to trace in kinematical factors
K.15 To bypass the K’s, without losing generality consider
the bosonic Lovelace-Shapiro amplitude [5,26]
14Note that in order that the sum be convergent an must
increase for large n (see Eq. (3.2)).

15A related reason is that �0 may be associated with a back-
ground metric, while it is unclear with which backgrounds may
be associated �0. One could think it of as a modulus correspond-
ing to a ground state mass. In subcritical strings, the intercept
may be related to other factors, such as the spacetime dimension,
or coefficients of Liouville terms, which may in turn be related to
a background tachyon.
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A�0�
4 ���s�; ��t�� �

��1� ��s����1� ��t��
��1� ��s� � ��t��

; (6.9)

where ��x� � �0 	 �0x. Formula (3.4) then requires

Â �0�
4 �

X1
n�1

wnA
�0�
4 ��n�s�; �n�t�� ; (6.10)

where �n�x� is given by Eq. (3.2). This amplitude has a
subset of poles of the primary amplitudes if and only if an
and bn take positive integer values. It seems natural to
specialize to polynomials with integer coefficients, say,
an � Pk�n� and bn � Pk0 �n� whose degrees are k and k0,
respectively. As to wn, we take it as a product of power
functions wn � n)P*kP

.
k0 .

To evaluate the amplitude in the hard-scattering limit we
proceed as before. So, we first split the sum into two parts
and then trade a second sum for an integral16

Â �0�
4 �

X�nc=N�
n�1

wnA
�0�
4 ��n�s�; �n��scos

2/=2��

	
Z 1

�nc=N�
dnwnA

�0�
4 ��n�s�; �n��scos2/=2���;

(6.11)

where nc is a solution of equation Pk�n� � �0s. N is a free
parameter such that Stirling formula is applicable for all
the terms of the sum. Thus the sum provides exponential
falloff. To evaluate the integral we rescale n as n!

����������
�0snk

p
.

In the lower integration limit a factor
�������
�0s�k

p
cancels out the

leading one of nc. For the integrand, we obtain

�n�s� �
1

ckn
k

	
1�

ck�1

ckn
�������
�0sk

p 	 . . .

	
1	

�0

�0s

� ck0n
k0 ��0s��k

0�k�=k
	
1	

ck0�1

ck0n
�������
�0sk0

p . . .



:

(6.12)

Since n is bounded from below and �0s is large, we may
treat subleading terms as corrections. As noted above, the
corrections to the scaling behavior in QCD go as 1=s. It
follows that rational powers are not allowed. If so, then
ck�1 � . . . � c1 � 0, ck0�1 � . . . � c10 � 0, and k � k0.
In other words, both polynomials look very similar: they
contain only the leading and constant terms and have the
same degree. As a consequence, we recover Eq. (3.3) as
expected.

Finally, we have

Â �0�
4 � ��0s�*	.	�)	1�=k�1	O�1=�0s��: (6.13)

By comparison with the known results of [6] we fix ) �
�1 and *	 . � 2� n=2. Since the form of the polyno-
16Note that in the center of mass frame, t � �scos2 /2 and u �
�ssin2 /2 .
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mials is very restricted it makes no difference if we take wn
in the form n�1P2�n=2

k (see (3.5)).
18
VII. HADRONIC MASS RELATIONS

A concrete, spectacular success of the early days of dual
resonance models is that of [26,27]. Combining the
Veneziano type formulae for scattering amplitudes with
the Adler condition, they found many mass relations that
agree well with experiment. It seems natural to check
whether the models of interest allow those relations too.

We begin by discussing 00 scattering along the lines of
[26]. Consider the amplitude (6.10). The Adler condition
requires the amplitude to vanish when s � t � u � m2

0 �
0. Assuming that there is no cancellation between different
terms, we get from the denominators

�n�0� �
1

2
: (7.1)

The novelty is the n-dependence. For the trajectory with
n-independent intercept like (5.1) with t0 � 0, the
n-dependence is in fact missing. As a result, the trajectory
obeys this requirement as in the usual case, i.e., if �0 �
1=2. It gives the intercept of the � trajectory. For the
trajectory like (3.2), we conclude that

�0 �
1

2
an 	 bn: (7.2)

Since �0 does not depend on n, Eq. (7.2) shows that an and
bn must be integers of opposite signs. If so, the Adler
condition provides the constraint on bn. Inserting it back
into Eq. (3.2) we get the trajectory discussed before.

We should caution the reader that in principle the am-
plitude can take the form Â�0�

4 � �s	 ct�f�s; t� with
f�0; 0� � 0. In this case the above derivation of the inter-
cept fails.

It is straightforward to extend the above analysis to the
case when all particles but one to be arbitrary hadrons 0	
A! B	 C [27]. Assuming that amplitudes receive con-
tributions from only one family of trajectories in each
channel, the amplitude to be considered is given by
Eq. (6.10) with �n�s� and �n�t� replaced by �Xn �s� and
�Yn �s�. Here X and Y mean the corresponding families. The
rest of the analysis goes along the lines of [27]. Thus, we
get

aAn � aXn (7.3)
and

�Xn �0� � �An �0� �
1

2
NAA; (7.4)

with some integer NAA. For the trajectories (5.1) with t0 �
0, Eqs. (7.3) and (7.4) show that the two trajectories must
have the same slopes, and intercepts which differ by a half-
odd integer.17 As a consequence, all the mass relations of
17Note that in this case NAA is always an odd integer as in [27].
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[27] hold. For the trajectories (3.2), Eq. (7.4) provides the
constraint on the bIn’s. One possibility to resolve it is to take
bIn in the form bIn � �0 � ~�0aIn that immediately leads to
the trajectories (5.1) with �0 ! ~�0. Unfortunately, we do
not know all the solutions of the constraint, so we can not
answer whether all the trajectories reduce to those of (5.1).
VIII. FURTHER ISSUES

We begin with a special class of the trajectories (3.2). It
is given by

an � n; bn � B�n� 1�; �0 � B; (8.1)

where B is an integer. To make one of the possible physical
interpretations of this class somewhat clear, let us note that
the effective tension of the nth term in the series [9]

Tn � Tn; T � 1=20�0

is nothing else but the tension of n fundamental strings. If
so, one can think of the series as an expansion in funda-
mental strings. After this is understood, it immediately
comes to mind to consider more complicated bound states.
As is usual [28], this can be done by introducing D-strings.

In the presence of bound states �n;m� (n F-strings and m
D-strings) it seems natural to modify the expression [9]
as18

Â �
X1

n�0;m�0

0
wnmA�n;m�; (8.2)

where the effective tension of the �n;m�th term is now

Tnm � T

������������������
n2 	

m2

g2

s
:

g stands for the string coupling. There is, however, a subtle
point here: according to section III anm and bnm must be
integers. A possible way to avoid this difficulty is to take
the original an and bn as even-degree polynomials and
restrict g to rational values. Since m2=g2 must be integer,
it will restrict possible values ofm in the sum (8.2). We will
not drill deeper into details leaving them for future study.

A final remark: one surprise of SL�2; Z�-covariant super-
strings is that the theory is in fact 12 dimensional [30]. It
lives in a flat space with a diagonal metric taking values
�1. As known, one may think of the model (8.1) as a zero-
mode approximation to string theory whose spacetime
metric is warped. For example, it is given by

ds2 � f�r�dx2 	 dr2 	 ds2X; (8.3)

where X is a five dimensional compact space. It seems
natural to suggest that for the models (8.2) the correspond-
ing metric is given by
Interestingly enough, scattering amplitudes of
SL�2; Z�-covariant superstrings as suggested in [29] are given
by (8.2) with wnm � const.
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ds2 � f�r; !r�dx2 	 dr2 	 d !r2 	 ds2X0 ; (8.4)

where X0 is now a six dimensional compact space. Note
that the novelty is warping.

IX. CONCLUSIONS

One question we have not addressed is the usual con-
straints at the string-loop level on the (critical) spacetime
dimension and form of the trajectories (e.g., intercept).
There might also be constraints already at the tree level,
as we have not yet examined the higher-point amplitudes.

The asymptotic flatness of the top trajectories for large
negative argument suggests a possible physical interpreta-
tion of the intercept: If these trajectories turn flat at t � 0
(as in AdS/CFT inspired models for the pomeron), then the
intercept is related to the effective spin at t � �1. If the
‘‘state’’ corresponding to t � �1 is identified with a jet,
and this effective spin with the parton carrying almost all
the energy, then we expect intercept 1=2 for the Reggeon
(spin of that quark) and intercept 1 for the pomeron (spin of
that gluon), in qualitative agreement with experiment. (For
the Reggeon case corrections can be attributed to quark
086001
masses; for the pomeron case there can be significant
corrections due to cuts.) In this picture it is a jet, the
experimental signature of the parton, that is treated as
‘‘fundamental’’ rather than the corresponding parton itself:
The jet is just a string in a certain off-shell kinematic limit.

These models might also be used for fundamental
strings, including gravity. The existence of parton behavior
at high energies indicates the graviton would be a bound
state in a way similar to hadrons in QCD, so that gravity
would disappear at short distances once the plasma phase is
reached.
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